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DETERMINISTIC AND RANDOM
VOLTERRA INTEGRAL INCLUSIONS

Nikolaos S. Papageorgiou*

Abstract. We establish the existence of solutions for a nonlinear Volterra integral inclu-
sion, involving a nonconvex valued orientor field and defined in a separable Banach space. Next we
consider a random version of it and prove the existence of random solutions. Finally we examine
a perturbed version of the original inclusion, with the pertubation being multivalued. Our results
extend earlier ones by Chuong, Ragimkhanov, Lyapin, Milton-Tsokos, Papageorgiou amd Tsokos.

1. Introduction

In the recent years, the study of multivalued equations has received consid-
erable attention, in particular in conection with problems in applied mathematics
(like control theory, mathematical economics, mechanics etc.) and many mathe-
maticians have contributed interesting results, mostly in the direction of differential
inclusions.

This paper is devoted in the study of integral inclusions in Banach spaces.
Integral inclusions, as well as differential inclusions, arise naturally in control theory,
when we deparametrize the problem and in feedback systems (see Aubin-Cellina
[1]). Another interesting application of integral inclusions can be found in the
works of Glashoff-Sprekels [7], [8], who considered problems related to thermostatic
regulation, in which the heating devices controlling the temperature of the system
are governed by a relay switch.

In this work we establish the existence of solutions for a large class of integral
inclusions of Volterra type, defined in a separable Banach space and involving a
nonconvex valued orientor field. The we examine a random version of that inclu-
sion, establishing the existence of random solutions. Finally we consider a per-
turbed version of the original inclusion, allowing the pertubation to be in general
multivalued.
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Our work extends the single valued results of Szufla [19], Vaughn [22] (de-
terministic case), Bharucha Reid [2], Tsokos-Padgett [21], Milton-Tsokos [11] and
Tsokos [20] (random case), as well as the multivalued results of Ragimkhanov [18],
Lyapin [10] (finite dimensional results) and Chuong [3] Papageorgiou [17] (infinite
dimensional results).

2. Preliminaries

Let (Q2,X) be a measurable space and X a separable Banach space. We will
be using the following notations:

Pp(y(X) = {A C X:nonempty, closed, (convex)}, and
Prwyr(e)(X) = {A C X:nonempty, (w-) compact, (convex)}.

A multifunction F:Q — Py(X) be said to be measurable if it satisfies any of the
following two equivalent statements:

(i) for all z € X, w — d(z, F(w)) = inf{||]x — z||: 2 € F(w)} is measurable,
(i) there exist {f,},, measurable selectors of F(:) s.t. for all w € Q@ F(w) =

d{fn(w)}nZI-

If ¥ admits a o-finite measure u(-), with respect to which is complete, then
statements (i) and (ii) above are equivalent to

(iii) Gr F = {(w,z) € @ x X:2 € F(w)} € £ x B(X), B(X) being the Borel
o-field of X (graph measurability).

By S} we will denote the set of integrable selectors of F(-) i.e. Sk = {f €
L'(X): f(w) € F(w) p-a.e.}. This set is nonempty if and only if w — inf{||2||: 2 €
F(w)} € LL. Using this set we can define a set valued integral for F(-) by setting

[ Fedue ={ [ raurs e si .

The vector valued integrals involved in this definition are defined in the sense of
Bochner. We say that F(-) is integrably bounded if and only if F(-) is measurable
and w — |F(w)| = sup{||z||: z € F(w)} € LL. It is clear that in this case S} # @.

Let Y, Z be Hausdorff topological spaces and F:Y — 27\ {@}. We say that
F(-) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)) if and
only if for all V C Z open, F* (V) = {y € Y:F(y) CV} (resp. F (V) ={y €
Y:F(y)NV # @}) is open in Y. If Z is a metric space, on P;(Z) we can define a
generalized metric by setting h(A, B) = max[sup,¢ 4 d(a, B),supycp d(b, A)]. This
metric is the well known Hausdorff metric. If Z is complete, then so is (P¢(Z), h).
A multifunction F:Y — Py(Z) is Hausdorff continuous (h-continuous), if it is
continuous from the topological space Y into the metric space (Pf(Z), h).

Also by B(-) we will denote the Hausdorff (ball) measure of noncompactness
defined by

B(A) = inf{r > 0: A can be covered by finitely many balls of radius r}
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(A C X bounded). By a(-) we will denote the Kuratowski (diameter) measure of
noncompactness defined by

a(A) = inf{d > 0: A admits a finite cover by sets of diameter < d}.

It is clear from these definitions that for all A C X bounded
B(A) < a(4) < 26(4).

Finally recall that by a Kamke function, we will mean a function w: T xR —
R satisfying the Caratheodory conditions (i.e. t — w(t,r) is measurable and
r — w(t,r) is continuous increasing, w(t, r) < d)( ) a.e. with ¢(-) € LY, w(t,0) =0
and w = 0 is the only solution of r(t) < fo ))ds, t €T, r(0)=0.)

3. Volterra integral inclusions

Let T = [0,b], A = {(t,s) € T xT:0 < s <t < b}, X a separable Banach
space and £(X) the space of bounded linear operators from X into itself.

In this section we examine the existence of solutions for the Volterra integral
inclusion of the form:

+ /tK(t,s)F(s,x(s))ds. (%)
0

By a solut10n of ( ) we understand a continuous function z:T — X s.t.
)+ I K s)ds, t €T, f(-) € Sp(. 4y
We have the followmg existence result.

TrEOREM 3.1. If (1) F:T x X — P;(X) is a multifunction s.t.

(1a) (t,z) — F(t,z) is graph measurable and |F(t,z)| < ¥1(t) + ¥2(t)||z]|
a.e. with ¢1(),’Lp2() S L}'_,
(1b) z — F(t,x) is ls.c.,

(1c) B(F(t,B)) < w(t,B) a.e. for all B C X bounded and with 2Lw(-,-) a
Kamke function for some L > 0,

(2) K:A = L(X) is a map s.t.
(2a) ||K(t,s)|| < L for all (t,s) € A

(2b) T —roso [ 1K, 91006 do-+ [ (€ 5)— Kt 5)[16(s) ds] = O with
P(t) = 1 (t) +a(t )MfrsomeM>0.

(3) p(-) € C(T, X),

then (x) admits a solution.
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Proof . First we obtain an a priori bound for the solutions of (). So let z(:)
be such a solution. We have:

t t
lz@)I < ||10||c><>+/0 L|F(s,z(s))| ds < ||p||oo+/0 L(¥1(s) + p2(s)[|l2(s)l]) ds

¢
< [lplloo + Ll 2 +/ Pa(s)l|z(s)|| ds.
0
Applying Gronwall’s inequality, we get that

llz(@®)[l < (pllec + Lll¢1ll1) exp [|92l1 = M.
Next define
F(t,z) if ||lzf| < M

Ft,o) = { F(t, Ma/|M]) it |lal| > M.

Note that ﬁ(t,a:) = F(t,pm(x)), where pp(-) is the M-radial retraction.
Let : T x X x X - T x X x X be defined by n(t,z,y) = (t,pm(x),y). Clearly
n(-,-,-) is measurable. So =} (Gr F) = {(t,z,y) € T x X x X:qn(t,z,y) € Gr F} €
YxB(X)xB(X). Butn~' (Gt F) = {(t,2,9): (t, pu(2),y) € Gr F} = {(t,z,y):y €
F(t,pu(z)) = ﬁ(t,w)} = GrF. So F(-,") is graph measurable. Also recalling that
pum(+) is Lipschitz, we immediately have that ﬁ(t, -) is L.s.c. Furthermore for every
B C X bounded we have

~

B(E(t,B)) = B(F(t,pm(B))) < w(t, Blpm(B)))-
But B(pm(B)) < B(conv(B U {0})) = B(B). Thus we get

~

B(F(t, B)) < w(t, B(B)).

Finally observe that
|[F(t,2)| < $1(t) + $a()M = (2) for ae. ¥(-) € L},

So ﬁ’(, -) has same properties as F'(-,-) and in addition is integrably bounded
in ¢, uniformly for z € X. Next we will solve (x) using the orientor field F'(¢,x)
instead.

Let
t
Wo = {y € C(T, X):y(t) = p(t) +/0 K(t,s)u(s)ds, t € T, [lu(t)]| < (t) a-e-}-

Clearly this is a nonempty, bounded and because of hypothesis (2b), equicontinuous
subset of C'(T,X). Then define

W, = {y € O(T, X):y(t) = p(t)

¢
1
+/0 K(t,s)u(s)ds, teT, u(:) € Sconvﬁ(-,Wo(-))}'
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We claim that W, # @. To see this let y(-) € Wy. Then since F(-,) is graph
measurable, t — F'(t,y(t)) is measurable and moreover integrably bounded. Hence

L C 1 N . . .
o # SF(.,y(.)) C SWF(.’WO(.)) and this clearly implies that W; # &. Also note

that if y € W3, then

t
_ 1
y(t) = p(t) +/0 K(t,s)u(s)ds, teT, ue€ Scmvﬁ(-,wo(.))'

Hence [[u(t)]| < [GmE(t, Wo ()| = |F(t, Wo(t)| < $(t) ace. = u() € Wo =
W1 CW,.

Next define

W, = {y € C(T, X):y(t) = p(t)

t
1
+/0 K(t,s)u(s)ds, teT, u € Sconvﬁ(-,wl(.))}'

Note that F(t, Wy (t)) C F(t,Wx(t)) a.e. and so as before @ # Wy C Wy C Wp.

Continuing this way we produce a decreasing sequence {W,},>1 of nonempty,
closed, bounded and equicontinuous subsets of C(T', X).

Now we will determine S(W,,). Let {y2},>1 be dense in W,. We have:
BWy) = Blyr:m > 1] < afyy, :m > 1].
But from Ambrosetti’s theorem (see Deimling [5]), we know that:

alyp:m > 1] =supayy, (t):m > 1]
teT

Also recall that
afyp(t):m > 1] < 28[yr (t):m > 1]

=2B [/OyK(t,s)u’r;(s)ds:mZ 1.

Using Monch’s theorem [12] (proposition 1.6) (for an extension see also Orlicz-
-Szufla [13]), we get that

20 [/OtK(t,s)ufn(s) ds: m > 1] S/Ot 26 (K (t,s)up,(s): m > 1) ds
< /0 28(K(t,5)F (s, W1 (s))) ds

< /Ot 2Lw (s, 8 (Wn-1(s))) ds.
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Set hy(t) =B (Wyr(t)), n>1,t € T. We have
h(t) < /t 2Lw(s, hn-1(s)) ds.
0

Note that h,, < B3(Wo(t)) < [|plleo + fo s)ds = {hn}n>1 is equicontinuous
and bounded. Thus applying the Arzela- Ascoh theorem, we may assume that
hyn = h in C(T). Therefore in the limit as n — oo, we have:

¢
h(t) S/o 2Lw(s,h(s))ds, teT.

Because h(0) = 0 and recalling that 2Lw(-,-) is a Kamke function, we con-
clude that h(t) =0, ¢t € T. But recall that

B(W,,) < supa(W,(t)) <sup28(Wn(t)) = 2sup h,(t) = B(W,) = 0
teT teT teT
Set W =(,,>1 Wn. Then by Kuratowski’s theorem (see Deimling [5], p. 42)

W is nonempty and compact. We will now show that the functions in W have an
integral representation.

Let y € W. Then y € W, for all n > 1 and so

n > 1.

¢

1
+/0 K(t,s)un(s)ds, teT, wu,€ .S’COHVF( Wa_1()’
S0 un(t) € ConVE (t,Wp_1(t)) ae. n > 1 and up(t) € convF (t,Wn_1(t)) ae.
m > n. Hence we can write that

ﬁ( U <)) B, War (1)) < wlt, hnr () ac.

m>n

Since w(t, hn—1(t)) = 0 as n — oo and since the measure of noncompactness of a
finite number of points is clearly zero, we get that

5( U um(t)) <e foralle >0

m>1

= U um(t) € Pp(X) = G(t) =conv U U (t) € Pre(X).
m>1 m2>1

and clearly G(-) is integrably bounded. So from [14], we deduce that S} is
w-compact in L!'(X) and from the Eberlein-Smulian theorem is sequentially w-
compact. So by passing to a subsequence if necessary, we may assume that u,, — u
in L'(X). Hence for all t € T

y(t) = p(t) +/0 K(t,s)un(s) ds — p(t) +/0 K(t,s)u(s)ds



Deterministic and random Volterra integral inclusions 125

So y(t )+ [ K s) ds, which proves that

/KtS ds,tGT 'LL m convE (- W(')):|'

n>1

Next define R:W — P(L'(X)) by R(x) = S}__ . Since F(t,) is Ls.c.,
from theorem 4.1 of [16], we get that R(-) is l.s.c. too "So applying Fryszkowski’s
selection theorem [6], we can ﬁnd W - L1 (X ) continuous map s.t. r(z) € R(x)

for all z € W. Set v(z)(t) )+ fo z)(s)ds. Clearly from what we
proved for the elements of W U( ) ew. So v W — W and is continuous. Apply
Schauder’s fixed point theorem to get £ € W s.t. v(Z) = Z. It is easy to see
that Z(-) is a solution of (¥) with orientor field ﬁ(, -). But note that ||Z(¢)|] <
|ﬁ’(t, Z(t))| < ¥1(t) +=2(t)||Z(¢)|| a-e. and as in the beginning of the proof, through
Gronwall’s inequality, we get ||Z(¢)|| < M = }?’(t,:'z?(t)) = F(t,2(t)) = z(-) is the
desired solution of (x). QED

4. Random integral inclusions

In this section let (2, X, 1) be a complete probability space, T' = [0,b] and X
a finite dimensional Banach space. We will examine the following random Volterra
integral inclusion:

z(w,t) € p(w,t) +/0 K(w,t,8)F(w,s,z(w,s)) ds. (*x)

By a random solution of (xx) we understand a stochastic process z:Q x T' — X
with continuous paths s.t. for every w € Q, z(w, -) is a solution of the corresponding
deterministic problem.

Our existence theorem extend the works of Milton-Tsokos [11] (theorem 3.1),
Tsokos [20] (theorem 3.1) and Bharucha Reid [2] (chapter 6.4.B).
THEOREM 4.1. If (1) F:Q x T x X — Ps.(X) is a multifunction s.t.

(1a) (w,t) = F(w,t,z) is measurable,
(1b) z — F(w,t,z) is h-continuous,
(Ic) |F(w,t,z)] < i(w,t) + Y2(w,t)||z]|| ae. for all w € Q, with
¢1('7 ')7 ¢2('7 ) measurable and ¢1 (wa ‘)7¢2(w7 ) € L1+7
(2) K:Qx A — L(X) is a map s.t.
(2a) (w,t,s) = K(w,t,s) is measurable,
(2b) ||K(w,t,8)|| £ L(w) for all w € Q with L(-) measurable,
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(20) tim [f) [1K(w,t,8)[0(w,s)ds+ [y [|K(w, t',5) = K(w,t,5)|[¢(w,5) ds]
= 0, where ¥(w,t) = Y1(w,t) = Y2 (w,t)M(w) for some M : Q —
R \ {0} measurable, and
(3) p(-,-) is a Caratheodory X -valued function,

then (xx) admits a random solution.

Proof : First let (-, -) be a solution of (x*). Then through Gronwall’s inequal-
ity, we get that [|z(w, t)|| < [llp(w, )lleo + L(w)ll¥(w, )1 Jexp (L(w)l[¢2(w, )ll1) =
M (w). Define I?’(w,t, z) as in the proof of theorem 3.1 and consider (xx) with
I?’(-, ,-) being the orientor field. Consider G:Q x C(T, X) — P;(C(T, X)) defined
by

Glw, ) = {y € C(T, X):y(t) = pluw, 1
/Kwts s)ds, teT, fe F(w”z())}

We claim that w — G(w, z) is measurable. Solet f € L'(X) and z € C(T, X).
Define 7: Q x L'(X) — C(T, X) by

r(w, f)(t) = p(w,t) /Kwts s)ds, teT.

Using the lemma in [15], we have that r(-, -) is a Caratheodory function, hence

jointly measurable. Also, again from [15], we know w — 511: (@2()) is measurable.

So we can find f:© — L'(X), n > 1 measurable s.t. {fn}n>1 Sl o(y) Then

observe that

d(z,G(w,z)) = inf |z = r(w, fo)|lo = w — d(2,G(w,z)) is measurable,

and thus the claim follows (see section 2).

Next we will show that £ — G(w, z) is h-continuous. So let z,z' € C(T, X)

and let y' € G(w,z'). Then for any f € S;?(w () have:

p(w,t) /Kwts s)ds

_ Hp<w,t>+ / K(w,t,5)f(5) ds — p(w,t) — / K(w,t,5)(s) ds

i 1
for some f' € SF(w () So
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ym—m%niéme@ﬂ@w

S/HKWm@WWﬂ@—f@WkSM@/Hf@—f@wk
0 0
= Iy = yllo < LW)IIf' = fll for any y € G(w, ).

Hence

dy',G(w,)) < LWd(f', S5, .0))

* ! * 1 1
= h*(G(w,z'),G(w,z)) < L(w)h (S(ﬁ(w,-.z'(.))’Sﬁ(w,-,z(-)))‘

By interchanging the roles of z and z' we have

W (G (w,2), G(w,2) < LW (Sh(,, . () SPwrar()-

So finally we get

h(G(w,z"),G(w,z)) < L(w)h(Sll;(w’_’w,(_)), S%(w’_’w(_))).

Also from the proof of theorem 4.5 in [16] we know that

b
. ) I .
B(Sh e arir Sk _/0 h(E(w,t,2' (1)), F(w, t,2(t))) dt.

From this through the dominated convergence theorem, we easily get that G(w, -)
is indeed h-continuous. Now let W(w) C C(T, X) be defined by

W(w) = {z € C(T,X):2(t) = p(w, t)

-I-/tK(w,t,s)g(s)ds, teT, |lgd)| < Y(w,t) a.e.},
0

with P(w,t) = ¢1(w, 1) + Y2 (w, 1) M (w).

An easy application of the Arzela-Ascoli theorem tells us that for all w €
Q, W(w) is compact in C(T,X). Because of the a priori bound obtained in the
beginning of the proof, we see that for all (w,z) € Q x C(T, X), we have G(w,z) C
W(w). Next let H(w) = {z € C(T,X):z € G(w,z)}. From the Kakutani-Ky Fan
fixed point theorem, we deduce that H(w) # @ for all w € Q. Also note that

GrH = {(w,2) € A x C(T, X):d(z,G(w, z)) = 0}.

From the properties of G(-,-) proved above and since the distance function is Lip-
schitz, we have that (w,z) — d(z,G(w,z)) is Caratheodory, hence jointly mea-
surable. Therefore GrH € ¥ x B(C(T,X)). Once again Aumann’s selection
theorem gives us h: Q — C(T, X) measurable s.t. h(w) € H(w) for all w € Q. Set
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z(w,t) = h(w)(t). From the lemma in [15], we have that z(-,-) is a Caratheodory
process. Since ||z(w,t)|| < M (w) and recalling the definition of F(w,t,z), we con-
clude that z(-,-) is the desired random solution of (xx). QED

5. A perturbed Volterra integral inclusion

In this section we consider the following perturbed version of ().
z(t) € G(t,z(t) /Kts (s,z(s))ds, teT. (% %)
By a solution of (* * x), we understand a continuous function z: T — X s.t.

Again X is finite dimensional.
THEOREM 5.1. If (1) G:T x X — P¢.(X) is a multifunction s.t.
(1a
(1b
2) F:
(2a) t — F(t,x) is measurable,
(2b) = — F(t,z) is u.s.c.,
(2) |F(t,2)| < ¢1(t) +92(t)l|2ll a-e. with 1(-),42(-) € LY, and
(3) K:A— L(X) is a map s.t.

(3a) Timy oo J) 1K, )ll(s)ds + [LIK(E,5) = K(t,)[l(s)ds] = o,
where Y(s) = 11(8) = Y2 (s)M for some M > 0,

(3b) [IK(t, )l < L,

) (t,z) = G(t,x) is uw.s.c.,

) |G(t, )| < L,

T x X = Ps(X) is another multifunction s.t.
)

)

)

then (x x x) admits a solution.

Proof: From De Blasi [4], proposition 4.1, we know that we can find
h-continuous multifunctions G,:T x X — Pp(X) st. |Gn(t,z)| < L,
Grs1(t,2) C Gp(t,z) C Gpuo1(t,z) C --- and Gu(t,x) — F(t,x) as n — oo
for all (¢,z) € T x X. Applying Michael’s selection theorem (see Aubin-Cellina
[1]), we can find g,: T x X — X continuous functions s.t. g,(t,z) € G,(t,z). Let
u(-) € C(T, X) and consider the following integral inclusions:

z(t) € gn(t,u(t / K(t,s)F(s,z(s)) ds. ()1

Denote the solution set of (xxx)? by S,(u). From theorem 3.1 (see also
[17]), we know that S,(u) # @ for all n > 1 and furthermore is compact in
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C(T,X). Consider the multifunctions S,: C(T, X) — P (C(T, X)) defined by u —
Sp(u),n > 1. We claim that S, is us.c. m > 1. To this end let W = {y €

C(T, X):y(t) = v+ [y K(t,5)z(s)ds, t € T, v € Br(0), ||2(s)|| < b1 (s)+4ba(s) M =
¥(s) a.e.}, where M is the a priori bound for the solutions obtained in the beginning
of the proof of theorem 3. 1 and By, (0) is the ball of radius L centered at the origin.
An application of the Arzela-Ascoli theorem tells us that W is compact in C(T, X).
Note that for all u(-) € C(T,X) and all n > 1, Sp,(u) € W. So in order to show
the upper semicontinuity of S, (-), n > 1, it suffices to show that Gr S,, n > 1, is
closed. Thus let {(tum,Zm)}m>1 C GrSy, s.t. (Um,Tm) = (u,z) in C(T, X). We
have

Tm () € gn(t, um(t) /Ktw (s,2m(s))ds, m>1, teT.

We have g, (t,um(t)) = gn(t,u(t)) as m — oo. Also from corollary 3, p. 632 of
Lojasiewicz [9], we know that we can find an increasing sequence of closed sets
Twm CT st. NT\Tn) < l/m and F|r, . x is us.c.. Define To = T'\ U,;,>1 Tms

Ay =Ty and A, =T \ Ny ' Ty.. Clearly \(Ty) = 0. Set F(t,z) = xt, (t){0} +
Ym>1 XA, (#)F(t, ). Then (t,z) — F(t,z) is measurable, z — F(t z) is u.s.c.
and for all (¢, ) (T \ To) x X we have F(t m) F(t,z). Thus for all t € T and

all m > 1: fo t,8)F(s,m(s))ds = fo $)F(s,zm(s)) ds. Next for z* € X*
we have

sup {(z*,z):z € /Ot K(t,s)ﬁ’(s,zm(s)) ds}
:g(x*,/OtK(t,s)ﬁ(s,mm(s))ds) = /OtU(K(t,s)*m*,ﬁ(s,mm(s))) ds.

Applying Fatouw’s lemma and recalling that o(K(t,s)*z*, F(s,-)) is us.c. since
F(s,-) is, we get

H/O J(K(t,s)*m*,ﬁ(s,mm(s))) ds

< /tMU(K(t s)*a*, F(s,m(5))) ds S/ o(K(t,s)*z*, F(s,2(s))) ds
0

N hma( / K (t,5)F(s, (s ))ds) < a(w*,/OtK(t,s)ﬁ(s,m(s))ds).

Invoking proposition 4.1 of [16] we get

hm/ K(t,s)F s;cm( dsC/ Ktsﬁ’(s,x(s))ds.

So in the limit as m — oo, we have
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t
z(t) € gn(t,u(t)) +/ K(t,s)F(s,z(s))ds, teT
0
= (u,z) € GrS, = GrS, is closed i.e. Sp(-) is u.s.c.

Applying the Kakutani-Ky Fan fixed point theorem, we can find u,(:) € C(T, X)
s.t. u, € S(uy,). Then we have

un(t) € Gp(t, un(t /Kts (s,un(s))ds, teT, n>1.

Since {up}n>1 € W and the latter is compact in C(T,X), by passing to a
subsequence if necessary, we may assume that u, — u in C(T,X). Because the
G,’s can be chosen to be locally h-Lipschitz (see remark 4.2 of DeBlasi [4]) we have

Gn(t, un(t)) — G(t,u(t)), while as above we can show that

hm/Kts (5, un(s) dsc/z(tsﬁ( u(s)) ds

= u(t) € G(t,u(t) /Kts (s,u(s))ds

= wu(-) is the desired solution of (x*x). QED
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