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THE GEOMETRY OF THE DUAL OF A VECTOR BUNDLE

Radu Miron, Stere Ianug and Mihai Anastasiei

The differential geometry of the total space of a vector bundle has benefited by
many interesting papers since the paper [9] by R. Miron has appeared. That paper
has led to a deep study of some remarkable geometric structures. The main results
from the geometry of the total space of vector bundle as well as some applications
of it to General Relativity were published in a recent monograph (R. Miron, M.
Anastasiei [14]).

Related to this geometry the geometry of the Lagrange spaces L™ = (M, L)
as well as the geometry of the generalized Lagrange spaces M"™ = (M, g;;(x,y)),
(see [11], [6], [1], [16]) has been extensively developed.

Important applications of the theory of the spaces M™ in studying the effects
of the gravitational field were pointed out by A. K. Aringazin and G. S. Asanov
[4]-

Let £ = (E,w, M) be a vector bundle and &* = (E*,n*, M) its dual. In this
paper we study the differential geometry of the manifold E* generalizing the results
from the geometry of the total space T*M of the cotangent bundle (T*M,7*, M)
of a manifold, [15], [2], or of a Hamilton space, [12], [13].

Our theory is of interest for the Hamiltonian theory of physical fields.

It is known that the main properties of 7* M are analogous to those of the
total space T'M of the tangent bundle (T"M, 7, M). But there exist properties which
are specific for T*M. For instance, E. Calabi has remarked that on the total space
of cotangent bundle of a complex projective space there exists a Kahler metric
whose Ricci tensor identically vanishes.

The paper is organized as follows. In §1 the basic notations as well as the
concept of nonlinear connection on E* are introduced. In §§ 2-4 d-tensor fields
and d-connections on E* are considered. The main properties of the torsion and
curvature of a d-connection are described, too. The equations of structure of a
d-connections are derived in §5. In §6 h-metrics, v-metrics and (h,v)-metrics on
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E* are introduced and the d-connections compatible with them are studied. Also,
Hamilton function is introduced and it is shown that it determines a v-metric on
E*. The Legendre transformation as a map £ — E* is studied in §7.

The terminology and notation are those from the monograph [14].

1. The dual vector bundle

Let £ = (E,w, M) be a real vector bundle, whose base M is an n-dimensional
manifold, the type fiber F' is an m-dimensional real linear space and the projection
7 is a differentiable map. We shall denote the dual of £ by £* = (E*,n*, M). Its
type fiber is F™*, the dual of F.

A trivialization of £ induces a trivialization of £*. Let U C M be the domain
of a chart of M and e € 7~ 1(U) C E. Let us denote by (z¢,y®) the coordinates of
e such that (z%), 1 < i < n, are the coordinates of 7(e) = z and (y%), 1 < a < m,
are the coordinates of the e in the fiber E, = 7~1(z). If a change of the bundle
chart is performed one obtains (see [14])
oz

oxd
P= M@, kM) = m.

T =7 (2", 2", rank =n,

(1.1)

Here the Einstein summation convention is used and will always be used in this
paper.

Let us consider v € 7*~1(U) C E* such that 7*(u) = = and let (2%, p,) be
the canonical coordinates of u. If the local chart is changed these coordinates are
transformed as follows:

i

=n, .Z_)a = Mg(f)pln

(1.2) 7 =7 (..., 2"), rankH

where the matrix (M?2(%)) is the inverse of the matrix (M?(z)). It follows imme-
diately that locally we have y*p, = y*p, because £ and £* are dual.

Let us denote

0 : 0
].. P = A ¢ = .
(1.3) 0 5 0 ap.

These vector fields are transformed as follows:

) Vi W
T Oxt Ok + - ozF Oz pad

(1.4) & = Mo(z) .

0

By (1.4) we can define a global vector field p on E* such that in a system of
local coordinates p = p,0°.
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Definition 1.1. The vector field p on E* is called the Liouville vector field.

Let 7*T:TE* — T M be the tangent map to 7*. Its kernel, denoted by V E*,
will be thought of as a distribution u — V,, E* on E*, called the vertical distribution
of &*. Tt is easy to see that 7*T(8%) = 0 for a = 1,... ,m, hence (9%) is a local
basis for the vertical distribution. By the Frobenius theorem this distribution is
integrable and its maximal integral submanifolds are exactly the fibers E, z € M.

Definition 1.2. A nonlinear connection on E* is a differentiable distribution
N* on E* which is supplementary to the vertical distribution VE*, i.e. T, E* =
N ® V,E* holds for every u € E*.

ProposiTioN 1.1. If M is a paracompact manifold then there exist nonlinear
connections on E*.

Proof. One proceeds as in the case of the bundle (see [14]). Since the
submersion 7* is differentiable we can associate to any vector field A € X (M)
a unique vector field A" on E* such that for every u € E*, A" € N and
7*T(Ar) = A,, n*(u) = 2. The vector field A* will be called the horizontal lift of
A with respect to the nonlinear connection N. Setting §; = (3;)"*,i =1,... ,n, it
is obvious that (d1,...,d,) is a local basis for the distribution N* and that there
exists a unique system of functions Ny;:7n* ' (U) - R, (1 <i<mn, 1 <a < m)
such that

(1.5) 8; = 0; + Nyi(z,p)0°.

The functions (N,;) are called the coefficients of the nonlinear connection
N*. Sometimes N* will be called the horizontal distribution on E*.
As in the case of the nonlinear connections on E (see [14]) on can prove:

ProposiTioN 1.2. If a change of bundle charts is performed the following
formulae hold:

oz _
(1.6) 0i = 550k,
= ~ . Oz* aM?
(1.7) Noi(®,P) = MY(T) = No (D) + pp 2
oz 0T

ProposiTioN 1.3. If for a trivialization of £* on the domain of each local
chart on E* a system of functions (Ng;) which are transformed by (1.7) is given,
then there exists an unique nonlinear connection N* on E* whose coefficients are
the given functions.

It is clear that (&;,d%) is a local basis for X(E*), which is adapted to the
distribution N* and to the distribution V E*. If we set

(18) 0pa = dp, — Nai(aj;p) dxi;
then (dz',dp,) is the basis dual to (8;,0%).
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It is easy to see that
(L.9) 08, = M ()dps.

Now we shall associate to N* a 2-form p on M which is V E*-valued:
(1.10) p(A,B) = [A", B" - [A, B]h.

It is V E*-valued because A", B" and [A4, B]"* are n*-related to 4, B and [4, B]
respectively, so that p(A, B) is just the vertical component of [A", B%]. But we
know that N* is integrable iff the vertical component of [A", B*] vanishes.

So we have:

TaeEOREM 1.1. The horizontal distribution N* is integrable if and only if the
2-form p identically vanishes.

Locally, we have:

(1.11) p(0i,85) = 16:,65] = Rai0°,
where
(1.12) Raij = 0iNgj — 0 N

We also notice:

(1.13) [6:,0%] = —(8°Ny;)d®, [0%,0°] = 0.

2. d-tensor fields on E*

For every vector field X on E* we shall denote by X and XV its projections
on horizontal and vertical distribution, respectively. So we have

(2.1) X=x"+Xx",

where X € N and X € V,,E* for every u € E*.

We shall say that X is a horizontal vector field and XV is a vertical vector
field.

If we put

(2.2) X" =X(2,p)0i;, XV = Xa(z,p)0",
the following rules of transformation hold:

oz
OxI

(2.2)) X'(Z,p) = =X/, X,=M(T)X,.

If wis an 1-form on E*, we have the decomposition

(2.3) w=w’+uY,
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where wf and w" are 1-forms on E* defined by

(x"), wf(xV)=0,
(XY, wV(X")y=0, VX eX(E).

(2.3

w w
(2.37) w w
Locally, we have
(2.4) wf = w;(z,p)dat, WY =w(z,p)op,
and following laws of transformation hold:

(2.4) T(ED) = S p); B°(E,P) = M (@) (5.,

Definition 2.1. A tensor field ¢ € 77 (E*) with the property

(2.5) tHw, ..., 0, X, X)=tw",... oV, x" . XV,
1

s 1 s

where )1(, ..., X € X(E*) and &;, ..., € X*(E*), we shall call distinguished tensor
field or d-tensor field, on E*. If we put

tiete = t(da™,. .. 85, 0", 0pby, - )

by (1.6) and (1.9), it follows

. oz Ozt —~
1-..Q1.. d hi:c1e-*
(2.6) b = o B M - M tk:CCli )
As an example we mention that the functions R,;; are the components of a
d-tensor field. By (1.11) it follows that this d-tensor field vanishes iff the horizontal
distribution N* is integrable.

3. d-connections on E*
When a nonlinear connection N* on E* is given, special linear connections
on E* can be considered.

Definition 3.1. The distinguished connection or d-connection on E* is a linear
connection D on E* which preserves the distributions N* and V E* by parallelism.

Setting
(3.1) D% =Dyu, D% =Dxv, VXeX(E",
gives
(3.1) Dx =D% + D%, VX e X(E).

Furthermore, D" determines an algorithm of an h-covariant derivation and DV
determines an algorithm of a v-covariant derivation (cf. [14]).
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We note the following properties of D" and D?, respectively:

(52) { (DAYH)Y =0, (DLRYV)" =0,
' DY = (DhY™)" + (DYYY)Y, Dif=Xx"Ff,
(D%xY™)Y =0, (D%Y")" =0,
(33) v v yvH\H v vV\V v \%
DYY = (DXY")" +(D%Y")", Dxf=X"{,

where f is an arbitrary function on E*.

If t € 77 (E*) is a d-tensor field on E* then its h- and v- covariant derivatives
are given by

(3.4)
(D t)(w,...,X)=X"tw,...,X)—t(Dhw,... , X)— - —t(w,... ,DEX),
(D%, ..., X) =X iw,...,X)—t(D%w,... ,X) —-- —t(, ... ,D%X),

s s s s

The torsion II of a d-connection D is completely determined by the following
five d-tensor fields of torsions.
(3.5)
T (z,y) = [XH, Y)H, TV(X,Y) = [(x",y" )"

R(X,Y) = —[I(X T, yN)V, XY, vy, PYX,Y) =[x, Y7V
The curvature tensor field R of a d-connection D satisfies:
(3.6) R(X,Y)Z"]V =0, [R(X,Y)ZV]" =o.
Hence it is completely determined by the following six d-tensor fields of curvature:
RX,Y)Z=RX" y"zH PX,Y)Z=RX"Y, Y™z
(3.7) S(X,Y)Z =RX"V,YV)Z",
RX,Y)Z=RX",vyHzV, PX,V)Z=RX",vyH)zV,
S(X,V)Z=RX",YV)zZ".
Every d-connection has a remarkable form with respect to the adapted basis,

its coefficients having simple laws of transformations and giving a new characteri-
sation of it.

_ TueoreMm 3.1. A d-connection D has, with respect to the adapted basis
(6;,0%), the following form:

ng d; = HJ’:k (z,p)d;, ngéa = —ﬁgké”
D{:)C(Si = Cjc(wap)(sj: Décéa = NgC(x’p)a'b,

2

(3.8)

where the coefficients H]Z:k and INIg’k have the following laws of transformation

—i  O0%' 0z" 8z° _, 0T 02"

39 * = 9at o3 ozF 7 9ar owont
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) oM
(3.9) a = MaMdaa’ HG + M?

oz*

and C¥¢, C2¢ are d-tensor fields.

Proof. Since the d-connection D preserves by parallelism the distributions
N* and VE*, the formulae (3.8) follow directly from (3.2) and (3.3) by using the
basis (d;,9%). From (3.8) and (1.6), (1.9) one obtains (3.9) and (3.9%) as well as
— oz’ b = ~ ~
(3.97) o= 6“1 Mecr, oe = MIMEMECS

which shows that C7° and C’,‘}c are d-tensor fields. QED.

THEOREM 3.2. If on the domain of each local chart on E* are given the func-
tions (H},(z,p), HE (x,p), Cic(z,p), égc(m,p)) which transform by (3.9), (3.9’)
and (3.9”) when the local chart is changed, then there exists a unique d-connection
D on E* whose local coefficients are given functions and which has the properties:

Df=06f, DY.f=08f VfeF(E

Proof . For each local chart we can write (3.8). Then define the covariant
derivative with respect to X = X%§; + X,0° by

(3.10) Dx = X'Ds, + XoDj..

By standard arguments it follows that D is a linear connection, globally defined
on E* having as local coeflicients just the given functions. The uniqueness is
immediate.

THEOREM 3.3. If the base manifold of the bundle £* is paracompact, then
there exist d-connections on E*.

Proof. Let N* be a nonlinear connection on E* having as local coefficients
Noi(z,p) and let I be a linear connection on M, having as local coefficients I'}; ().

Then the set of functions (F;'-k(x), 3“Nb,~, 0, 0) satisfies the hypothesis of the The-
orem 3.2 QED.

Next we shall give local expressions for the h-and v covariant derivatives of a
d-tensor field.

If a d-tensor field ¢ is locally given by
(3.11) t=t80®  ®d @p, @0 ® -,
for X = X = X§; we have
(3.12) Dt =Xk 4 5@ Qdr/ ®@p, @+ 00" ® -
and for X = XV = X,0* we have
(3.13) DYt =X A0 ® - ®dt! @p, @+ 0" ® -+,
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where we have set

(3.14) = Ot L e B
—H A H g

(3.15) e = g+ Ot + Gt
— Opeth = e = Cetig

For instance, the h- and v-covariant derivatives of a horizontal vector field
X = X*; are given by

(3.16) Xi =0 X'+ Hjp X9, Xi|*=0°X*+ Ci°X/
and for a vertical vector field X = X,0° these derivatives are given by:
(3.17) Xop = 06Xy — HW Xy, Xo|° = 0°X, — COX...

Also we have

PROPOSITION 3.1. h- and v-covariant derivatives of the Liouville vector field
P = pg0* are

(3.18) Palk = Dak; pa|b = 63 - égb7
where
(3.19) Dak = Nak — Hlps

and o means the contraction by p,.
It is obvious that D, are the local components of a d-tensor field. This will

be called the deflection tensor field of the d-conection D.

4. Curvatures and torsion of a d-connection

The d-tensor fields of torsion and curvature of a d-connection D on E* given
by (3.5) and (3.7), respectively, have interesting forms in the adapted basis (J;, 0%).
Putting:
TH(6k,8;) = Tl jdi, T(8%,8%) = So*°9%,  R°(8;,01) = Rajd°
TH(8,6;) = Cbo;, PY(8°,8;) = Py;*0°
and taking into account (3.5) and (3.8) one obtains:

ProposiTiON 4.1. In the adapted basis (6,~,8"1) the d-tensor fields of torsion
(3.5) have the coefficients:

T;k = H_;:k - Hlijv Sabc = _(520 - 52[7)’
Pajb = —(écNaj - ch)a Raij = Raz’j; C’lb = C;b

a J

(4.2)
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ProrosiTion 4.2. The d-connection D is without torsion iff the d-tensor fields

Tijk, Sabc, Pa]’b, Raij; C;b vanish.

Now, putting
R(0,0%)8; = Rj'kndi, R(0n,05)0" = —Ro"4nd°,
(4.3) 5(8°,8%)0; = S;°8:,  S(9°,8Y)9° = —8,2¢H°,
P(8°,61)8; = P;'%8;,  P(8°,6,)0" = —P,%°9°,
a straightforward calculation leads to:

ProposITION 4.3. The d-tensor fields of curvature (3.7) have in the adapted
basis (§;,0%) the following coefficients:

(4.4); { ?"ikh - 5”{I;k - 5’6{{;11 + jk ~Zh - {I]Thffi:ﬁk + CjbRbkh,
Ro"kn = onHey, — OxHyy, + Hp Hey, — Hep Hey + Co® Ren
(44), { Dy = OVt = OuCy" 4 MO = G o+ 6570 Waw),
Po'ut = 0 HYy — 6,0 + HACY — CLoHiy + CL' (O Naw).
TN bt A K i
St = 0§ —8°Cye + CJ*Cy — Ol

We notice the following more interesting forms of P and P:
ws) ~jz'kc _ 6c1j]zk _ CNjic\k + C;jm i
Pty = &°Hb, — Cabc‘k +C,bPe.
The Ricci identity
[Dx,Dy]Z = R(X,Y)Z + Dix yv|Z, VX,Y,Z € X(E*),

written in the adapted basis, leads to:

PROPOSITION 4.4. If XH = X; is a horizontal vector field, then the following
Ricci identities hold:

Xyn = Xfnp = XIR n — TV n X[ — Rapn X|%,
(4.6) X[l = X = XTP;*° = Ci° X[; — Par° X'|°,
Xz'|b|c _Xi|c|b — stjibc _ Sachi|a‘
ProPOSITION 4.5. If XV = X,0% is a vertical vector field, then the following

Ricci identities hold good:

Xaikin — Xajnk = —XaRa®kh — T knXar — RaknXal?
(47) Xa\k|b - Xa|b\k = _Xdﬁadkb - CkrbXa\r - Pdkaa|d

Xa|b|c _ Xa|c|b — _ngadbc _ SdbCXa|d-
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As an application of these propositions, using (3.18) one obtains:
THEOREM 4.1. For any d-connection D the following identities hold good:
Douiih = Danjk = —Ra’kn — Ty Dar — Rapn (62 — C29),
(48) Dak|b + 5a0b|k = _-ﬁaokb - C]szar - Pdkb((sg - 5gd)7
_51gb|c + 6gc|b — _gaobc _ Sdbc(éz _ égd)‘

A d-connection for which C,° = 0, Dy, = 0 is said to be of Cartan type.
Using Theorem 4.1 one obtains:

ProrosiTioN 4.6. A d-connection of Cartan type has the properties:

(4.9) R,°kn + Rarn =0, ﬁaokb + Pakb =0, gaObC + Sabc =0.

5. The equations of structure of a d-connection

Let c¢:(a,b) = E* be a curve of class C* on E*. If X € X(E*) then its
covariant derivative along ¢, with respect to the d-connection D is DX, which will
be also denoted by DX /d¢.

The curve c is given locally by
(5.1) ' =z(t), Ppa = pa(t), t € (a,b) CR,

where rank ||dz?/dt|| = 1 and rank||p,(t)|| = 1.
The tangent vector c is represented in the adapted basis as

., dat 8Da 24
(52) Cc = E(sz + E@ y
so that we have
DX _ dz? OPa

(5.3)

= DX + 2*DY X.
dt at o T g Pae

The covariant differential of X, with respect to D, is (DX /dt)dt. Hence by (5.3)
one obtains:

ProposITION 5.1. The covariant differential DX of a vector field X on E is
expressed locally in the adapted basis (6;,0%) as follows:

(5.4) DX = (D}, X)da' + (D}, X)bpa.

If X = X" = Xi§; we have
(5.4) DX = (DX%4;
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where

(5.4”) DX’ = X dz* + X*|*8p,.
If we put

(5.5) w;' = Hjpda* + C;**6p,
we obtain

(5.5) DX’ =dX'+wiX.

The 1-forms w;® will be called the h-forms of the d-connection D. In the
same way, for X = XV = X,0%, putting

(5.6) DXV = DX,8°,

one obtains from (5.4)

(5.6) DX, = X,xdz" + X,|"0p,

and putting

(5.7) Tt = ﬁgkdxk + 5abc(5pc

one obtains

(5.8) DX, =dX, —@,"Xs.
The 1-forms &," will be called the v-forms of the d-connection D.
The differential of a function f € F(E*) has the form

(5.9) df = 8 fdz® + 8° fp,.

The exterior differential of the 1-forms dp,, according to (1.8) has the follow-
ing form:

1 . , . ,
(5.10) d(dp,) = — 5 Raijda’ A da? — (O°Nyi)opy A dat.

Taking into account previous formulae one obtains:

THEOREM 5.1. The equations of structure of a d-connection D on E are

(5.11) Dz Awpt = QF, d(6pa) + Opy ADe" = —Q,,

(5.12) dw;® — wi" Awp® = - Qi

~a _ ~Cc A Na _ __Oa
5 dwy —wp Aoy = =,

where the 2-forms of torsion QF, fla are given by
O = (1/2)Tjpda? A da* + Cj*da? A S,

(5.13) ~ o ) ,
Qo = (1/2)Ryi5dx" A dx? + Po;”dx' A dpy + (1/2)S,7°6py A Ope,
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and the 2-forms of curvature ;°, Q2 are given by

(5 14) Q; = (1/2)Rjihkd$h A d.%'k + Pjihad.’lfh Adpg + (1/2)Sji0d5pc A dpg,
‘ ﬁg = (1/2)§bahkd$h Adz® + f)bahcd.rh Adp. + (1/2)§bG'Cd(Spc A 0pg.

The equations of structure (5.11) and (5.12) allow us to deduce the Bianchi
identities (fifteen in number) which are satisfied by any d-connection D.

These equations also allow us to obtain geometrical meaning for d-tensor fields
of torsion and curvature.

6. v-and h-metrical structures on E*

Let us consider a Hamilton function H on the total space E* of the vector
bundle £* i.e. a function

(6.1) H:E* >R

which is of the class C* on E* \ {0} and continuous on the null section. For the
case when &* is the cotangent bundle we refer to [12], [13].

The function H defines a d-tensor field of type (2,0), symmetric, whose local
components are given by

(6.2) 9*"(z,p) = (1/2)0°0"H.
It is said that a Hamilton function H is regular if
(6.2') rank [|g® (z, p)l| = m

on every domain of a local chart on E*.

We shall assume there is given in advance a nonlinear connection N* on E*.

Definition 6.1. The v-metric on E* is a d-tensor field GV of the type (2,0)
with the properties:

1° GV is vertical i.e. GYV(X,Y) =GV(XV,YY), VX,Y € X(E*).
2° GV is symmetric.
3° The rank of GV is equal to dim E,.

If we set
(6.3) 9" (z,p) = G"(0%,8")
it gives the following local form for GV:
(6.4) GY = g*(,p) 5pa © dps
and, furthermore

(6.5) 9" (z,p) = g"*(x,p), rankllg”(z,p)|| = m.
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We shall set [|gas (2, p)|l = 19 (2, p)[| .

By (6,2) and (6.2°) a regular Hamiltonian function H defines a v-metric on
E*. Conversely, we have:

PROPOSITION 6.1. A v-metric GV is provided by a reqular Hamilton function
iff the d-tensor field whose local components are 0*g%°(x,p) is totally symmetric.

Proof. A straightforward calculation using (6.2).
Definition 6.2. A d-connection D on E* is compatible with the v-metric G if

(6.6) DxGY =0, VX € X(E").
We remark that (6.6) can be expressed locally as

(6.6") 9"k =0, g¢g”°=0.

THEOREM 6.1. If (ﬁgk,ﬁgk,0,0) are the local coefficients of a fized d-

connection on E*, then the d-connection whose local coefficients are (H;k,H,‘}k,O,

éabc), where

ﬁa :ﬁa —(1/2 gbcgéw;
6.7) bk o — (1/2) i

Co" = —(1/2)gaa(8"g" + 9°g"* — 5g>)
is compatible with the v-metric G.

Proof . One verifies (6.6’) for the described d-connection, taking into account

(6.8) ge; = 0kg™ + g Hi + g Hy.

Definition 6.3. The h-metric on E* is a d-tensor field G¥ of type (0,2) having
the properties:

1° G¥ is horizontal i.e. GH(X,Y) = GE(XH YH), VXY € X(E*),
2° GH is symmetric.
3° The rank of G is equal to n in every point of E*.

Locally we have
(6.9) G" = gij(z,p) dz’ ® da’,
where we have set

(6.10) 9ij (z,p) = GH(‘L’; 5;‘)-
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Definition 6.4. A d-connection D on E* is compatible with G if it satisfies
(6.11) DxGH =0, VX e X(E").
Locally, (6.11) can be written as follows:
(6.12) gijik =0, gi5|* =0.

THEOREM 6.2. The d-connection whose local coefficients are (ij,ébNak,
C;%,0), where

(6.13) { H}\ = (1/2)g" (6k95n + 0;9kn — ngjk)

Cjz'c — (1/2)gih3cghj
is compatible with the h-metric G .

Proof . One verifies (6.12) by a straightforward calculation.

ProposITION 6.2. If GH is an h-metric and GV is a v-metric on E* then the
tensor field G of the type (0,2) defined by

(6.14) G=GH +GV.

is a pseudo-Riemannian metric on E* with respect to which the distributions N*
and VE* are orthogonal.

Proof. G is symmetric because G and GV are symmetric. Locally G is
given by a matrix

(6.15)

9i;(z,p) 0 H
0 9°*(z,p)

which is nondegenerate because G¥ and GV are so. The signature of G is constant.
So G is a pseudo-Riemannian metric on E*. By (6.14) the distributions N* and
V E* are orthogonal with respect to it. QED.

Definition 6.5. A pseudo-Riemannian metric G given by (6.14) will be called
an (h,v)-metric on E*.

Remark 6.1. If G is a positive definite metric on E*, then the metric induced
by it on V E* is positive definite, too. Let N* be the distribution which is orthogonal
to VE* with respect to G. Then G restricted to VE* and N* gives a v-metric GV
and h-metric G, respectively, such that (6.14) holds good.

If G is a pseudo-Riemannian metric and the induced metric G¥ on VE* is
pseudo-Riemannian, then N* can still be defined so that G*H is pseudo-Riemannian
and satisfies (6.14). Using the adapted basis (d;,0%) an (h,v)-metric G can be
written as follows:

(616) G= 9ij dllfi ® d(L‘j + g”b 5pa ® (5pb.
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Definition 6.6. A d-connection D is said to be compatible with an (h, v)-metric
G if we have

(6.17) DxG =0, VX € X(E").
The condition (6.17), by virtue of (6.16), is equivalent to:

(6.18) 95k =0, gi°=0, g¢°°,=0, g*|°=0.

THEOREM 6.3. If D giwen locally by (f];k,ﬁgk,éjic,éabc) is a fized d-
connection on E, then the d-connection D with the coefficients
e = (1/2)g™ (Okgsn + 0ignk — Ongsn), Hip = Hiy — (1/2)gpeg5

(6.19) X

Cjic = (1/2)9“136%]', CN'abc = —(1/2)9ad(5bgd0 + acgbd - 5d9bc)

is compatible with the (h,v)-metric G.

7. Legendre morphisms

Let us consider again the vector bundle £ = (E, 7w, M). A Lagrangian on E is
amap L: E — R which is differentiable on E \ {0} and continuous on null section.
L is called a regular Lagrangian if with respect to any system of local coordinates

(z%,y%) on E, the d-tensor field h defined by
0L

(7.1) has(z,y) = EXT

where £ = (1/2)L,

is nondegenerate on E \ 0.
The vertical derivative of L, denoted by dy L, is

(7.2) (dyL)e = d(L\E,,(e))lea Ve€ E.

Considering the dual vector bundle £* let us remark that V E* can be iden-
tified with the bundle (E x; E*, 71, E), where

(7.3) E xpy E* = {(e,u) € Ex E*,n(e) = 7" (u)}

and m: E X E* — FE is a projection.
It is obvious that (dy L), belongs to E x s E*.
Following Liberman and Marle, [7], we set:
Definition 7.1. Let £ = (E,n, M) be a vector bundle endowed with a La-

grangian L. The Legendre morphism associated to L is a morphism ®: £ — E*
defined by

(7.4) d =y 0d,L,
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where mo: E X py E* — E* is a projection.
Locally, we obtain

oL
(7.5) dL=
(76) (ﬁ(xay) = (xi;pa = aa_yﬁa)

Prorosition 7.1. If L is a reqular Lagrangian, then the Legendre morphism
associated to it is a local diffeomorphism ®: E\ {0} — E* \ {0}

Proof.. The Jacobi matrix of @ in every point of £\ {0} is
is nonsingular, because L is regular. QED.

H which
(x y)

When the Legendre morphism @ is a global diffeomorphism it is called Le-
gendre transformation. In such case L is called hyperregular Lagrangian.

ProposiTiON 7.2. Let L be a hyperregular Lagrangian on E and Z the Liou-
ville field on E. Then the map H = 2H where

(7.7) H=(i(2)dL—L)od"
is a Hamilton function on E*.

Proof . See [7].

Locally, the map £ = i(Z)dL — L is written

~  ,0r
(7.8) L=y oyt L(z,y).
Next we have
" oL
(7.9) dy L = y*dv (8ya)
(7.10) dyH = y“dpa,
from which one obtains
OH
11 ¢ = .
(7.11) v = o
Therefore ®! is locally as follows
(7.12) &L (2, pa) = ( o',y = SZ)

If we assume that L is only regular, the Legendre morphism can be inversed
only locally and by (7.7) and (7.8) we can write

(7.13) H(z,p) = pay” — L(z,7),
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where y* = y*(z,p), fora=1,... ,m.
From the above considerations we get

ProposITION 7.3. Let L be a regular Lagrangian on E \ {0} and U an open
subset of E\ {0} on which the Legendre morphism is a diffeomorphism. Then on
V =®(U) C E*\ {0} a regular Hamilton function H is obtained and ® carries the
v-metric tensor defined by L on U to the v-metric tensor defined by H on V.

ProposiTiON 7.4. The Legendre transformation associated to a hyperregular
Lagrangian L applies the v-metric h defined by L on E to the v-metric g defined
by the Hamilton function H induced on E*.

Prorosition 7.5. If L is a regular Lagrangian, then locally we have

oH oL

(7.14) ==t

Now we are interested in the effects of ® on a nonlinear connection.

TaEOREM 7.1. If L is a hyperregular Lagrangian, then the Legendre transfor-
mation ® associated to it carries a nonlinear connection N on E to a nonlinear
connection N* on E*. If N{ are the local coefficients of N and N,; are the local
coefficients of N* on E*, then we have

(7.15) Nai(z,p) = —(N? + 0°0;H) ha,

where H is the Hamilton function induced on E* and hyp are the coefficients of the
v-metric induced by L on E.

Proof .. Taking into account (7.6) one can see that the differential d® acts on
the canonical basis as follows

82‘C Na b e
(7.16) d‘I’(@,) =0; + W@ =0; — (8 OZ’H)th@
(717) d¢(aa) = hab5b7

so that on (§;) i =1,... ,n, d® acts as
(7.18) d®(6;) = d®(8; — N29,) = 8; — (N} + 8°0;H) hpa0°.

Therefore the distribution N is mapped by @ to the distribution N* and (7.15)
holds good. QED.

ProposITION 7.6. Let L be a hyperregular Lagrangian and ® the Legendre
transformation associated to it. If R*;; and R,;; are the integrability tensors of the
nonlinear connection N and N*, respectively, then
(7.19) Raij o ® ' = hoyRY, holds good .

i
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Proof. We have [§;,6;] = R“ijéa, (8, = 8/dy*). Since @ is a diffeomorphism,

[d®(5;),d®(5;)] = R*;;d®(d,) = R%;;hepd. On the other hand [d®(5;),d®(;)] =
(Rqi;0%) 0 ®~1. QED.

CoROLLARY 7.6. The distribution N is integrable if and only if the induced

distribution N* is integrable.

1]
2]

(3]
(4]

(13]
(14]
(15]

(16]
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