ON RIEMANNIAN 4-SYMMETRIC MANIFOLDS

Adnan Al-Aqeel

Abstract. If M is a Riemannian 4-symmetric manifold, then it is known that M has three complex differentiable distributions D_{-1} , D_1 and \overline{D}_1 on it. We shall prove that there are three differentiable complementry projection operators P, P_1 and \overline{P}_1 on M that project on D_{-1} , D_1 and \overline{D}_1 respectively. Some useful relations containing Nijenhuis tensor are found. Necessary and sufficient conditions for D_{-1} , D_1 , and \overline{D}_1 to be integrable are studied.

1. Introduction

An isometry s_p on a C^{∞} Riemannian manifold (M,g) for which $p \in M$ is the only isolated fixed point is called a symmetry at p. (M,g) is called a Riemannian s-manifold if M is connected, and to each point $p \in M$ a symmetry s_p can be assigned.

If $S_p^k = \mathrm{id}_M$, where $k \geq 2$ is the least positive integer with this property, then M is called a Riemannian k-symmetric manifold. See Graham and Ledger [2] and Kowalsky [3], [4].

In a Riemannian k-symmetric manifold, we have

$$(1.1,) S^k = I$$

where S is the C^{∞} tensor field of type (1), on M, such that $S_p = (ds_p)_p$, and I is the identity tensor field. S is real, orthogonal and nonsingular. The eigenvalues of S_p , $p \in M$ are k^{th} roots of unity. Since S is continuous on M, each root is constant over M. Note that 1 is not an eigenvalue because s_p does not fix points except p, therefore, the possible eigenvalues are -1, and pairs of complex conjugates $w_1, \overline{w}_1, \ldots, w_r, \overline{w}_r$. Due to the orthogonality of S, we shall have a collection of mutually orthogonal differentiable distributions M_{-1}, M_1, \ldots, M_r on M such that

$$(1.2) M_x = M_{-1x} \oplus M_{1x} \oplus \cdots \oplus M_{rx} (direct sum)$$

and S decomposes into

$$S = S_{-1} \oplus S_1 \oplus \cdots \oplus S_r \qquad \text{(direct sum)}$$

where $S_j M_j \subset M_j$.

At each point $p \in M$, let us denote by $H_{-1}, H_1, \overline{H}_1, \ldots, H_r$, and \overline{H}_r respectively (-1)-eigenspace, w_1 -eigenspace, \overline{w}_1 -eigenspace, ... w_r -eigenspace, and \overline{w}_r -eigenspace on the complexification M_p^c of the tangent space M_p . Let $D_{-1}, D_1, \overline{D}_1, \ldots, D_r, \overline{D}_r$ be complex C^{∞} distributions on M which assign $H_{-1}, H_1, \overline{H}_1, \ldots, H_r, \overline{H}_r$ to p.

If w_1 and \overline{w}_1 , are the only eigenvalues of S on a Riemannian k-symmetric manifold M then M is a Riemannian 3-symmetric manifold with $w_1^2 = \overline{w}_1$, or the underlying manifold M is a symmetric space (see Ledger and Obata [5]).

A distribution B on a manifold M is said to be involutive if [X,Y]=0, whenever $X,Y\in B$. The distribution B is said to be integrable if each point of M lies on the domain of a flat chart. It is well known that a distribution is integrable if and only if it is involutive, Brickell and Clark [1].

Nijenhuis tensor of a C^{∞} tensor field A of type (1,1) is defined by

$$(1.4) N(X,Y) = [AX,AY] + A^{2}[X,Y] - A[AX,Y] - A[X,AY]$$

Nijenhuis [6].

2. Complementary projection operators on a Riemannian 4-symmetric manifold

Let (M,g) be a C^{∞} connected Riemannian manifold and suppose that for each point $p \in M$, we have an isometry s_p on M such that $s_p(p) = p$, but p is not the only isolated fixed point of s_p , i.e. s_p fixes points beside x. Then we shall call s_p a p-isometry, and M is called a ps-manifold. If $s_p^k = \operatorname{id}_M$ and $k \geq 2$, is the least positive integer with this property, then s_p is called a p-isometry of order k, and M is called a ps-manifold of order k. The tensor field S of type (1,1) on M such that

$$(2.1) S_p = (ds_p)_p$$

will have the property

$$(2.2) S^k = I.$$

The eigenvalues of S are $\pm 1, w_1, \overline{w}_1, \ldots, w_r, \overline{w}_r$, consequently (1.2) and (1.3) are replaced by

$$(2.3) M_x = M_{1x}^* \oplus M_{-1x} \oplus M_{1x} \oplus \cdots \oplus M_r (direct sum)$$

and

$$(2.4) S = S_1^* \oplus S_{-1} \oplus S_1 \oplus \cdots \oplus S_r.$$

We shall also have complex distributions $D^*, D_{-1}, D_1, \dots, D_r, \overline{D}_r$ on M corresponding to the eigenvalues $\pm 1, w_1, \overline{w}_1, \dots, w_r, \overline{w}_r$.

Theorem 1. Let M be a ps-manifold of order 4, such that the eigenvalues of S are $\pm 1, \pm i$. Then

(2.4) (a)
$$P^* = (S^3 + S^2 + S + I)/4$$
, (b) $P = (-S^3 + S^2 - S + I)/4$

(c)
$$P_1 = (iS^3 - S^2 - iS + I)/4$$
, (d) $\overline{P}_1 = (-iS^3 - S^2 + iS + I)$

are complementary projection operators on $D^*, D_{-1}, D_1, \overline{D}_1$ respectively.

Proof. If X is any complex vector field on M, then

$$S(P^*X) = S(S^3 + S^2 + S + I)X/4 = (I + S^3 + S^2 + S)X/4 = P^*X,$$

i.e. $P^*X \in D^*$. Similarly, S(PX) = -PX, $S(P_1X) = iP_1X$, and $S(\overline{P}_1X) = i\overline{P}_1X$. Also $P^* + P + P_1 + \overline{P}_1 = I$. Hence P^*, P, P_1 and \overline{P}_1 are complementary projection operators on D^*, D_{-1}, D_1 , and \overline{D}_1 respectively. \square

Theorem 2. On a ps-manifold of order 4, such that the eigenvalues of S are ± 1 , $\pm i$ we have

(2.5) (a)
$$P^{*2} = P^*$$
, (b) $P^2 = P$, (c) $P_1^2 = P_1$, (d) $\overline{P}_1^2 = \overline{P}_1$.

(2.5) (a)
$$F = F$$
, (b) $F = F$, (c) $F_1 = F_1$, (d) $F_1 = F_1$.
(a) $P^*P = PP^* = 0$, (b) $P^*P_1 = P_1P^* = 0$ (c) $P^*\overline{P}_1 = \overline{P}P^* = 0$

(d)
$$PP_1 = P_1P = 0$$
, (e) $P\overline{P}_1 = \overline{P}_1 = 0$, (f) $P_1\overline{P}P_1 = 0$.

Proof.

(a)
$$P^{*2} = (S^3 + S^2 + S + I)P^*/4 = (S^3P^* + S^2P^* + SP^* + P^*)/4$$

(2.5) $= (P^* + P^* + P^*)/4 = P^*.$

Similarly we can prove (2.5) (b), (c), (d).

(a)
$$P^*P = (S^3 + S^2 + S + I)P/4 = (S^3P + S^2P + SP + P)/4$$

(2.6) $= (-P + P - P + P)/4 = 0.$

Similarly $PP^* = 0$ (2.6) (b), (d), (e) and (f) are proved in a similar way.

Suppose that we have a Riemannian 4-symmetric manifold. Then 1 is not going to be an eigenvalue of S, since s_p , for all $p \in M$, has p as the only isolated fixed point. Two possibilities arise

- (i) The eigenvalues of S are -1, $\pm i$, in this case the underlying manifold is a symmetric manifold, and we are not interested in this case.
- (ii) The eigenvalues of S are $-1, \pm i$, and we shall investigate this case.

From now on for every Riemannian 4-symmetric manifold we assume that the symmetry tensor field S has -1, $\pm i$ i as eigenvalues.

Theorem 3. Let (M,g) be a Riemannian 4-symmetric manifold; then

(a)
$$P = (-S^3 + S^2 - S + I)/4$$
, (b) $P_1 = (iS^3 - S^2 - iS + I)/4$
(2.7) (c) $\overline{P}_1 = (-iS^3 - S^2 + iS + I)/4$

are complementary projection operators on D, D_1 and \overline{D}_1 respectively.

Proof. Let X be any complex vector field on M: then S(PX) = -PX, $S(P_1X) = iPX$, $S(\overline{P}_1X) = -iPX$. Also $P + P_1 + \overline{P}_1 = (-S^3 - S^2 - S + 3I)/4$. Since 1 is not an eigenvalue, we have $P^* = (S^3 + S^2 + S_I)/4 = 0$. Hence $P + P_1 + \overline{P}_1 = (I + 3I)/4 = I$. \square

COROLLARY 1. On a Riemannian 4-symmetric manifold, we have

(2.8) (a)
$$P^2 = P$$
, (b) $P_1^2 = P_1$, (c) $\overline{P}_1^2 = \overline{P}_1$

(2.9) (a)
$$PP_1 = P_1P = 0$$
, (b) $P\overline{P}_1 = \overline{P}_1P = 0$, (c) $P_1\overline{P}_1 = \overline{P}_1P_1 = 0$.

Proof. Obvious. \square

3. Nijenhuis Tensor

Theorem 4. On a Riemannian 4-symmetric manifold we have

(3.1) (a)
$$-64dP_1[PX, PY] = (S^3 - iI) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} N(S^k X, S^j Y)$$

(b) $-64d\overline{P}_1[PX, PY] = (S^3 + iI) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} N(S^k X, S^j Y).$

Proof. From (2.9) (a), we have

$$(a) -64dP_{1}[PX, PY] = 64P_{1}[PX, PY]$$

$$= (iS^{3} - S^{2} - iS + I)[-S^{3}X + S^{2}X - SX + X, -S^{3}Y + S^{2}Y - SY + Y]$$

$$((I - S^{2}) + i(S^{3} - S))([X, Y] - [X, SY] + [X, S^{2}Y] - [X, S^{3}Y] - [SX, Y]$$

$$+[SX, SY] - [SX, S^{2}Y] + [SX, S^{3}Y] + [S^{2}X, Y] - [S^{2}X, SY] + [S^{2}X, S^{2}Y]$$

$$-[S^{2}X, S^{3}Y] - [S^{3}X, Y] + [S^{3}X, SY] - [S^{3}X, S^{2}Y] + [S^{3}X, S^{3}Y])$$

$$(1) = ((I - S^{2}) + (S^{3} - S)) \sum_{k=0}^{3} \sum_{k=0}^{3} (-1)^{k+j} [S^{k}X, S^{j}X]$$

Using $S^4 = I$, we have

$$\begin{split} N(X,Y) &= [SX,SY] + S^2[X,Y] - S[SX,Y] - S[X,SY] \\ -N(X,SY) &= -[SX,S^2Y] - S^2[X,SY] + S[SX,SY] + S[X,S^2Y] \\ N(X,S^2Y) &= [SX,S^3Y] + S^2[X,S^2Y] - S[SX,S^2Y] - S[X,S^3Y] \\ -N(X,S^3Y) &= -[SX,Y] - S^2[X,S^3Y] + S[SX,S^3Y] + S[X,Y] \\ -N(SX,Y) &= -[S^2X,SY] - S^2[SX,Y] + S[S^2X,Y] + S[SX,SY] \\ N(SX,SY) &= [S^2X,S^2Y] + S^2[SX,SY] - S[S^2X,SY] - S[SX,S^2Y] \end{split}$$

$$\begin{split} -N(SX,S^2Y) &= -[S^2X,S^3Y] - S^2[SX,S^2Y] + S[S^2X,S^2Y] + S[SX,S^3Y] \\ N(SX,S^3Y) &= [S^2X,Y] + S^2[SX,S^3Y] - S[S^2X,S^3Y] - S[SX,Y] \\ N(S^2X,Y) &= [S^3X,SY] + S^2[S^2X,Y] - S[S^3X,Y] - S[S62X,SY] \\ -N(S^2X,SY) &= -[S^3X,S^2Y] - S^2[S^2X,SY] + S[S^3X,SY] + S[S^2X,S^2Y] \\ N(S^2X,S^2Y) &= [S^3X,S^3Y] + S^2[S^2X,S^2Y] - S[S^3X,S^2Y] - S[S^2X,S^3Y] \\ -N(S^2X,S^3Y) &= -[S^3X,Y] - S^2[S^2X,S^3Y] + S[S^3X,S^3Y] + S[S^2X,Y] \\ -N(S^3X,Y) &= -[X,SY] - S^2[S^3X,Y] + S[X,Y] + S[S^3X,SY] \\ N(S^3X,SY) &= [X,S^2Y] + S^2[S^3X,SY] - S[X,SY] - S[S^3X,S^2Y] \\ -N(S^3X,S^2Y) &= -[X,S^3Y] - S^2[S^3X,S^2Y] + S[X,S^2Y] + S[S^3X,S^3Y] \\ N(S^3X,S^3Y) &= [X,Y] + S^2[S^3X,S^3Y] - S[X,S^3Y] - S[S^3X,Y] \end{split}$$

Adding, we have

$$\sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} N(S^k X, S^j Y) = (S^2 + 2S + i) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} [S^k X, S^j Y]$$

$$= S(I - S^2) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} [S^k X, S^j Y].$$
(2)

From (1) and (2) we have

$$-64dP_{1}[PX, PY] = (S^{3} - iI) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} N(S^{k}X, S^{j}Y)$$

$$-64d\overline{P}_{1}[PX, PY] = (-iS^{3} - S^{2} + iS + I) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} [S^{k}X, S^{j}Y]$$

$$= ((I - S^{2}) - i(S^{3} - S)) \sum_{k=0}^{3} \sum_{j=0}^{3} (-1)^{k+j} [S^{k}X, S^{j}Y]$$
(3)

From (2) we have

$$-64dP_1[PX, PY] = (S^3 + iI) \sum_{k=0}^{3} \sum_{k=0}^{3} (-1)^{k+j} N(S^k X, S^k Y). \square$$

Theorem 5. On a Riemannian 4-symmetric manifold, we have

$$(3.2) (I+S^2) \sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left(N(S^{2k+1}X, S^{2j+1}Y) - N(S^{2k}X, S^{2j}Y) \right)$$
$$= 2(S^3+s) \sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left([S^{2k+1}X, S^{2j}Y] + [S^{2k}X, S^{2j+1}] \right).$$

Proof. We have

$$\begin{split} N(SX,SY) &= [S^2X,S^2Y] + S^2[SX,SY] - S[S^2X,SY] \\ &- S[S^2X,SY] - S[SX,S^2Y] \\ -N(SX,S^3Y) &= -[S^2X,Y] - S^2[SX,S^3Y] + S[S^2X,S^3Y] + S[SX,Y] \\ -N(S^3X,SY) &= -[X,S^2Y] - S^2[S^3X,SY] + S[X,SY] + S[S^3X,S^2Y] \\ N(S^3X,S^3Y) &= [X,Y] + S^2[S^3X,S^3Y] - S[X,S^3Y] - S[S^3X,Y] \\ -N(X,Y) &= -[SX,SY] - S^2[X,Y] + S[SX,Y] + S[X,SY] \\ N(X,S^2Y) &= [SX,S^3Y] + S^2[X,S^2Y] - S[SX,S^2Y] - S[X,S^3Y] \\ N(S^2X,Y) &= [S^3X,SY] + S^2[S^2X,Y] - S[S^3X,Y] - S[S^3X,SY] \\ -N(S^2X,S^2Y) &= -[S^3X,S^3Y] - S^2[S^2X,S^2Y] \\ &+ S[S^3X,S^2Y] + S[S^2X,S^3Y] \end{split}$$

And we get

$$\sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left(N(S^{2k+1}X, S^{2j+1}Y) - N(S^{2}kX, S^{2}jY) \right)$$

$$= (I - S^{2}) \sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left([S^{2k}X, S^{2j}Y] - [S^{2k+1}X, S^{2j+1}] \right)$$

$$+2S \sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left([S^{2k+1}X, S^{2j}Y] + [S^{2k}X, S^{2j+1}Y] \right)$$

$$(1)$$

Multiply (1) by S^2 and add to (1) and we get the result. \square

Theorem 6. The following are equivalent

(3.3) (a)
$$\sum_{j=0}^{1} \sum_{k=0}^{1} (-1)^{k+j} ([S^{2k}X, S^{2j}] - [S^{2k+1}X, s^{2j+1}Y]) = 0,$$
(b)
$$\sum_{j=0}^{1} \sum_{k=0}^{1} (-1)^{k+j} ([s^{2k+1}X, S^{2j}Y] + [S^{2k}X, S^{2j+1}Y]) = 0.$$

Proof. Equation (3.6) (a) is

(1)
$$[X,Y] + [S^3X, SY] + [SX, S^3] + [S^2Y, S^2Y] - [SX, SY] - [X, S^2Y] - [S^2X, Y] - [S^3X, S^3Y] = 0.$$

Equation (3.6) (b) is

(2)
$$[SX,Y] + [X,SY] + [S^3X,S^2Y] + [S^2X,S^3Y] - [SX,S^2Y] - [X,S^3Y] - [S^3X,Y] - [S^2X,SY] = 0.$$

If we replace X by SX in (1) we get (2). If we replace X by S^3X in (2) we get (1). \square

Theorem 7. On a Riemannian 4-symmetric manifold we have

$$(3.4) (S^2 - I) \sum_{j=0}^{3} \sum_{k=0}^{3} [S^{k+j} S^k X, S^j Y] = -\sum_{j=0}^{3} \sum_{k=0}^{3} S^{k+j+2} N(S^k X, S^j Y)$$

 ${\it Proof.}$

$$S^{2}N(X,Y) = S^{2}[SX,SY] + [X,Y] - S^{3}[SX,Y] - S^{3}[X,SY]$$

$$S^{3}N(X,SY) = S^{3}[SX,S^{2}Y] + S[X,SY] - [SX,SY] - [X,S^{2}Y]$$

$$N(X,S^{2}Y) = [SX,S^{3}Y] + S^{2}[X,S^{2}Y] - S[SX,S^{2}Y] - S[X,S^{3}Y]$$

$$SN(X,S^{3}Y) = S[SX,Y] + S^{3}[X,S^{3}Y] - S^{2}[SX,S^{3}Y] - S^{2}[X,Y]$$

$$S^{3}N(SX,Y) = S^{3}[S^{2}X,SY] + S[SX,Y] - [S^{2}X,Y] - [SX,SY]$$

$$N(SX,SY) = [S^{2}X,S^{2}Y] + S^{2}[SX,SY] - S[S^{2}X,SY] - S[SX,S^{2}Y]$$

$$N(SX,S^{2}Y) = S[S^{2}X,S^{3}Y] + S^{3}[SX,S^{2}Y] - S^{2}[S^{2}X,S^{2}Y] - S^{2}[SX,S^{2}Y]$$

$$S^{2}N(SX,S^{3}Y) = S^{2}[S^{2}X,Y] + [SX,S^{3}Y] - S^{3}[S^{2}X,S^{3}Y] - S^{3}[SX,Y]$$

$$N(S^{2}X,Y) = [S^{3}X,SY] + S^{2}[S^{2}X,Y] - S[S^{3}X,Y] - S[S^{2}X,SY]$$

$$SN(S^{2}X,SY) = S[S^{3}X,S^{2}Y] + S^{3}[S^{2}X,SY] - S^{2}[S^{3}X,SY] - S^{2}[S^{2}X,S^{2}Y]$$

$$S^{2}N(S^{2}X,S^{2}Y) = S^{2}[S^{3}X,S^{3}Y] + [S^{2}X,S^{2}Y] - S^{3}[S^{3}X,S^{2}Y] - S^{3}[S^{2}X,S^{3}Y]$$

$$S^{3}N(S^{2}X,S^{3}Y) = S^{3}[S^{3}X,Y] + S[S^{2}X,S^{3}Y] - [S^{3}X,S^{3}Y] - [S^{2}X,Y]$$

$$SN(S^{3}X,Y) = S[X,SY] + S^{3}[S^{3}X,Y] - S^{2}[X,Y] - S^{2}[S^{3}X,SY]$$

$$S^{2}N(S^{3}X,SY) = S^{2}[X,S^{2}Y] + [S^{3}X,SY] - S^{3}[X,SY] - S^{3}[S^{3}X,S^{2}Y]$$

$$S^{3}N(S^{3}X,S^{2}Y) = S^{3}[X,S^{3}Y] + S[S^{3}X,S^{2}Y] - [X,S^{2}Y] - [S^{3}X,S^{3}Y]$$

$$S^{3}N(S^{3}X,S^{2}Y) = S^{3}[X,S^{3}Y] + S[S^{3}X,S^{2}Y] - [X,S^{2}Y] - [S^{3}X,S^{3}Y]$$

$$S^{3}N(S^{3}X,S^{2}Y) = S^{3}[X,S^{3}Y] + S[S^{3}X,S^{2}Y] - [X,S^{2}Y] - [S^{3}X,S^{3}Y]$$

$$S^{3}N(S^{3}X,S^{3}Y) = [X,Y] + S^{2}[S^{3}X,S^{3}Y] - S[X,S^{3}Y] - S[S^{3}X,Y]$$

$$S^{3}N(S^{3}X,S^{3}Y) = [X,Y] + S^{2}[S^{3}X,S^{3}Y] - S[X,S^{3}Y] - S[S^{3}X,Y]$$
and we get the result. \square

4. Integrability Conditions

Theorem 8. In order that D be integrable, it is necessary and sufficient that

(4.1)
$$\sum_{j=0}^{3} \sum_{k=0}^{3} (-1)^{k+j} N(S^k X, S^j Y) = 0.$$

 ${\it Proof.}$ D is integrable if and only if

$$[PX, PY] \in D \iff P_1[PX, PY] = 0$$
 and $\overline{P}_1[PX, PY] = 0$.

From theorem (4)(a) we have

$$-64dP_1[PX, PY] = 64P_1[PX, PY] = (S^3 - iI)\sum_{j=0}^3 \sum_{k=0}^3 (-1)^{k+j} N(S^k X, S^j Y).$$

Since S^3 is nonsingular, therefore,

$$P_1[PX, PY] = 0 \iff \sum_{i=0}^{3} \sum_{k=0}^{3} (-1)^{k+j} N(S^k X, S^j Y) = 0$$

Also from theorem 4(b), we have

$$P_1[PX, PY] = 0 \iff \sum_{j=0}^{3} \sum_{k=0}^{3} (-1)^{k+j} N(S^k X, S^j Y) = 0.$$

Hence, that result. \square

THEOREM 9. In order that D_1 be integrable, it is necessary and sufficient that (4.2)

(a)
$$\sum_{j=0}^{1} \sum_{k=0}^{1} (-1)^{k+j} \left(N(S^{2k+1}X, S^{2j+1}Y) - N(S^{2k}X, S^{2j}Y) \right) = 0$$

(b)
$$\sum_{j=0}^{3} \sum_{k=0}^{3} S^{k+j} N(S^k X, S^j Y) = 0$$

Proof. We have, by using (2.9) (a)

$$\begin{split} &-64dP[P_{1}X,P_{1}Y]=64P[P_{1}x,P_{1}y]\\ &=(-S^{3}+S^{2}-S+I)[iS^{3}X-S^{2}X-iSX+X,iS^{3}Y-S^{2}Y-iSY+Y]\\ &=2(S^{2}+I)\big([X,Y]-[X,S^{2}Y]-[S^{2}X,Y]+[S^{2}X,S^{2}Y]-[SX,SY]\\ &+[SX,S^{3}Y]+[S^{3}X,SY]-[S^{3}X,S^{3}Y]-2i(S^{2}+I)\big([SX,Y]\\ &-[SX,S^{2}Y]-[S^{3}X,Y]+[S^{3}X,S^{2}Y]+[X,SY]-[X,S^{3}Y]\\ &-[S^{2}X,SY]+[S^{2}X,S^{3}Y]\big)\\ &=2(S^{2}+I)\sum_{j=0}^{1}\sum_{k=0}^{1}(-1)^{k+j}\big([S^{2k}X,S^{2j}Y]-[S^{2k+1}X,S^{2j+1}Y]\big)\\ &-2i(S^{2}+I)\sum_{k=0}^{1}\sum_{j=0}^{1}(-1)^{k+j}\big([S^{2k+1}X,S^{2j+1}Y]+[S^{2k}X,S^{2j}Y]\big). \end{split}$$

Using (2.9) (c), and (3.4), we have

$$\begin{split} &-64d\overline{P}_{1}[P_{1}X,P_{1}Y]=64\overline{P}_{1}[P_{1}X,P_{1}Y]\\ &=(-iS^{3}-S^{2}+iS+I)[iS^{3}X-S^{2}X-iSX+X,iS^{3}Y-S^{2}Y-iSY+Y]\\ &=\left((I-S^{2})+i(S-S^{3})\right)[iS^{3}-S^{2}X-iSX+X,iS^{3}Y-S^{2}Y-iSY+Y]\\ &=(I-S^{2})\sum_{j=0}^{3}\sum_{k=0}^{3}S^{k+j}[S^{k}X,S^{j}Y]+i(S^{3}-S)\sum_{j=0}^{3}\sum_{k=0}^{3}S^{k+j}[S^{k}X,S^{j}Y] \end{split}$$

$$=\sum_{j=0}^{3}\sum_{k=0}^{3}S^{k+j+2}N(S^{k}X,S^{j}Y)-i\sum_{j=0}^{3}\sum_{k=0}^{3}N(S^{k}X,S^{j}Y).$$

 D_1 is integrable if and only if

$$[P_1X, P_1Y] \in D_1 \iff P[P_1X, P_1Y] = 0 \text{ and } \overline{P}_1[P_1X, P_1Y] = 0.$$

Using theorems (5), (6) and (7), and that $S^2 + I$ is nonsingular, we have

$$P[P_1X, P_1Y] = 0 \iff \sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{j+k} \left([S^{2k+1}X, S^{2j}Y] + [S^{2k}X, S^{2j+1}Y] \right) = 0$$

$$\iff \sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left(N(S^{2k+1}X, S^{2j+1}Y) - N(S^{2k}X, S^{2j}Y) \right) = 0,$$

$$\overline{P}_1[P_1X, P_1Y] = 0 \iff \sum_{k=0}^{3} \sum_{k=0}^{3} S^{k+j} N(S^kX, S^jY) = 0. \square$$

Theorem 10. In order that \overline{D}_1 be integrable, it is necessary and sufficient that

(4.3)

(a)
$$\sum_{k=0}^{1} \sum_{j=0}^{1} (-1)^{k+j} \left(N(S^{2k+1}X, S^{2j} + 1Y) - N(S^{2k}X, S^{2j}Y) \right) = 0$$

(b)
$$\sum_{k=0}^{3} \sum_{j=0}^{3} S^{k+1} N(S^k X, S^j Y) = 0$$

Proof. We have, using (2.9) (a) (c)

$$\begin{split} &-64dP[\overline{P}_{1}X,\overline{P}_{1}Y]=64P[\overline{P}_{1}X,\overline{P}_{1}Y]\\ &=2(S^{2}+I)\sum_{k=0}^{1}\sum_{j=0}^{1}(-1)^{k+j}\left([S^{2k}X,S^{2j}Y]-[S^{2k+1}X,S^{2j+1}Y]\right)\\ &+2i(S^{2}+I)\sum_{k=0}^{1}\sum_{j=0}^{1}(-1)^{k+j}\left([S^{2k+1}X,S^{2j}Y]+[S^{2k}X,S^{2j+1}Y]\right)\\ &-64dP_{1}[\overline{P}_{1}X,\overline{P}_{1}Y]=64P_{1}[\overline{P}_{1}X,\overline{P}_{1}Y]\\ &=(I-S^{2})\sum_{k=0}^{3}\sum_{j=0}^{3}S^{k+j}[S^{k}X,S^{j}Y]-i(S^{3}-S)\sum_{k=0}^{1}\sum_{j=0}^{1}S^{k+j}[S^{k}X,S^{j}Y] \end{split}$$

Therefore \overline{D}_1 is integrable if and only if

$$[\overline{P}_1X,\overline{P}_1Y]\in\overline{D}_1,\ P[\overline{P}_1X,\overline{P}_1Y]=0,\ \text{and}\ P_1[\overline{P}_1X,\overline{P}_1Y]=0.$$

Using theorems (5), (6) and (7), the proof follows the pattern of the proof of the Theorem $9.\Box$

REFERENCES

- [1] F. Brickell, R. S. Clark, Differential Manifolds, Van Nostrand, 1970.
- [2] P. J. Graham and A. J. Ledger, s-regular manifolds, J. Diff. Geometry—in honour of K. Yano, Kinokuniya, Tokyo, (1972), 133–144.
- [3] O. Kowalski, Generalized symmetric Riemannian spaces, Period. Math. Hung. 8 (1977), 181-184.
- [4] O. Kowalski, Smooth and affine s-manifolds, Period. Math. Hung. 8 (1977), 299-311.
- [5] A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, J. Diff. Geometry 2 (1968), 451–459.
- [6] A. Nijenhuis, x_{n-1} -forming sets of eigenvectors, Indag. Math. 13 (1951), 200-212.

Department of Mathematics Kuwait University, Kuwait (Received 05 01 1988)