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ON RIEMANNIAN 4-SYMMETRIC MANIFOLDS

Adnan Al-Aqgeel

Abstract. If M is a Riemannian 4-symmetric manifold, then it is known that M has three
complex differentiable distributions D_j;, D; and D; on it. We shall prove that there are three
differentiable complementry projection operators P, P; and P; on M that project on D_1, D
and D respectively. Some useful relations containing Nijenhuis tensor are found. Necessary and
sufficient conditions for D_;, D;, and D to be integrable are studied.

1. Introduction

An isometry s, on a C*° Riemannian manifold (M, g) for which p € M is the
only isolated fixed point is called a symmetry at p. (M, g) is called a Riemannian
s-manifold if M is connected, and to each point p € M a symmetry s, can be
assigned.

If S;,f = idps, where k > 2 is the least positive integer with this property, then
M is called a Riemannian k-symmetric manifold. See Graham and Ledger [2] and
Kowalsky [3], [4].

In a Riemannian k-symmetric manifold, we have
(1.1) Sk=1

where S is the C™ tensor field of type (1), on M, such that S, = (dsp)p, and I
is the identity tensor field. S is real, orthogonal and nonsingular. The eigenvalues
of Sp, p € M are k'" roots of unity. Since S is continuous on M, each root is
constant over M. Note that 1 is not an eigenvalue because s, does not fix points
except p, therefore, the possible eigenvalues are —1, and pairs of complex conjugates

wy1,Wy, ... ,Wr, Wr. Due to the orthogonality of S, we shall have a collection of
mutually orthogonal differentiable distributions M ¢, My,... , M, on M such that
(1.2) My=M_1,®M1; ®--- & My, (direct sum)

and S decomposes into

S=5_19S1®---® S, (direct sum)
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where Sij C M]'.

At each point p € M, let us denote by H_y,H,Hy,... ,H,, and H,
respectively (—1)-eigenspace, w;-eigenspace, wi-eigenspace, ... w,.-eigenspace,
and w,-eigenspace on the complexification M of the tangent space M,. Let
D_1,D1,Dy,...,D;,D, be complex C*° distributions on M which assign
H_l,Hl,Hl,... ,HT,HT to p-

If wy and Wy, are the only eigenvalues of S on a Riemannian k-symmetric
manifold M then M is a Riemannian 3-symmetric manifold with w? = Wy, or the
underlying manifold M is a symmetric space (see Ledger and Obata [5]).

A distribution B on a manifold M is said to be involutive if [X,Y] = 0,
whenever X,Y € B. The distribution B is said to be integrable if each point of M
lies on the domain of a flat chart. It is well known that a distribution is integrable
if and only if it is involutive, Brickell and Clark [1].

Nijenhuis tensor of a C* tensor field A of type (1,1) is defined by
(1.4) N(X,Y) =[AX, AY] + A%[X,Y] — A[AX,Y] — A[X, AY]
Nijenhuis [6].

2. Complementary projection operators
on a Riemannian 4-symmetric manifold

Let (M,g) be a C* connected Riemannian manifold and suppose that for
each point p € M, we have an isometry s, onM such that s,(p) = p, but p is not
the only isolated fixed point of s, i.e. s, fixes points beside x. Then we shall call
sp a p-isometry, and M is called a ps-manifold. If s’; =1idps and k > 2, is the least
positive integer with this property, then s, is called a p-isometry of order k, and M
is called a ps-manifold of order k. The tensor field S of type (1,1) on M such that

(2.1) Sp = (dsp)p
will have the property
(2.2) Sk =1.

The eigenvalues of S are +1,wy,ws,... ,w,, Wy, consequently (1.2) and (1.3) are
replaced by

(2.3) My,=M{, oM 1, ® M, ®---® M, (direct sum)
and
(2.4) S=5108_105®---&5,.

We shall also have complex distributions D*,D_y,Dy,...,D,, D, on M corre-
sponding to the eigenvalues £1,w;, w1, ... ,w,, W,.
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THEOREM 1. Let M be a ps-manifold of order 4, such that the eigenvalues of
S are £1, +i. Then
(24) (a) P*=(S*+8*+S+1)/4, (b) P=(=-S*+S5>-S5+1)/4
(c) Pp=(iS*-8*—iS+1)/4, (d) P;=(-iS®-S>+iS+1)
are complementary projection operators on D*,D_l,Dl,El respectively.
Proof. If X is any complex vector field on M, then
S(P*X)=8(S*+S>+S+NX/4=(IT+S*+ 5%+ 9)X/4=P*X,
ie. P*X € D*. Similarly, S(PX) = —PX, S(P,X) = iP,X, and S(P,X) =

iP1X. Also P*+ P+ P, 4+ P, = I. Hence P*, P, P, and P, are complementary
projection operators on D*, D_q, Dy, and D; respectively. O

THEOREM 2. On a ps-manifold of order 4, such that the eigenvalues of S are
+1, +i we have
(2.5) (a) P*>=P*, (b) P2=P, (c) P2=P;, (d) P,=DP.
(a) P*P=PP*=0, (b) P*P,=PP*=0 (c) P*P,=PP*=0
(d) PP,=P,P=0, (¢) PP,=P, =0, (f) P,PP, =0.
Proof.

(2.6)

(a) P*2 — (S3+S2+S+I)P*/4: (S3P*+S2P*+SP*+P*)/4
(2.5) = (P* + P* + P* + P*)/4 = P*.
Similarly we can prove (2.5) (b), (c), (d).

(a) P*P=(8°+8%+S+1)P/4=(S*P+ S*’P+SP + P)/4
(2.6) =(-P+P-P+P)/4=0.

Similarly PP* =0 (2.6) (b), (d), (e) and (f) are proved in a similar way.
Suppose that we have a Riemannian 4-symmetric manifold. Then 1 is not

going to be an eigenvalue of S, since s, for all p € M, has p as the only isolated
fixed point. Two possibilities arise

(i) The eigenvalues of S are —1, +i, in this case the underlying manifold is a
symmetric manifold, and we are not interested in this case.

(ii) The eigenvalues of S are —1, +i, and we shall investigate this case.

From now on for every Riemannian 4-symmetric manifold we assume that the
symmetry tensor field S has —1, i i as eigenvalues.

THEOREM 3. Let (M, g) be a Riemannian 4-symmetric manifold; then
(a) P=(-S3+S2—-S+1)/4, (b) P, =(iS®—-82—iS+1)/4
(2.7) (¢c) Py =(—iS*—-S*+iS+1)/4
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are complementary projection operators on D, Dy and Dy respectively.

Proof. Let X be any complex vector field on M: then S(PX) =
—PX, S(P,X) = iPX, S(P,X) = —iPX. Also P+ P, + P, = (-8% - 8% —
S +3I)/4. Since 1 is not an eigenvalue, we have P* = (S%+ S%2+ S1)/4 = 0. Hence
P+P +P,=(I+30)/4=1.0

CorOLLARY 1. On a Riemannian 4-symmetric manifold, we have

(2.8) (a) P?=P, (b) P =P, (c) P
(29) (a) PP1 = P1P = 0, (b) P?l Zﬁlp = 0, (C) Plﬁl = ﬁlpl =0.

Proof. Obvious.O
3. Nijenhuis Tensor

THEOREM 4. On a Riemannian 4-symmetric manifold we have

3 3
(31)  (a) —64dP[PX,PY]=(S° i)Y Y (-1)*N(S*X,57Y)
k=0 j=0
3 3
(b) —64dP,[PX,PY] = (S* +iI) (—1)*HIN(S* X, S7Y).
k=0 j=0

Proof. From (2.9) (a), we have

(a) —64dP,[PX,PY] = 64P,[PX,PY]
=(iS% - S? —iS+I)[-S*X + 5°X - SX + X, —-S*Y + S*Y — SY +Y]
(I =S%) +i(S* = 9))([X,Y] - [X,SY] + [X,S?Y] - [X,S’Y] - [SX,Y]
+[SX,SY] - [SX,S%Y] + [SX, S*Y] + [S?X,Y] — [S*X, SY] + [S*X, S?Y]
—[82X,8%Y] - [S3X,V] + [S°X, SY] - [$%X, S%Y] + [S°X, §%Y))

(1) =(I-5%+ Z 1)F+HI[Sk X, 87 X]

Using S* = I, we have
N(X,Y) =[SX,SY] + S?[X,Y] - S[SX,Y] - S[X, SY]
—N(X,8Y) = —[SX,S%Y] - S?[X,SY] + S[SX, SY] + S[X, S%Y]
N(X,S8%Y) = [SX, S*Y] + S?[X, S?Y] — S[SX, S*Y] — S[X, S3Y]
—N(X,S%) = —[SX,Y] - S?[X,S%Y] + S[SX, S*Y] + S[X,Y]
~N(SX,Y) = —[S?X,SY] - S?*[SX,Y] + S[S*X,Y] + S[SX, SY]
N(SX,SY) =[5%X,S%Y] + S%[SX,SY] — S[S?X, SY] — S[SX, S?Y]
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—N(SX,S*Y

N(SX,S%Y
N(S?X,Y
~-N(S%X,8Y

[S2X,Y] + S?[SX,S*Y] — S[S?X,S%Y] — S[SX,Y]
[S3X,SY]+ S%[S?X,Y] — S[S®X,Y] — §[S62X, SY]

—N(S%X,8%Y
—-N(S*X,Y
N(S3X,SY

—N(S3X,S?Y

N(S*X,S%Y

—[S3X,Y] - S?[S2X, S3Y] + S[S*X, S*Y] + S[S*X,Y]

—[X,8Y] - S?[S*X,Y] + S[X,Y] + S[S*X, SY]
[X,S%Y] + S?[S3X, SY] — S[X, SY] — S[S3X, S?Y]

-[X, S%Y] - S%[S3X, S?Y] + S[X, S?Y] + S[S*X, S®Y]
[X,Y]+S%[S°X,S%Y] - S[X, S*Y] — S[S®X,Y]
Adding, we have

3 3
ZZ DFIN(SEX, S7Y) = (8% +25 +10) D > (-1)FH[SkX, §7Y]
k=0 j=0 k=0 j=0
3 3

(2) =8I - 8> > (-1)kH[SkX, §7Y].

k=0 j=0

From (1) and (2) we have

3 3
—64dP,[PX, PY] = i)Yy (-DFIN(SEX, S7Y)
k=0 =0

3 3
—64dP,[PX,PY] = (=iS® - §> +iS+ 1) Y (~1)FH[S*X, 57V
k=0 j=0
3 3

3) = (I =57 —i(s° = 5) ) D> (-D)F[S*X, §Y]

k=0 j=0

From (2) we have

—64dP,[PX, PY] = (S 4 iI) ZZ DFIN(SEX, SFY).O
k=0 k=0
THEOREM 5. On a Riemannian 4-symmetric manifold, we have

1 1
62 T+ Z —1)MH (N(SPHHLX, §HY) — N(5*0 X, 5%7Y))
k= ]:0

[

1
S3+8 ZZ k+J S2k+1X S2Jy]+[s2kX SZ]+1])

k=0 j=0

—[S2X, S%Y] — S2[SX, S2Y] + S[S2X, S*Y] + S[SX, S3Y]

Y)=

Y)=

) =

) = —[S3X, S%Y] — S?[S?X, SY] + S[S3X,SY] + S[S?X, S?Y]
N(S%X,5%) = [$3X, S*Y] + S?[S%X, S?Y] — S[S3X, S?Y] — S[S?X, S3Y]

Y)=

)=

)=

Y)=

Y)=

167
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Proof. We have
N(SX,SY) =[S*X,S*Y] + S?[SX, SY] — S[S*X, SY]
- S[S*X,8Y] - S[SX, S*Y]
—-N(SX,S%) = —[S?X,Y] — S?[SX, S*Y] + S[S?X, S*Y] + S[SX,Y]
-N(S3X,SY) = —[X, S?Y] — S?[S®X, SY] + S[X, SY] + S[S®X, S?Y]
N(S*X,S%) =[X,Y] + S?[SX, S*Y] - S[X, S*Y] — S[S®X,Y]
-N(X,Y) = —[SX, SY] - S?[X,Y] + S[SX,Y] + S[X, SY]
N(X,S%Y) =[SX,S*Y] + S?[X, S*Y] - S[SX, S?Y] - S[X, S*Y]
N(S?X,Y) =[S*X,8Y] + S?[S*X,Y] - S[S®X,Y] — S[S®X, SY]
—N(S%X,58%Y) = —[$3X,S%Y] — S?[S2X, S?Y]
+ S[$3X,8%Y] + S[S?X, S*Y]
And we get

1 1
DD (-1)FH (N(SH X, SYHY) — N(SEX, S%5Y))
k=0 j=0
1 1
I 52 ZZ k—i—] S2kX, S2jy] _ [52k+1X, S2j+1])
k=0 j=0

(1) +2$ZZ 1)fH ([$%+1 X, §%7Y] + [S* X, S%+1Y))
k=0 j=0
Multiply (1) by S? and add to (1) and we get the result. O

THEOREM 6. The following are equivalent

M-

(3.3) (a) (—1)k+ ([S%*F X, §27] — [S2kH1 X, s2HLY]) =0,

S

=l
<

.
- M“
[e=)

(b) (=) ([s** 1 X, $¥Y] + [$* X, §%+1Y]) = 0.

<
[=)
S
o

Proof. Equation (3.6) (a) is
(1) [X,Y]+[S?X,SY] + [SX, S®] + [S?Y, S?Y] — [SX, SY]
—[X,8%Y] - [$?X,Y] - [S°X, S®*Y] = 0.
Equation (3.6) (b) is
(2) [SX,Y]+[X,SY]+[S®X, S?Y] + [S*X, S*Y] - [SX, S*Y]
—[X,8%Y] - [$3X,Y] - [$%X,SY] = 0.
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If we replace X by SX in (1) we get (2). If we replace X by S*X in (2) we get
(1).0

THEOREM 7. On a Riemannian 4-symmetric manifold we have

(3.4) i[skﬂ' SkX,87Y] = — i 23: SkIt2N(Sk X, STY)
7=0 k=0 7=0 k=0
Proof
N(X,Y) = S?[SX,SY] + [X,Y] - S?[SX,Y] — S®[X, SY]
53 N(X,8Y) = $3[SX, S?Y] + S[X, SY] — [SX, SY] — [X, §%Y]
N(X,S8%) = [SX,S%Y] + S?[X, S?Y] — S[SX, S%Y] — S[X, S3Y]
SN(X,S%) = S[SX,Y] + S*[X,S%Y] — S*[SX, S?Y] — S?[X,Y]
S3N(SX,Y) = S3[S?X, SY] + S[SX,Y] - [S?X,Y] — [SX, SY]
N(SX,SY) = [S?X,S%Y] + S?[SX, SY] — S[S?X, SY] — S[SX, S?Y]
SN(SX,S8%Y) = S[S?X, S3Y] + S®[SX, S?Y] — S?[S%X, S*Y] — S?[SX, S?Y]
S2N(SX,S%Y) = S?[S?X,Y] + [SX, S3Y] — S°[S?X, S3Y] — S®[SX,Y]
N(S*X,Y) = [S*X, SY] + S?[S?X,Y] — S[S*X,Y] — S[S*X, SY]
SN(S?X,8Y) = S[S®X, S?Y] + S3[S% X, SY] — S?[S3X, SY] — S?[S%X, S?Y]
S2N(S%2X,S%Y) = S?[S3X, SV + [S2X, S?Y] — S®[S%X, S2V] — S%[S%X, S°V]
S3N(S2X,S%Y) = S}[S°X, Y] + S[S*X, S°Y] - [S*X, S®Y] — [S?X, Y]
SN(S*X,Y) = S[X,SY]+ S*[S3X,Y] - S*[X,Y] — S?[S®X, SY]
SZN(S*X,SY) = S?[X,S*Y] + [S*X, SY] — S3[X, SY] — S*[S®X, S?Y]
S3N(S3X,S%Y) = S3[X, S*Y] + S[S3X, S?Y] - [X, S*Y] — [S®X, S3Y]

N(S*X,S%) = [X,Y] + S?[$3X,S%Y] — S[X, S*Y] — S[S®X,Y]
and we get the result. O

4. Integrability Conditions

THEOREM 8. In order that D be integrable, it is necessary and sufficient that
(4.1) ZZ DFIN(S* X, S7Y) = 0.
3=0 k=0
Proof. D is integrable if and only if
[PX,PY] € D < P[PX,PY]=0 and P[PX,PY]=0.

From theorem (4)(a) we have

3 3
—64dP,[PX, PY] = 64P,[PX, PY] = (S® —iI) ZZ 1)FIN(S* X, S7Y).
7=0 k=0
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Since S? is nonsingular, therefore,

3 3
P[PX,PY] =0+ ZZ DMIN(S* X, 87Y) =0
7=0 k=0

Also from theorem 4(b), we have

3 3
P[PX,PY]=0<= > > (-)*"N(S*X,87Y) =0.
=0 k=0

Hence, that result. O

THEOREM 9. In order that D1 be integrable, it is necessary and sufficient that

(4.2)
1 1
(@) DD (~D)FH(N(S*H X, $UHY) - N($X,5%Y)) =0
7=0 k=0
(b) DD SHIN(S*X,57Y) =0
7=0 k=0

Proof. We have, by using (2.9) (a)
— 64dP[P, X, P,Y] = 64P[P,x, P,y]

= (=83 + 82 -S+I[iS3X - $?X —iSX + X, iS?Y — §?Y —iSY + Y]

=2(8*+I)([X,Y] - [X,S?Y] - [S*X,Y] + [S*X, S*Y] — [SX, SY]
+[SX,S%Y] +[S%X, SY] - [S*X, S°Y] — 2i(S* + I)([SX, Y]
—[SX,S8%Y] - [$*X,Y] + [S*X, S*>Y] + [X, SY] — [X, S*Y]
—[$?X, SY] +[S*X, S*Y))

1 1

=2(S*+1) (=) ([S?F X, SPY] — [S?k+! X, S27+1Y))

J= 0

0 k=
1 1
—2i(S*+ 1)) ) ()M ([P X, SYHY] + [$7F X, SYY)).
k=0 j=0

Using (2.9) (c), and (3.4), we have
— 64dP,[P, X, P,Y] = 64P, [P, X, P,Y]
= (—iS® =2 +iS+ I[iS?X — S?°X —iSX + X, iS?Y — S?Y —iSY + Y]
=((I-5% +i(S—8%)[iS* — $?X —iSX + X, iS’Y — S?Y —iSY + Y]
3 3

3
=(I-5%)) > SH[SHX,57Y] +i(S Z > SkHSEX, STV

7=0 k=0 7=0 k=0
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3 3 3 3
=) ) SMPN(SFX,SY) —i Y Y N(S*X,S7Y).
7=0 k=0 j=0 k=0
D, is integrable if and only if
[PlX,P1Y]€D1 <~ P[PlX,P1Y]:Oandﬁl[PlX,I‘ﬁY]:0.

Using theorems (5), (6) and (7), and that S? + I is nonsingular, we have

P[PX,PY] =0 < ZZ 17k (S X, §2Y] + [S2k X, S2HY]) = 0

k=0 j=0
1 1
= ) ) ()R (N(SPX, SPHY) - N(SPF X, $%Y) =0,
k=0 j=0
3 3 . )
Pi[PIX,PY] =0 <= Y > SMIN(S*X,57Y) = 0.0
k=0 k=0

TueoreM 10. In order that Dy be integrable, it is necessary and sufficient

that
(4.3)
1 1
(@) > (-1 (N(S**HX, 825+ 1Y) — N(S* X, 5%Y)) =0
k=0 j=0
3 3
(b) ) SHIN(SFX,SY) =0
k=0 j=0

Proof. We have, using (2.9) (a) (c)
— 64dP[P, X, EY] = 64P[P, X, P,Y]

2(S% +1) ZZ 1R+ ([S2k X, S?7Y] — [S+1 X, S%i+1Y))
k= 0] 0

+2i(S*+1) ZZ 1R+ ([S2RH1X, S%Y] + [S?h X, S?+1Y))
k=0 j=0

— 64dP,[P, X, P,Y] = 64P, [P, X, P, Y]
3 3 1

=(I-8%)> > SHISEX, STV —i(S® - 9) Y Xl: Skti[sk X, 87Y]

k=0 j=0 k=0 j=0
Therefore D, is integrable if and only if
[ﬁleﬁly] € 51, P[ﬁlX,ﬁ]_Y] = 0, and P]_[FlX, F1Y] =0.
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Using theorems (5), (6) and (7), the proof follows the pattern of the proof of the
Theorem 9.0
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