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A PROPERTY OF CANONICAL GRAPHS

Aleksandar Torgasev

Abstract. A finite connected graph is called canonical if no two of its vertices have the
same neighbours. In this paper we prove that in all but a sequence of exceptional cases, deleting
of a suitable chosen vertex in a canonical graph also gives a connected canonical graph. This
property can have applications in various hereditary problems in the spectral Theory of Graphs.

In this paper we consider only finite connected graphs without loops or mul-
tiple edges. The vertex set of a graph G is denoted by V(G), and the number of its
vertices by |G|. Relation H C G will always mean that H is an induced subgraph
of a graph G. For any two vertices u, v of G, uv = 1 will mean that v is adjacent
to v, while uv = 0 will mean that u is nonadjacent to v.

The graph obtained by deleting a vertex ¢ € V(G) from G is denoted by
G — . It can be connected or disconnected. But, as is well known, there is at least
one vertex ¢ € V(G) such that the corresponding graph G — z is also connected.

Next, we say that two vertices u,v € V(G) are equivalent in G and we denote
it by u ~ v if we have

(1) uv =0 and ru=1v

for any vertex r € V(G)\{u, v}, thus if and only if u and v have the same neighbours
in G. Relation ~ is obviously an equivalence relation on the vertex set V(G). The
corresponding quotient graph is denoted by g and called the canonical graph of G.
This graph is also connected.

For instance, if G = Kp,,..m, (p > 2) is a complete p-partite graph, then its
canonical graph is the complete graph K,. The canonical graph of the complete
graph K, is the same graph K,,.

We say that a graph G is canonical if |G| = |g|, i.e. if G has no two equivalent
vertices.
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If g is the canonical graph of G, |g| = k and Ny, ... , Ny are the corresponding
sets of equivalent vertices in GG, we denote

G :g(N17 JNk)‘

We call Ny, ..., N} the characteristic sets of G. Obviously, each set N; C V(G)
(i = 1,...,k) consists only of isolated vertices, and if at least one edge between
the sets V; and N; (i # j) is present, then all possible edges between these sets are
also present. Therefore, it is very convenient to display the sets N; (i = 1,... ,k)
by white (that is, empty) circles, and all possible edges between the sets N; and N;
(i # j) by only one edge between the corresponding circles. If, for example, G is
the complete bipartite graph with characteristic sets N1, N2, we can simply draw

G=0——=0
N N,
We note that many hereditary problems in the Spectral Theory of Graphs can be
reduced to finding firstly the corresponding sets of canonical graphs. Compare for
instance the papers [3], [4], [5], [6], [7], [8], [9], [10], [11], or the monograph [2],
where many results from these papers are presented. Therefore, the importance of
the following hereditary property of canonical graphs is clear.

THEOREM. In all but a sequence of exceptional cases, each canonical graph G
with n vertices (n > 2) contains, as an induced subgraph, a connected and canonical
subgraph H on n — 1 vertices. The exceptional graphs are

[]

To I V"
K

where ajb; =1 (1 < j; 4,5 = 1,...,m). We obviously have that Ty, C Ty
CTC....

Proof . First, it is trivial to check that all graphs T,,, (m > 0) are exceptional
graphs. Graphs G — a9 and G — by are disconnected, while for any m > 1 and
i=0,...,m—1 we have

ag ~ by (in G —a), bg ~a, (in G-0b),
an~a (in G — by), b~b, (in G-—an),
a; ~ Aj41 (in G — bi+1), bz ~ b,’+1 (iIl G- a,-).

Next, we consider any connected canonical graph G # T, (m =0,1,2,...),
which is “bad” in the sense that deleting of any its vertex gives a disconnected or a
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noncanonical graph. We shall prove that this assumption in all possible cases gives
a contradiction, thus that such graphs really do not exist.

Firstly choose any vertex z of G such that the subgraph G — z is connected.
Then G — z is a noncanonical graph. Let G — ¢z = f(M1,..., M) (k > 1), where
My, ..., My are the characteristic sets of G — x, f is the corresponding canonical
graph of G — z (also connected), and at least one of the sets Mjy,... , My is not
a singleton. Obviously & > 2. Rearranging the vertices of f, we can assume that
|Mi| > 2.

If |M;| > 2 for some 3 € {1,... ,k} and if u,v € M; (u # v), the fact that G
is a canonical graph implies that exactly one of u, v is adjacent to z. Therefore,
we immediately get

and consequently |M;| = 2. We assume that M; = {y,z}, where zy = 1 and
zz =0.

Now assume that some |M;| = 2 (j > 1), for instance that M> = {¢,d},
where z¢c = 1 and zd = 0. Deleting then the vertex d from G we obviously get a
connected graph. It is also easily seen that G — d is a canonical graph, what is a
contradiction. Hence we must have

(3) IM;l=1  (j=2...,k).

Thus, except y and z, there is no other equivalent pair of vertices in G — .
Denoting P = V(G) \ {z,y, 2z}, we obviously have that P # &.

Deleting the vertex z from G we evidently get a connected subgraph. Since
G is bad, we see that G — z is a noncanonical graph. Since for any two vertices
r,s € P we also have

7'7('5’ T’%'y (inG—z),
we conclude that there is a vertex ¢ € P such that
4) x~1 (in G — 2).
Hence zt = 0, and we easily conclude that yt = 2t = 1. Moreover, rz = rt and
ry = rz for any other vertex r € P\ {t}.

Since G # zytz = Ty, we have that |P| > 2. If |P| = 2, thus if P = {¢,r},
we necessarily have that rt = r& = ry = rz = 1 since f = try is a canonical
graph, whence we obviously get that G — r is a connected and canonical graph (a
contradiction). Hence, we can assume that |P| > 3. Now delete the vertex y of G.

1° Assume first that G — y is a disconnected graph.

Since f is a connected graph, it is easy to see that rz = 0 and consequently
rt = 0 for any vertex r # x,y, 2, t.

Denote next the vertex ¢ by p; and the vertex z by ¢;.

Deleting now the vertex p; from G, we obviously get a connected graph G—p; .
Since G is bad, G — p; is a noncanonical graph. Discussing all the possible pairs
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of vertices in G — p; as candidates for equivalent vertices, we conclude there is a
vertex qo # x,Y,p1,q1 such that

(5) @n~q  (inG—p1).

Then g2z = @y = @2p1 = @2q1 = 0, and rz = rp1 = 0, ry = rq1 = rq» for any
vertex r # x,y,p1,q1,q2.- Making use of the last relation, we easily conclude that
G — ¢2 is a connected, thus a noncanonical graph. Discussing now all the possible
pairs of vertices as candidates for two equivalent vertices in G — g2, we conclude
that there is a new vertex ps # x,y, p1,q1, g2 such that

(6) p1 ~ P2 (in G — o).

Hence pax = pap1 = 0, poy = paq1 = p2g2 = 1, and rps = 0 for any other vertex
r # Z,Y,P1,q1,D2,92-

Now, delete the vertex ps from G. If G — p, is disconnected, we conclude that
G = zyp1q1p2q2 = T1, which contradicts the assumption G # T, (m =0,1,2,...).
Thus, G — p, must be a connected (and hence a noncanonical) graph. Therefore,
we conclude that there is a new vertex g3 such that

(M) g2 ~ g3 (in G — p2).

Then g3z = @3y = @sp1 = @31 = q3p2 = gz3q2 = 0, and rz = rp1 = rp2 = 0,
ry = rq1 = rg2 = rqs for any other vertex r # x,y,p1,q1,P2,q2,q3. Deleting now
the vertex g3 from G, we conclude that G — g3 is a connected (thus a noncanonical)
graph. Discussing all the possible pairs of vertices in G — g3 as candidates for a
pair of equivalent vertices, we conclude that there is a new vertex ps such that

(8) po~ps  (inG—gs).

Then psz = psp1 = psp2 = 0, psy = psq1 = p3g2 = p3gs = 1 and rp3 = 0 for any
other vertex r # x,v,p1,q1,P2,492,P3,q3- Assuming that G — p3 is a disconnected
graph, we get the contradiction G = zyp;q1p292p3qs = T>. Hence, G — p3 is a
connected (thus a noncanonical) graph. Continuing this procedure, after finitely
many steps, we conclude that there is a positive integer m such that

G =2zyp1qs - - -Pm+19m+1 = T,
which is a contradiction again.
Hence, the case when G — y is a disconnected graph is contradictory.

2° Now assume that G — y is a connected (noncanonical) graph.

Since G # Ty, there is at least one vertex r # x,y, z,t and we have rx = rt,
ry = rz for any such a vertex r. Since G — y is a connected noncanonical graph,
we may conclude that there is a new vertex x; # z,y, z,t such that

9) T ~ T (in G —y).

Then z1z = 21y = 12 = 21t = 0 and rz = rt = rxy, ry = rz for any vertex
r#£T,Y,2,t L.
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Since G is a connected graph, we see that there is at least one vertex r #
z,Y,2,t,x1. By re = rt = rx; for any such r, we may conclude that G — z; is a
connected (thus a noncanonical) graph. Hence, one may conclude that there is a
new vertex ¥, # x,y,2,t,x; such that

(10) yi~y  (in G—2).

Therefore, we easily get y12 = y1it =121 = 1, yay = y12 =0, and rx = rt = rz,
ry = rz = ry; for any other vertex r # x,y, 2,t, 21, Y1 -

Now we delete the vertex y; from G. If G — y; is a disconnected graph, we
can put 1y = 2', y1 = y', y = 2/, x = ', to get a contradiction, exactly as it
has been done in the case 1°. Hence, we can assume that G — y; is a connected
(thus a noncanonical) graph. Now, one can see that there must exist a new vertex
To £ x,Y,2,t,21,y1 of G such that

(11) Tg ~ 21 (in G —y1).

Then zox = oy = x9z = Tot = wex1 = z2y1 = 0, and rz = rt = rxy = ruo,
ry = rz = ry; for any vertex r # x,y, z,t, 1, y1,x2. Therefore, we easily conclude
that G — x5 is a connected (hence a noncanonical) graph. Moreover, one can
conclude that, as the only possible case, there is a new vertex ys # x,y, 2,t, 21, Y1, T2
such that

(12) Yo ~ Y1 (in G — 7).

Then yox = yot = yox1 = Y22 = 1, Yoy = y22 = yoy1 = 0, and rz = rt = rz; =
rxa, Ty =1z = ry1. = rys for any vertex r # x,y, 2,t,%1,Y1, %2, Y2-
Continuing this procedure, we conclude that there is a positive integer m such
that
G = zytzriy12292 - - - TmYm = T,

which is again a contradiction.

This proves that case 2° is also impossible, hence our theorem is completely
proved.
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