ON A DENSE G_{δ} -DIAGONAL

A. V. Arhangel'skiĭ and Lj. D. Kočinac

Abstract. We study topological spaces the diagonal of which contains a dense set which is a G_{δ} -set in $X \times X$.

We use the usual notation and terminology as in [6], [7], [2]. All spaces are at least T_2 .

Let us say that X is a space with a dense G_{δ} -diagonal if there exists a G_{δ} -subset U of the space $X \times X$ such that $U \subset \Delta_X$ and $\overline{U} = \Delta_X$. Here $\Delta_X = \{(x, x) : x \in X\}$ is the diagonal in $X \times X$.

This notion was introduced in [11] under the name "weak G_{δ} -diagonal" (see also [12] about related subjects). In the same paper it was proved that if the space $\exp X$ of all closed subsets of X with the Vietoris topology is weakly perfect, then X has a dense G_{δ} -diagonal. A space X is called weakly perfect [11], [13] if every closed subset of X contains a dense set which is a G_{δ} -set in X. Note that there are spaces which are weakly perfect but not perfect [9].

Proposition 1. X is a space with a dense G_{δ} -diagonal if and only if there exists a subspace $Y \subset X$ such that $\overline{Y} = X$, Y is a G_{δ} -set in X and Y has a G_{δ} -diagonal.

Proof. (\Longrightarrow) Let $\{U_n : n \in \mathbf{N}^+\}$ be a family of open subsets in $X \times X$ such that $\bigcap \{U_n : n \in \mathbf{N}^+\} \subset \Delta_X$ and $\bigcap \{U_n : n \in \mathbf{N}^+\}$ is dense in Δ_X . Put $V_n = \{x \in X : (x,x) \in U_n\}$. Clearly, each V_n is open in X and $Y = \bigcap \{V_n : n \in \mathbf{N}^+\}$ is the subspace we are looking for.

 (\Leftarrow) Let Y be a G_{δ} -subset of X. Then $Y \times Y$ is a G_{δ} -subset of $X \times X$. Indeed, let $Y = \bigcap \{V_n : n \in \mathbf{N}^+\}$ where each V_n is open in X. We can choose V_n to satisfy the condition: $V_{n+1} \subset V_n$ for all $n \in \mathbf{N}^+$. Then $Y \times Y = \bigcap \{V_n \times V_n : n \in \mathbf{N}^+\}$.

AMS Subject Classification (1980): Primary 54 D 15, 54 D 30, 54 E 50

The second author was supported by RZN Srbije

If Y is dense in X then Δ_Y is dense in Δ_X . If the diagonal Δ_Y is a G_{δ} -subset of $Y \times Y$ then Δ_Y is a G_{δ} -subset of $X \times X$ as $Y \times Y$ is a G_{δ} -subset of $X \times X$.

Theorem 1. Let X be a Čech-complete space. Then X has a dense G_{δ} -diagonal if and only if it contains a dense subspace metrizable by a complete metric.

Proof. (\Leftarrow) If Y is dense in X and the space Y is metrizable by a complete metric then Y has a G_{δ} -diagonal and Y is a G_{δ} -subset of Y (see [6], [7]). Then by Proposition 1, X is a space with a dense G_{δ} -diagonal. (We didn't use in this part of the argument Čech-completeness of X).

 (\Longrightarrow) Assume that X has a dense G_{δ} -diagonal. By Proposition 1 there exists a G_{δ} -subset Y of X which is dense in X and is a space with a G_{δ} -diagonal. As X is Čech-complete and Y is a G_{δ} in X the space Y is also Čech-complete. By a result of Šapirovskiĭ (see [15]), there exists a paracompact Čech-complete subspace Z of Y which is dense in Y. Then Z is also dense in X. The space Z also has a G_{δ} -diagonal (this property is obviously inherited by arbitrary subspaces). But it is well known that every paracompact Čech-complete space with G_{δ} -diagonal is metrizable (see [7]). Moreover if a metrizable space is Čech-complete then it is metrizable by a complete metric [6], [7]. It follows that Z is metrizable by a complete metric. The theorem is proved.

Remark 1. From the proof of the first part of Theorem 1 and the fact that countable product of complete metric spaces is complete we have: if a space X contains a dense subspace metrizable by a complete metric, then the spaces X^n , $n \in \mathbb{N}^+$, and X^{ω} have a dense G_{δ} -diagonal.

Question 1. Can a space X^{ω} be weakly perfect?

Corollary 1. Let X be a Čech-complete space with a dense G_{δ} -diagonal such that the Souslin number of X is countable. Then X has a countable π -base. Hence X is separable and every dense subspace of X is separable.

Recall that a π -base of a space X is a family \mathcal{V} of non-empty open subsets of X such that every open subset U of X contains some $V \in \mathcal{V}$ (see [2], [6], [10]).

Proof of Corollary 1. By Theorem 1 there exists a dense metrizable subspace Y of the space X. As $\overline{Y} = X$, the Souslin number of Y does not exceed the Souslin number of X (see [2], [10]). Hence $c(Y) \leq \omega$. As Y is metrizable it follows that Y has a countable base \mathcal{B} . For each $U \in \mathcal{B}$ fix an open subset \widetilde{U} of X such that $\widetilde{U} \cap Y = U$. Then the countable family $\{\widetilde{U} : U \in \mathcal{B}\}$ of open subsets of X is a π -base of X— this is shown easily using the fact that Y is dense in X.

COROLLARY 2. Let X be a Čech-complete space such that the space $X \times X$ is weakly perfect. Then in every closed subspace of X there exists a dense subspace metrizable by a complete metric.

Proof. Let X_1 be a closed subspace of X. Then X_1 is Čech-complete and weakly perfect — both properties are inherited by closed subspaces. Obviously if

the space $X_1 \times X_1$ is weakly perfect, then X_1 has a dense G_{δ} -diagonal. Hence X_1 satisfies the assumptions in Theorem 1 and thus there exists a dense subspace in X_1 metrizable by a complete metric.

Recall that spread s(X) of a space X is the supremum of cardinalities of discrete subspaces of X.

Theorem 2. Let X be a Čech-complete space such that the space $X \times X$ is weakly perfect. Then spread of X is equal to hereditary density of X: s(X) = hd(X). In particular, if all discrete subspaces of X are countable, then X is hereditarily separable.

Proof. For metrizable spaces spread is equal to density. We also have $s(Y) \leq s(X)$ for every subspace $Y \subset X$. From Corollary 2 it follows now that density of every closed subspace of X does not exceed spread of X. As X is Čech-complete it is a k-space and for k-spaces the following inequality (of Arhangel'skiĭ-Šapirovskiĭ) holds: tightness is not greater than spread (see [2]). Thus $t(X) \leq s(X)$. Put $s(X) = \tau$ and let Y be any subspace of X. Then $t(\overline{Y}) \leq \tau$ and $d(\overline{Y}) \leq \tau$ as \overline{Y} is closed in X. Fix a subset $A \subset \overline{Y}$ such that $\overline{A} = \overline{Y}$ and $|A| \leq \tau$. For each $a \in A$ we can fix a subset $B_a \subset Y$ such that $|B_a| \leq \tau$ and $a \in \overline{B}_a$. Then for the set $M = \bigcup \{B_a : a \in A\}$ we have: $|M| \leq \tau \cdot \tau = \tau$, $M \subset Y$ and $\overline{M} = \overline{Y} \supset Y$. Thus $d(Y) \leq \tau = s(X)$, i.e. $hd(X) \leq s(X)$. It is always true that $s(X) \leq hd(X)$. Hence hd(X) = s(X).

Remark 2. Our results on weakly perfect $X \times X$ remain true under weaker assumption that every closed subspace F of Δ_X contains a subset A which is a G_{δ} -set in F and is dense in F.

From Corollary 2 we derive

Corollary 3. Let X be a compact non-separable space, the Souslin number of which is countable. Then X does not have a dense G_{δ} -diagonal. Hence $X \times X$ is not weakly perfect.

From Theorem 1 we get

Corollary 4. If X is a Čech-complete space with a dense G_{δ} -diagonal, then X satisfies the first axiom of countability at a dense G_{δ} -set of points.

Proof. There exists a dense subspace Y of X metrizable by a complete metric. Then Y is a G_{δ} -subset of X and X is first countable at every point of Y (as X is regular and Y is dense in X — see [10]).

Every dyadic compactum which is first countable at a dense set of points is metrizable — this is the well known result of Efimov (see [7]). Now Corollary 4 implies the following assertion:

Corollary 5. If a dyadic compactum X has a dense G_{δ} -diagonal then X is metrizable.

Let us recall that a space X is called \aleph_0 -monolithic if closure of every countable subset $A \subset X$ is a space with a countable network [1] (see also [4], [5]). Every compact space with a countable network is metrizable [6], [7]. Applying Corollary 1 we get

Corollary 6. If X is an \aleph_0 -monolithic compact space the Souslin number of which is countable and X has a dense G_δ -diagonal, then X is metrizable.

Of course the last assertion is also true for Čech-complete spaces.

In connection with Corollary 4 we have the following assertion which can be proved in a similar way as one proves the fact that every space with a G_{δ} -diagonal has countable pseudo-character.

Proposition 2. If a space X has a dense G_{δ} -diagonal, then the set of points of countable pseudocharacter is dense in X.

From this proposition and the fact that for every topological group G one has $\psi(G) = \Delta(G)$ [3] we derive

Corollary 7. If G is a topological group with a dense G_{δ} -diagonal, then G has a G_{δ} -diagonal.

There is an interesting necessarry and sufficient condition for a space X to have a dense G_{δ} -diagonal.

PROPOSITION 3. A space (X, \mathcal{T}) has a dense G_{δ} -diagonal if and only if there exist a subset $Y \subset X$ dense in (X, \mathcal{T}) and a topology \mathcal{T}_1 on X such that $\mathcal{T} \subset \mathcal{T}_1$, the space (X, \mathcal{T}_1) has a G_{δ} -diagonal and \mathcal{T} is a base of (X, \mathcal{T}_1) at all points $y \in Y$.

Proof. (\iff) There exist open sets $U_n, n \in \mathbb{N}^+$, in the product space $(X, \mathcal{T}_1) \times (X, \mathcal{T}_1)$ such that $\bigcap \{U_n : n \in \mathbb{N}^+\} = \Delta_X$. For each $y \in Y$ and each $n \in \mathbb{N}^+$ we can fix a $V(y,n) \in \mathcal{T}$ such that $y \in V(y,n)$ and $V(y,n) \times V(y,n) \subset U_n$. Put $G_n = \bigcup \{V(y,n)^2 : y \in Y\}$ for every $n \in \mathbb{N}^+$. Obviously $\Delta_Y \subset G_n \subset U_n$ and G_n is open in $(X,\mathcal{T}) \times (X,\mathcal{T})$. Hence $\Delta_Y \subset \bigcap \{G_n : n \in \mathbb{N}^+\} \subset \Delta_X$. As Δ_Y is dense in Δ_X , the set $\bigcap \{G_n : n \in \mathbb{N}^+\}$ is the one we were looking for. Thus X has a dense G_δ -diagonal.

 (\Longrightarrow) Let B be a dense subset of Δ_X which is a G_δ -subset in the space $(X,\mathcal{T})\times (X,\mathcal{T})$. Fix open sets U_n in $(X,\mathcal{T})\times (X,\mathcal{T})$ for $n\in \mathbf{N}^+$ such that $\bigcap\{U_n:n\in\mathbf{N}^+\}=B$. Put $Y=\{x\in X:(x,x)\in B\}$ and $\mathcal{B}_1=\mathcal{T}\cup\{\{x\}:x\in X\setminus Y\}$. Then \mathcal{B}_1 is a base of a topology \mathcal{T}_1 on X. It is clear that $\mathcal{T}\subset\mathcal{T}_1$ and that \mathcal{T} is a base of the space (X,\mathcal{T}_1) at all points of the set Y. It remains to check that the space (X,\mathcal{T}_1) has a G_δ -diagonal.

Let $W_n = U_n \cup \Delta_X$. Then W_n is open in the product space $(X, \mathcal{T}_1) \times (X, \mathcal{T}_1)$ by the definition of \mathcal{T}_1 . Clearly, $\bigcap \{W_n : n \in \mathbf{N}^+\} = \Delta_X$. Hence (X, \mathcal{T}_1) has a G_{δ} -diagonal. The proposition is proved.

As every metrizable space has a G_{δ} -diagonal the following assertion is a direct corollary of Proposition 3.

Theorem 3. A space (X, \mathcal{T}) has a dense G_{δ} -diagonal if there exists a metrizable topology \mathcal{T}_1 on X such that $\mathcal{T} \subset \mathcal{T}_1$ and the set of all points at which \mathcal{T} is a base of the topology \mathcal{T}_1 is dense in the space (X, \mathcal{T}) .

The conditions in Theorem 3 are satisfied by every Eberlein compactum (see T.4.3 in [4]). Thus we have

Corollary 8. Every Eberlein compactum has a dense G_{δ} -diagonal.

One could derive Corollary 8 from Theorem 1 on the following fact — Namioka's theorem (see [2]): in every Eberlein compactum there exists a dense subspace metrizable by a complete metric.

Every Gul'ko compact space [5] also has a dense subspace metrizable by a complete metric (Leiderman-Gruenhage; see [14], [8] or [5]. Thus applying Theorem 1 we get.

Corollary 9. Every Gul'ko compact space has a dense G_{δ} -diagonal.

Remark 3. S. Todorčević has shown that not in each Corson compactum [5] there exists a dense metrizable subspace. It follows from Theorem 1 that not every Corson compactum has a dense G_{δ} -diagonal.

Remark 4. If the set of all isolated points of a space X is dense in X, then X has a dense G_{δ} -diagonal. This is evident. Thus if X is a scattered space then every subspace of X has a dense G_{δ} -diagonal while X itself need not have a G_{δ} -diagonal (take a compact non-metrizable scattered space — for example, the space $T(\omega_1 + 1)$).

We conclude the paper with several questions on weakly perfect spaces and spaces with a dense G_{δ} -diagonal.

Question 2 [11]. What can we say on density of weakly perfect compact spaces? Is it true that density of each such space is $\leq \aleph_1$?

Question 3 [11]. Is it true that for every weakly perfect countably compact space X spread of X is countable?

Question 4. Is it true that every symmetrizable space X has a dense G_{δ} -diagonal? is weakly perfect?

In connection with this question it should be noted that there are symmetrizable spaces without a G_{δ} -diagonal and non-perfect.

Question 5. Let X be a weakly perfect compact space. Is it true then that X contains a dense metrizable subspace?

 $Question\ 6.$ Is every weakly perfect compact space of countable Souslin number separable?

Question 7. Let X be a compact space such that $X \times X$ is weakly perfect. What about X? Is X perfect?

(This question is suggested by Example in [11]).

Question 8. When there exists a countable family \mathcal{U} of open sets in $X \times X$ such that $\bigcap \mathcal{U} \cap \Delta_X$ is dense in Δ_X and for each open neighborhood V of Δ_X in $X \times X$ one can find $U \in \mathcal{U}$ such that $U \subset V$? Such \mathcal{U} will be called a dense Δ -base of X.

Let us note that if X has a dense discrete subspace then X has a countable dense Δ -base.

Question 9. Let X be a compact space with a countable dense Δ -base. Does there exist a dense open metrizable subspace $Y \subset X$? dense separable metrizable subspace $Z \subset X$?

REFERENCES

- [1] А. В. Архангельский, О некоторых топологических пространствах, встречающихся в функциональном анализе, Успехи мат. наук **31** (1976), 17-32.
- [2] А. В. Архангельский, Строение и классификация топологических пространств и кардинальные инварианты, Успехи мат. наук 33 (1978), 29-84.
- [3] А. В. Архангельский, Кардинальные инварианты топологических групп. Вложения и уплотнения, ДАН СССР **247** (1979), 779–782.
- [4] А. В. Архангельский, Пространства функций в топологии поточечной шодимости и компакты, Успехи мат. наук 39 (1984), 11-50.
- [5] A. V. Arhangel'skiĭ, A survey of C_p-theory, Questions Answers Gen. Topology 5 (1987), 1-109.
- [6] А. В. Архангельский, В. И. Пономарев, Основы общей топологии в задачах и упраженениях, Наука, Москва, 1974.
- [7] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [8] G. Gruenhage, Covering properties of X² \ Δ, W-sets and compact subsets of Σ-products, Topology Appl. 17 (1984), 287-304.
- [9] R. W. Heath, On a question of Ljubiša Kočinac, Publ. Inst. Math. (Belgrade) 46 (60), (1989), 193-195.
- [10] I. Juhász, Cardinal functions in topology ten years later, Math. Centre Tracts 123, Amsterdam, 1980.
- [11] Л. Кочинац, Один пример нового класса пространств, Мат. весник 35 (1983), 145– 150.
- [12] Л. Кочинац, О пространствах со слабым измельчением, Мат. весник 37 (1985), 182– 188.
- [13] Л. Кочинац, Некоторые обобщения совершенной нормальности, Facta Universitatis (Niš) Ser. Math. Inform. 1 (1986), 57-63.
- [14] А. Г. Леидерман, О всюду плотных метризуемых подпространствах компактов Корсона, Мат. заметки 38 (1985), 440-449.
- [15] Б. Шапировский, О сепарабельности и метризуемости пространств с условием Суслина, ДАН СССР 207 (1972), 800-803.

Chair of General Topology and Geometry, Department of Mathematics, Moscow State University, Moscow, USSR

Filozofski fakultet 18000 Niš, p.p. 91 Yugoslavia (Received 19 05 1989)