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APPROXIMATION OF CONTINUOUS FUNCTIONS BY
MONOTONE SEQUENCES OF GENERALIZED POLYNOMIALS
WITH RESTRICTED COEFFICIENTS

S.G. Gal

Abstract. The problem of approximation of continuous functions by generalized poly-
nomials with restricted coefficients was considered in [2-3] and [4-6]. In [1] we have obtained
some results regarding the approximation by monotonous sequences of ordinary polynomials with
restricted coefficients. The aim of this paper is to extend the results of [1] to the case of approxi-
mation by generalized polynomials with restricted coefficients.

1. Introduction

Replacing the ordinary polynomials by generalized polynomials, the results
regarding the approximation by ordinary polynomials with restricted coefficients
was firstly extended in [2-3] and [5].

Some important generalizations of those results were obtained in [6] in the
following manner.

Let —00 < a < b < 400 and Cy([a,b]; C) = {f : [a,b] = C : f continuous on
[a,b] with f(a) = 0}, where C is the field of complex numbers. If K = (K}) is a
sequence of functions Ky € Co([a,b];C) and D = (Dy) is a sequence of numbers
Dy >0,k=1,2,..., we define Pg,p(C) to be the class of all linear combinations
g, g(t) = Zgzl ar Ky (t) (ar — complex) with the restrictions that |ax| < Dy,
k=1,2,...,N. Also, if K € Cy([a,b]; R) = {f : [a,b] = R : f continuous on [a, b]
and f(a) = 0}, then we define Px,p(R) to be the class of all linear combinations g,
g9(t) = > arKi(t), with ay, real numbers such that |ag| < Dy,.

In [6], among other results, the following two were proved:

THEOREM 1.1 [6, Theorem 3]. If Ky = t*, Ay > 0, Agy1 — A\, > ¢ > 0,
S0 At = 00 and Dy, = Ap* with A > 0 (k= 1,2,...), then for f € Co([0,1]; R)
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there exists a sequence g, € Px.p(R), n =1,2,..., uniformly converging toward f
on [0,1], if and only if there exists a subsequence (k;) of (k) such that

Z Al =00 and Ay — oo (i o0). (1)
i=1

THEOREM 1.2 [6, Theorem 5]. If Ki(t) = t*, 0 < Ay — b (k = 00),
0 <b< oo withX # X (i #j) and Dy > 0 (k = 1,2,...,) then, for any
f € Co([0,1]; R), there exists a sequence g, € Px,p(R), n = 1,2,..., uniformly
converging toward f on [0,1], if and only if

ZDk|)\k—b|p:oo, for allp=0,1,2,.... (2)
k=1

Remark. In fact, in [6], those results were proved for f € Cy([0,1];C), g, €
Pk p(C) being complex function. But it is clear that, if f € Co([0,1];R), then

gn € Py p(C) are considered to be real-valued functions (gn(t) = Y p, azn)t’\’“,
with a{” € R, k =1,2,... ,N,,); therefore, g, € Px.p(R).
In this paper we shall extend the results in [1] to the case of Theorems 1.1 and

1.2, using in their proofs an important remark, communicated to me by Professor
D. Leviatan.

2. Basic Results

In the following, for a > 0, let us denote by {a) the least integer such that
a < (a) and let us denote by C’éa>([0, 1;R) ={f : [0,1] = R : f continuous on [0, 1]
and f(0) = f/(0) = ... = f{@)(0) = 0}, where f«®)(0) denotes the derivative of
order (a) of f at the point 0.

Let (Ax), (Ax) be two sequences or real numbers satisfying

1<Ay, k=1,2,..., A -5 o0, (3)
0< X, A=A 2e>0, (=1,2,...), > A\t =oc. (4)
k=1

Regarding the approximation by monotone sequences, to Theorem 1.1 there
corresponds

THEOREM 2.1. Assume that (3) and (4) hold. For any f € Cé())‘l)([o, 1;R)
there exists a sequence of generalized polynomials (P,),

Po(t) = S b1, with b € R, n=1,2,..., t €[0,1]
k=1
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such that P, — f uniformly on [0,1], |b§cn)| < Az’“, k=1,ip,n=12,..., and
f(#) < Ppg1(t) < Pu(t) forallt € (0,1], P,(0)=0,n=1,2,....

Proof. Take F(t) = f(t)/t", t € (0,1], F(0) = 0. Since f € C{*(0,1]; R)
we obtain:

f@ SO Ll u) =)
B~ I e e Tl ST O =0

(where Mo = A1(A1 — 1) -...- (A1 — (\1) + 1)), and therefore F' € Cyp([0, 1]; R).
Now let us denote by ur, = Apy1 — M and L = (L), Li(t) = t**. Using an
idea of D. Leviatan, communicated to me through a personal letter, let us denote
by By = Al,zi(lkﬂ), C = (Cy), C, = BY*. Because of (3) it is obvious that 0 < By
and By, -+ +oo.
Since

=1 & 1 o1
T Dl
e e e e
we obtain Z;’;l 1/pp = +o00. Also, 0 < pi, fk1 — bk = M2 — Agt1 > ¢ > 0,
k =1,2,..., and, therefore, taking into account Theorem 1.1, the set Pr c(R) is
dense in Cy([0,1]; R) in the sense of the uniform norm.
Then, for F' € Cy([0,1];R), there exists a sequence R,, € P c(R), Rp(t) =
1 agc")t’“c such that |F(t) — Rn(t)] < 1/[n(n + 1)], for all t € (0,1] and all
n=1,2 ..., where

| < B™,  k=1,2,...,4n n=12,.... (5)
Hence
If(t) —tMR,(t)| < t*/[n(n+1)], Vte (0,1, n=1,2,.... (6)

Take Qn(t) = t" Ry (t) and S,(t) = Qn(t) + 2t* /n, t € [0,1], n = 1,2,.... From
(6) it is evident that @, — f uniformly on [0, 1] and, therefore, S,, = £, uniformly
on [0,1]. Then, by (6), we obtain
|Qn(t) = @ni1(t)] < [Qn(t) — F(O) + [F() — Qni1(t)]
M M 5. M
< <2 ,
n(n+1) + (n+1)(n+2) n(n +1)
for all t € (0,1] and all n = 1,2,..., and, therefore,
Sp(t) = Sni1(t) = Qu(t) = Quy1(t) + 2t /[n(n +1)] > 0
for all t € (0,1] and S,,(0) = Sp41(0) =0, for alln=1,2,.... But

2tA1 In 2tA1 In
Salt) ==+ 1% >0t = —+> a{M e
k=1 k=1

Jn+1 in

2tM
=T+ Y it =Y p
k=2 k=1
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where i, = j, + 1, bg") =2/n and b;c") = a,(gn)l, k=2,...,i,
Taking now into account (3), (4) and (5), we obtain: there exists an ng € N,
such that bg") =2/n < A} for all n > ng and then

BV ] = Jaf,| < Bt = A (BTDE < g o ghmh < g

k=2...,ip n=12,.... Hence, it is evident that P,(t) = Spyn,(t), n =
1,2,..., satisfies the conclusions of Theorem 2.1.

)

Remarks. 1°. If, in the previous proof, we consider S,(t) = Q,(t) — 2t*,
then it can easily be seen that (Sy)n>n, iS @ monotonously increasing sequence in
0,1].

2°. For A\, = k, k =1,2,..., we obtain a more general version of Theorem
2.1 in [1] in the sense that the monotonicity condition on the sequence Ay, in [1] is
completely unnecessary.

3°. Suppose that A; > 1 is an integer. Then, as it was also pointed out
by D. Leviatan (in the case of A\; = 1, see M.R.90d — 41010) the condition f €
C(M)([O, 1];R) in Theorem 2.1 can be replaced by

Fe{feCo]: f0)=...= fR7Y©0) =0, |fP)(0)/(M)] < A}
Indeed, denote
F(z) = f(z) = f'(0)z = f"(0)2% /2 =+ = f*)a /Al
Then, since obviously F(0) = F'(0) = ... = F(A)(0) = 0, following the proof of

Theorem 2.1, there is a generalized polynomial sequence (F},) satisfying F,, — f
uniformly on [0, 1],

F(z) < Fpyi(z) < Fy(z), Fo,(0)=0, =z€(0,1], n>ny,
where

Fule) = 2 4 Zznb(")w’\’“ and b\ < AN, k=127,
n T k k > Ap, — 4,0n.

Hence, we obtain,

'l'n.+1

A1 A1
F@) = F O = = 05 < 2t 2 )
1

2zM i (n) A
< — + E k
n b
k=2
that is

zh 2:1:"1 g
f@) < f'@z+--+ fOO) 1 + +Zb( ) g

M

2 &
N a; + 3B

k=2

< f1O)z + -+ fOI(0)
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Denoting now by
g 2agM &L
Sale) = fO) -+ FAO Ly + T+ Do,
k=2

it is obvious that if f(0) = ... = fQ1=1(0) = 0 and |f*)(0)/(\!)] < A, for
all n > m;. As a conclusion, the sequence (P,) in Theorem 2.1 can be chosen by
Pp(z) = Spiny (7).

In the following, let (Ag), (Dg) be two sequences satisfying

MER, 0<A1h 0<b<+o0 (7)

Dvi€R, 0<Dy, k=12,...,
Dp(b— Xg)? =400, forallp=0,1,.... ®)
k=1

Regarding the approximation by monotone sequences, to Theorem 1.2 there
corresponds

THEOREM 2.2. Assume that (7) and (8) hold. For any f € Cé)‘l)([(),l];R)
there exists a sequence of generalized polynomials (P,), P,(t) = 2":1 bsc")tk’“,
b,(c") € R, such that P, — f uniformly on [0,1], |b§c")| <Dy, k=1i,,n=12,...,
and f(t) < Poy1(t) < Po(t) for all t € (0,1], P,(0) =0,n=1,2,....

Proof. Taking F(t)/t*, t € (0,1], F(0) = 0, as in proof of Theorem 2.1, we
have F' € Cy([0,1];R). Now, let us denote by pr = Ag+1 — A and L = (Ly), C =
(Cy), defined by L (t) = t**, Cy = Dgy1, k=1,2,.... Since up Tb— Ay =b1 >0
(from (7)) and

oo o0
D Crlbr — ) =D Dryr(b— Aey1)? = 400, forp=0,1,...,
k=1 k=1

(from (8)), taking into account Theorem 2.1, we get that the set Pp, (R) is dense
in Cy([0,1];R) in the uniform norm. Then, for F € Cy([0,1];R), there exists a
sequence R, (t) = > 7", agc")t‘“c € Pr.c(R), such that |F(t) — R, (t)| < 1/[n(n+1)],
for all t € (0,1] and all n = 1,2,..., where

ol < Ck = Dy,  k=1,2,... .40, n=1,2,.... (9)

Taking Sy, (t) = tM R, (t) + 2tM /n and using the same arguments as in the
proof of Theorem 2.1, we obtain that S, — f uniformly on [0, 1], S, (t) — Spy1(t) >
0, for all ¢ € (0,1], S,(0) =0 for all n = 1,2,..., and Sn(t) = S, b M where
in=jn+1, 08" =2/nand b = a{”, k=2,... in.

Taking into account (9), we obtain that |b§c")| = |a§c"_)1| < Dp, k=2,...in,
n = 1,2,.... Also, from D; > 0, there obviously exists an nyg € N such that

b§") = 2/n < D, for all n > ng; therefore it is self-evident that P, (t) = Spin, (%),
n =1,2,..., satisfies the conclusions of Theorem 2.2.
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