A FIXED POINT THEOREM IN BANACH SPACE

Nadim A. Assad

Abstract. A fixed point theorem is proved for continuous mappings from a nonempty compact subset K, of a Banach space X, into X, and which satisfies contractive condition (2) and property (a) below.

The following result was established in [2]: Let X be a Banach space, K a nonempty closed subset of X. Let $T: K \to X$ satisfy the following contractive condition on K: There exists a constant h, 0 < h < 1 such that, for each $x, y \in K$,

$$d(Tx,Ty) \le h \max\{d(x,y)/2, d(x,Tx), d(y,Ty), [d(x,Ty) + d(y,Tx)]/q\},$$
 (1)

where q is any real number satisfying $q \ge 1 + 2h$. Suppose that T has the additional property:

for each
$$x \in \partial K$$
, the boundary of $K, Tx \in K$. (a)

Then T has a unique fixed point.

In this paper, we show that if we require T to be continuous and K compact, then we may replace condition (1) on T by the following: For all $x, y \in K$, $x \neq y$,

$$d(Tx, Ty) < \max\{d(x, y)/2, d(x, Tx), d(y, Ty), [d(x, Ty) + d(y, Tx)]/q\},$$
(2)

where $q \geq 3$, and still conclude that T has a unique fixed point. Actually, the condition (2) is obtained from (1) by putting h = 1, and by replacing the inequality by a strict inequality.

In the proof of the following theorem we shall use the fact that, if $x \in K$ and $y \notin K$, then there exists a point $z \in \partial K$ such that d(x, z) + d(z, y) = d(x, y).

Theorem. Let X be a Banach space, K a nonempty compact subset of X, $T:K\to X$ a continuous mapping satisfying (2) on K. If T has property (a), then T has a unique fixed point in K.

Proof. Let $x_0 \in K$. We shall construct two sequences $\{x_n\}$, $\{x_n^1\}$ as follows. Define $x_1^1 = Tx_0$. If $x_1^1 \in K$, set $x_1 = x_1^1$. If $x_1^1 \notin K$, choose $x_1 \in \partial K$ so that

138 Assad

 $d(x_0, x_1) + d(x_1, x_1^1) = d(x_0, x_1^1)$. Let $x_2^1 = Tx_1$. If $x_2^1 \in K$, set $x_2 = x_2^1$. If not, choose $x_2 \in \partial K$ so that $d(x_1, x_2) + d(x_2, x_2^1) = d(x_1, x_2^1)$. Continuing in this manner, we obtain $\{x_n\}$, $\{x_n^1\}$ satisfying:

- (i) $x_{n+1}^1 = Tx_n$,
- (ii) $x_n = x_n^1$ if $x_n^1 \in K$, and
- (iii) $x_n \in \partial K$ and $d(x_{n-1}, x_n) + d(x_n, x_n^1) = d(x_{n-1}, x_n^1)$, if $x_n^1 \notin K$.

Let $P = \{x_i \in \{x_n\} : x_i = x_i^1\}$ and $Q = \{x_i \in \{x_n\} : x_i \neq x_i^1\}$. Note that if $x_n \in Q$, then x_{n-1} and x_{n+1} belong to P by condition (a).

Putting $G_n = d(x_n, x_{n+1})$, we may assume that for $n = 0, 1, 2, \ldots, G_n > 0$; for otherwise, i.e. if $G_n = 0$ for some n, it follows that $x_n = x_{n+1}$. Now if $x_n \in \partial K$, then $x_{n+1}^1 \in K$ or $x_{n+1} = x_{n+1}^1 = Tx_n$, and thus $x_n = Tx_n$, or x_n is a fixed point of T. On the other hand, if $x_n \notin \partial K$, then $x_{n+1}^1 \in K$ and we conclude again that x_n is a fixed point of T, because in this case, if $x_{n+1}^1 \notin K$, we get that $x_{n+1} \in \partial K$ while $x_n \notin \partial K$ and thus we cannot have $x_n = x_{n+1}$.

By using the same argument presented in the proof of the theorem of Rhoades [2], with a slight modification that consists of applying condition (2) on T instead of (1), we reach an estimate for G_n , $n \geq 2$, in each of the following three cases:

Case I. $x_n, x_{n+1} \in P$: we have $G_n < G_{n-1}$.

Case II. $x_n \in P$, $x_{n+1} \in Q$: we have $G_n < G_{n-1}$.

Case III. $x_n \in Q$, $x_{n+1} \in P$: since $x_n \in Q$ and is a convex linear combination of x_{n-1} and x_n^1 , it follows that

$$G_n \le d(x_n^1, x_{n+1}), \qquad \text{or} \tag{3}$$

$$G_n \le d(x_{n-1}, x_{n+1}). \tag{4}$$

If (3) occurs, we get:

$$G_n < d(x_{n-1}, x_n^1) < G_{n-2}.$$
 (5)

On the other hand, if (4) occurs, we get that $G_n < G_{n-2}$. Therefore in all cases we have:

$$G_n < G_{n-1}$$
 or $G_n < G_{n-2}$. (6)

Following the proof of Theorem 4.1 in [1], we may assume that $\{x_n\}$ has one of the following three properties:

 $(P_1) \ \{x_n\}$ has a subsequence $\{x_{n(k)}\}$ such that for $k=1,2,3,\ldots,x_{n(k)+1}$ and $x_{n(k)+2} \in P.$

Otherwise, eventually $\{x_n\}$ cannot have two consecutive points in P, i.e., we may assume that for $n=1,2,3,\ldots,x_{2n}\in Q$. It follows by Case III that

$$\{G_{2n}\}\$$
 is a decreasing sequence of real numbers, (7)

and in this case, we may assume that either $\{x_{2n}\}$ has a subsequence $\{x_{n(k)}\}$ satisfying the following property:

$$G_{n(k)} \le d(x_{n(k)}^1, x_{n(k)+1}),$$
 and thus (8)

- (P_2) $\{x_n\}$ has a subsequence $x_{n(k)} \subset Q$ satisfying (8), or
- (P_3) there exists a positive integer N such that for every $n \geq N$, $x_{2n} \in Q$ and $d(x_{2n+2}, Tx_{2n+2}) \leq d(x_{2n+1}, Tx_{2n+2})$.

If $\{x_n\}$ has property (P_1) , then assuming $x_{n(k)} \to z$ it is easy to see by (6) and cases I and II that $G_{n(k+1)} \leq d(x_{n(k)+1}^1, x_{n(k)+2}^1) < G_{n(k)}$; as $k \to \infty$ and by continuity of T, we obtain that $d(z,Tz) = d(Tz,T^2z)$. Similarly, if $\{x_n\}$ has property (P_2) , by compactness of K, we assume that $x_{n(k)-2} \to z$, and by (5) we conclude that $G_{n(k)} \leq d(x_{n(k)-1}^1, x_{n(k)}^1) < G_{n(k)-2}$. Also here as $k \to \infty$, we apply (7) to get that $d(z,Tz) = d(Tz,T^2z)$. Finally, if $\{x_n\}$ has property (P_3) , by compactness of K, $\{x_{2n}\}$ has a subsequence $\{x_{n(k)}\}$ such that $x_{n(k)} \to z$ and $x_{n(k)+2} \to u$. We claim that u = z. We first observe by (7) and by the continuity of T that we have:

$$\lim G_{n(k)} = d(z, Tz) = d(u, Tu) = \lim G_{n(k)+2}.$$
 (9)

Moreover, $d(Tx_{n(k)},x_{n(k)+2}) \leq d(Tx_{n(k)},x_{n(k)+2}^1) \leq G_{n(k)}$ and, as $k \to \infty$, we get:

$$d(u, Tz) \le d(z, Tz). \tag{10}$$

On the other hand, by (P_3) we have $G_{n(k)+2} \leq d(Tx_{n(k)}, Tx_{n(k)+2})$ and as $k \to \infty$, we obtain:

$$d(u, Tu) \le d(Tz, Tu). \tag{11}$$

If $u \neq z$, then by (9), (10) and (11), we observe that

$$\begin{split} d(z,Tz) &= d(u,Tu) \leq d(Tz,Tu) \\ &< \max\{d(z,u)/2,d(z,Tz),d(u,Tu),[d(z,Tu)+d(u,Tz)]/q\} \\ &\leq \max\{d(z,u)/2,d(z,Tz),[d(z,Tu)+d(z,Tz)]/3\}. \end{split} \tag{12}$$

Noting that $d(z,u)/2 \leq [d(z,Tz)+d(Tz,u)]/2 \leq d(z,Tz)$ and that $[d(z,Tu)+d(u,Tz)]/3 \leq [d(z,Tz)+d(Tz,Tu)+d(u,Tz)]/3 \leq d(Tz,Tu)$, we see that (12) leads into a contradiction. Therefore u=z. Finally, note that:

$$G_{n(k)} - d(x_{n(k)}, x_{n(k)+2}) \le G_{n(k)+1} \le d(x_{n(k)+1}^1, x_{n(k)+2}^1) \le G_{n(k)}.$$
(13)

Therefore $\lim d(x^1_{n(k)+1},x^1_{n(k)+2})=\lim G_{n(k)},$ i.e., $d(Tz,T^2z)=d(z,Tz).$ Now if $z\neq Tz$, then

$$d(z,Tz) = d(Tz,T^2z)$$

$$< \max\{d(z,Tz)/2, d(z,Tz), d(Tz,T^2z), d(z,T^2z)/3\} = d(z,Tz)$$

(because $d(z,T^2z)/3 \leq [d(z,Tz) + d(Tz,T^2z)]/3 = (2/3)d(z,Tz)$) which is inadmissible. Therefore z is a fixed point of T. If v is also a fixed point of T, then:

$$d(z,v) = d(Tz,Tv) < \max\{d(z,v)/2, [d(z,Tv) + d(v,Tz)]/3\},$$
 i.e.,
$$d(z,v) < (2/3)d(z,v),$$

140 Assad

contradiction. Thus the fixed point is unique and the proof is completed.

The theorem generalizes the following result.

Corollary 4.1 [1]. Let X be a Banach space and K a nonempty compact subset of X. Let $T: K \to X$ be a continuous mapping such that $Tx \in K$ for every $x \in \partial K$. Suppose that for all distinct x, y in K, the inequality

$$d(Tx, Ty) < \{d(x, Tx) + d(y, Ty)\}/2 \tag{14}$$

holds. Then T has a unique fixed point.

Acknowledgement. The author takes this opportunity to express his sincere thanks to Professor B. E. Rhoades for providing him with the reprints of his papers.

REFERENCES

- [1] N. A. Assad, On some nonself mappings in Banach spaces, Math. Japonica 33 (1988), 501–515.
- [2] B. E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japonica 23 (1978), 457-459.

Department of Mathematics Birzeit University Birzeit, P.O. Box 14 Birzeit, West Bank via Israel (Received 17 11 1987) (Revised 08 02 1990)