VERTEX DEGREE SEQUENCES OF GRAPHS WITH SMALL NUMBER OF CIRCUITS

Ivan Gutman

Abstract. Necessary and sufficient conditions are determined for the numbers p_1, p_2, \ldots, p_n to be the vertex degrees of a connected graph with n vertices and cyclomatic number c, c = 0, 1, 2, 3, 4, 5.

Introduction

A partition $\mathbf{p} = (p_1, p_2, \dots, p_n)$ of the number 2m is said to be graphic if there exists a graph G with n vertices and m edges, such that the degree of the i-th vertex of G is equal to $p_i, i = 1, 2, \dots, n$. The characterization of graphic partitions and the study of graphs with prescribed degree sequences is a well elaborated part of graph theory [1,2].

Denote by \mathbf{P}_N the set of all partitions of the integer N. If $\boldsymbol{a} \in \mathbf{P}_N$ then we say that \boldsymbol{a} is of order N. Further, we present \boldsymbol{a} as $(a_1, a_2, \ldots, a_{\alpha})$ and assume that $a_1 \geq a_2 \geq \cdots \geq a_{\alpha} > 0$. Of course, $a_1 + a_2 + \cdots + a_{\alpha} = N$.

If $\boldsymbol{a} \in \mathbf{P}_N$ then the conjugate partition of \boldsymbol{a} is denoted by \boldsymbol{a}^* and is defined as $\boldsymbol{a}^* = (a_1^*, a_2^*, \dots, a_{\alpha^*}^*)$ where $\alpha^* = a_1$ and $a_j^* = \max\{i \mid a_i \geq j\}, j = 1, 2, \dots, \alpha^*$. Then $\boldsymbol{a}^* \in \mathbf{P}_N$ and $a_1^* \geq a_2^* \geq \dots \geq a_{\alpha^*}^* > 0$.

The partition a can be visualized by means of a Ferrers diagram [1] which is obtained by setting a_i dots in the *i*-th row, $i=1,2,\ldots,\alpha$. This Ferrers diagram has then a_i^* dots in the *j*-th column, $j=1,2,\ldots,\alpha^*$.

On Fig. 1 we present as an example the Ferrers diagram of the partition (7,4,4,1). It is immediately clear that the partition conjugate to (7,4,4,1) is (4,3,3,3,1,1,1).

Definition. Let $a, b \in \mathbf{P}_N$. If $\sum_{i=1}^r a_i \ge \sum_{i=1}^r b_i$ holds for all values of $r \in \mathbf{N}$, then we write $a \in \mathbf{S}$ and say that a is S-greater than b.

If neither a S b nor b S a, then the partitions a and b are said to be S-incomparable. S-incomparable partitions exist in P_N , $N \ge 6$.

8 Gutman

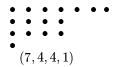


Fig. 1

If a is S-greater than b, then the Ferrers diagram of a can be obtained from the Ferrers diagram of b by moving some dots upwards [4].

The relation S induces a partial ordering of the set \mathbf{P}_N . Furthermore, $\langle \mathbf{P}_N; S \rangle$ is a lattice. This lattice has been introduced and examined by Snapper [5] and somewhat later by Ruch [3].

In [4] the following result has been proved.

Lemma 1. If ${\bf a}$ is a graphic partition and ${\bf a}$ S ${\bf b}$, then ${\bf b}$ is a graphic partition too.

A proper consequence of Lemma 1 is that some graphic partitions are maximal with respect to the relation S. Maximal graphic partitions are necessarily mutually S-incomparable. Their structure is determined by the below lemma [4].

Let $\mathbf{a}=(a_1,a_2,\ldots,a_{\alpha})$ be a partition of order m, such that $a_1>a_2>\cdots>a_{\alpha}>0$. Associate to \mathbf{a} another partition $\mathbf{g}=\mathbf{g}[\mathbf{a}]=(g_1,g_2,\ldots,g_n)$ via $g_j=a_j+j-1$ and $g_j^*=a_j+1,\,j=1,2,\ldots,\alpha$. Note that $n=a_1+1$.

LEMMA 2. If a is a partition of the integer m into unequal parts, then $g[a] \in \mathbf{P}_{2m}$ and g[a] is a maximal graphic partition. All maximal graphic partitions in \mathbf{P}_{2m} are of the form g[a].

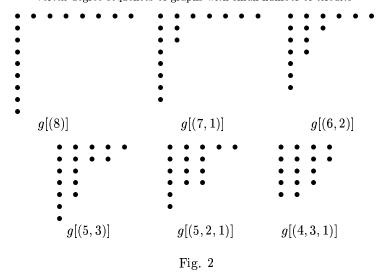
According to Lemma 2 the number of maximal graphic partitions of order 2m is equal to the number of partitions of m into unequal parts.

In Fig. 2 are presented the Ferrers diagrams of the six only possible maximal graphic partitions of order 16.

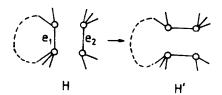
In [4] it has also been shown that the graph having a vertex degree sequence g[a] is unique. This graph is connected and has cyclomatic number $c = m - a_1 = a_2 + \cdots + a_{\alpha}$. (Recall that the cyclomatic number of a connected graph with n vertices and m edges is equal to m - n + 1.)

Two auxiliary results

Lemma 3. Let the partition $\mathbf{p} = (p_1, p_2, \dots, p_n)$ of order 2m be graphic. Then there exists a graph G with vertex degree sequence \mathbf{p} , such that (a) G is connected if $m \geq n-1$, (b) G has n-m components if $m \leq n-1$.



Proof. Assume first that $m \geq n-1$ and H is a disconnected graph with degree sequence p. Let e_1 and e_2 be edges belonging to two different components of H and let e_1 belong to a cycle. Such edges necessarily exist in a disconnected graph with $m \geq n-1$. Then the transformation $H \to H'$ will not change the degree sequence, but will decrease by one the number of components of H.



If H' is disconnected, we can repeat the procedure until a connected graph is obtained.

The proof for the case $m \leq n-1$ is analogous. \square

Lemma 4. A connected graph with cyclomatic number c, c > 0, has at least m_c edges where

(1)
$$m_c = c + 1 + \left[\left(1 + \sqrt{8c - 7} \right) / 2 \right].$$

 Proof is based on the observation that the graph with cyclomatic number c of the form

(2)
$$c = x(x-1)/2 + y, \quad x \in \mathbb{N}, \quad y \in \{1, 2, \dots, x\}$$

and the least number of edges is the graph G(x, y) obtained by joining y + 1 vertices of K_{x+1} to the (unique) vertex of K_1 . Here K_n denotes the complete graph on n

10 Gutman

vertices; note that $G(x,x) = K_{x+2}$. The number of edges of G(x,y) is

(3)
$$m_c = x(x+1)/2 + y + 1, \quad x \in \mathbb{N}, \quad y \in \{1, 2, \dots, x\}.$$

Eq. (1) is obtained from (2) and (3) by simple arithmetic reasoning. \Box

For the considerations which follow it is purposeful to extend the definition of the quantity m_c , eq. (1), by $m_c = 1$ for c = 0.

The main results

In this section we determine the conditions which a partition p of order 2m must satisfy in order to correspond to the degree sequence of a connected graph with given cyclomatic number c. Such a graph has m-c+1 vertices and consequently its degree sequence p must have the property $p_1^* = m-c+1$.

Denote by $\mathbf{P}_{2m}(c)$ the class of all partitions of the number 2m into exactly m-c+1 parts. Hence, if $p \in \mathbf{P}_{2m}(c)$, then $p_1^* = m-c+1$.

It is easy to verify that $\langle \mathbf{P}_{2m}(c); S \rangle$ is a lattice.

Bearing in mind Lemma 1, it is evident that if $\mathbf{P}_{2m}(c)$ contains graphic partitions, then some of them are maximal with respect to the relation $\mathbf{P}_{2m}(c)$. Denote by $\mathbf{P}_{2m}(c; \max)$ the set of maximal graphic partitions in $\mathbf{P}_{2m}(c)$.

From Lemma 2 it follows that the elements of $\mathbf{P}_{2m}(c; \max)$ are of the form $\mathbf{g}[(m-c, a_2, \ldots, a_{\alpha})]$, where $(a_2, \ldots, a_{\alpha})$ is a partition of the integer c into unequal parts, c > 0. (If c = 0 then the unique element of $\mathbf{P}_{2m}(c; \max)$ is $\mathbf{g}[(m)]$.)

Because of Lemma 3, if $m \ge m_c$ then every graphic partition in $\mathbf{P}_{2m}(c)$ is a vertex degree sequence of a connected graph.

The above observations can be summarized as follows.

Lemma 5. A partition $\mathbf{p} \in \mathbf{P}_{2m}(c)$ is a vertex degree sequence of a connected graph with cyclomatic number c if and only if $\mathbf{q} S \mathbf{p}$ for some $\mathbf{q} \in \mathbf{P}_{2m}(c; \max)$. $\mathbf{P}_{2m}(c; \max)$ is non-empty if $m \geq m_c$.

With these preparations we are able to prove the main results of the present paper, namely Theorems 1–5.

Theorem 1. A partition (p_1, p_2, \ldots, p_n) of order $2m, m \geq 1$, is the vertex degree sequence of a tree iff n = m + 1.

THEOREM 2. A partition (p_1, p_2, \ldots, p_n) of order 2m is the vertex degree sequence of a connected unicyclic graph iff $m \geq 3$, n = m, $p_1 \leq m - 1$ and $p_1 + p_2 \leq m + 1$.

Theorem 3. A partition (p_1, p_2, \ldots, p_n) of order 2m is the vertex degree sequence of a connected bicyclic graph iff $m \geq 5$, n = m - 1, $p_1 \leq m - 2$, $p_1 + p_2 \leq m + 1$ and $p_1 + p_2 + p_3 \leq m + 3$.

THEOREM 4. A partition (p_1, p_2, \ldots, p_n) of order 2m is the vertex degree sequence of a connected tricyclic graph iff $m \geq 6$, n = m - 2, $p_1 \leq m - 3$ and either $(p_1 + p_2 \leq m + 1 \text{ and } p_1 + p_2 + p_3 \leq m + 3)$ or $p_1 + p_2 \leq m$.

Theorem 5. A partition (p_1, p_2, \ldots, p_n) of order 2m is the vertex degree sequence of a connected tetracyclic graph iff $m \geq 8$, n = m - 3, $p_1 \leq m - 4$ and either $(p_1 + p_2 \leq m \text{ and } p_1 + p_2 + p_3 \leq m + 3)$ or $p_1 + p_2 \leq m + 1$.

Proofs

The general strategy in proving Theorems 1–5 is the following. From Lemma 2 we know the number and the structure of the elements of $\mathbf{P}_{2m}(c; \max)$. Bearing in mind Lemma 5 we have just to find the condition(s) needed that an element of $\mathbf{P}_{2m}(c)$ is not S-greater than any element of $\mathbf{P}_{2m}(c; \max)$. In other words we have to avoid the partitions whose Ferrers diagrams are obtained by moving upwards a dot of the Ferrers diagram of $\mathbf{p} \in \mathbf{P}_{2m}(c; \max)$.

Denote by [i, j] the dot in a Ferrers diagram lying in the i-th row and in the j-th column.

Proof of Theorem 1. Theorem 1 is a well known result [2]. We present its proof for reasons of completeness.

The unique element of $\mathbf{P}_{2m}(0; \max)$ is $\mathbf{g}[(m)] = (m, 1, 1, \ldots, 1)$. In order to construct a partition which is S-greater than $(m, 1, 1, \ldots, 1)$ we would have to move the dot [m+1, 1] of the respective Ferrers diagram into position [1, m+1]. Such a transformation would, however, violate the condition n = m + 1.

Hence $(m,1,1,\ldots,1)$ is S-greater than any element of $\mathbf{P}_{2m}(0)$ i.e. every element of $\mathbf{P}_{2m}(0)$ is a vertex degree sequence of a tree. \square

Proof of Theorem 2. The unique element of $\mathbf{P}_{2m}(1; \max)$ is $g[(m-1,1)] = (m-1,2,2,1,1,\ldots,1)$. A partition $p \in \mathbf{P}_{2m}(1)$ will become S-greater than g[(m-1,1)] if the dot [3,2] in the respective Ferrers diagram is moved either into the position [1,m] or into the position [2,3] (c.f. Fig. 2). The transformation $[3,2] \to [1,m]$ would increase p_1 by one. In order to avoid this we have to require $p_1 \le m-1$. The transformation $[3,2] \to [2,3]$ would increase p_2 by one, leaving p_1 unchanged. Bearing in mind the definition of the relation S we have to require $p_1 + p_2 \le (m-1) + (2)$. This immediately yields Theorem 2. \square

Proof of Theorem 3 is analogous thanks to the fact that $\mathbf{P}_{2m}(2; \max)$ also has a unique element $g[(m-2,2)] = (m-2,3,2,2,1,1,\ldots,1)$.

Proof of Theorem 4. $\mathbf{P}_{2m}(3; \max)$ has two elements: $\mathbf{g}[(m-3,3)]$ and $\mathbf{g}[(m-3,2,1)]$ (c.f. Fig. 2). In order to obtain a partition $\mathbf{p} \in \mathbf{P}_{2m}(3)$ which is S-greater than $\mathbf{g}[(m-3,3)]$ we have to make one of the following three transformations:

(a)
$$[5,1] \rightarrow [1,m-2]$$
 or $[2,4] \rightarrow [1,m-2]$; (b) $[5,1] \rightarrow [2,5]$; (c) $[5,1] \rightarrow [3,3]$.

12 Gutman

In order to avoid (a) we have to require $p_1 \leq m-3$. In order to avoid (b) we have to require $p_1 + p_2 \leq (m-3) + (4)$. In order to avoid (c) we have to require $p_1 + p_2 + p_3 \leq (m-3) + (4) + (2)$.

In an analogous manner the conditions that $p \in \mathbf{P}_{2m}(3)$ is not S-greater than $g[(m-3,2,1)] = (m-3,3,3,3,1,1,\ldots,1)$ are $p_1 \leq m-3$ and $p_1+p_2 \leq (m-3)+(3)$. All these conditions together result in Theorem 4. \square

Proof of Theorem 5 is analogous to the proof of Theorem 4 since also $\mathbf{P}_{2m}(4; \max)$ has two elements.

From the above proofs it is evident that by continuing a similar way of reasoning and applying Lemmas 2 and 5 one can characterize the vertex degree sequences of connected graphs with cyclomatic numbers $c \geq 5$. These characterizations are somewhat more complicated because for $c \geq 5$, $|\mathbf{P}_{2m}(c; \max)| \geq 3$. A typical result of this kind is Theorem 6 which we state without proof.

THEOREM 6. A partition (p_1, p_2, \ldots, p_n) of order 2m is the vertex degree sequence of a connected pentacyclic graph iff $m \geq 9$, n = m - 4 and either (a) or (b) or (c) holds:

- (a) $p_1 + p_2 \le m + 1$.
- (b) $p_1 + p_2 \le m$; $p_1 + p_2 + p_3 \le m + 3$; $p_1 + p_2 + p_3 + p_4 \le m + 6$; $p_1 + p_2 + p_3 + p_4 + p_5 \le m + 8$.
- (c) $p_1 + p_2 \le m 1$; $p_1 + p_2 + p_3 \le m + 3$; $p_1 + p_2 + p_3 + p_4 \le m + 6$.

REFERENCES

- [1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1976, chapter 6.
- [2] F. Harary, Graph Theory, Addison-Weslay, Reading, 1969, chapter 6.
- [3] E. Ruch and I. Gutman, The branching extent of graphs, J. Combin. Infor. & System Sci. 4 (1979), 285-295.
- [4] E. Snapper, Group characters and nonnegative integral matrices, J. Algebra 19 (1971), 520–535

Prirodno-matematički fakultet 34001 Kragujevac, p.p. 60 Jugoslavija (Received 18 11 1988)