IDEMPOTENT SEPARATING CONGRUENCES ON AN ORTHODOX SEMIGROUP VIA THE LEAST INVERSE CONGRUENCE

Dragica N. Krgović

Dedicated to Professor M. Yamada on his 60-th birthday

Abstract. The least inverse congruence Y on an orthodox semigroup S was considered by Yamada [14] for the case where the band of idempotents of S is normal. It was considered in the general orthodox case by Schein [12] and Hall [4]. An explicit construction for idempotent separating congruences on an orthodox semigroup S in terms of idempotent separating congruences on S/Y was given by McAlister [8]. In this paper we describe these congruences by inverse congruences contained in $\mu \circ Y$, where μ is the greatest idempotent separating congruence on S. Also, we obtain some mutually inverse complete lattice isomorphisms of intervals $[Y, \mu \circ Y]$ and $[\varepsilon, \mu]$, where ε is the identity relation on S.

1. Preliminaries. In the following we shall use the notation and terminology of [3], [5] and [10]. This will be suplemented with the following.

Let S be a regular semigroup. A congruence ρ on S is uniquely determined by its kernel ker $\rho = \{x \in S \mid x\rho e \text{ for some } e \in E\}$ and trace $\operatorname{tr} \rho = \rho \mid_E$, where E is the set of idempotents of S [2].

Result 1. (Lemma 1.3 of [6], Lemma 2.5 of [9]) For any family F of congruences on a regular semigroup S, $\ker \cap_{\rho \in F} \rho = \cap_{\rho \in F} \ker \rho$.

A congruence ρ on S is idempotent separating if $\operatorname{tr} \rho = \varepsilon \mid_E$. The greatest idempotent separating congruence on S is denoted by μ .

Let \mathcal{C} be a class of semigroups and let ρ be a congruence on S. Then ρ is a \mathcal{C} -congruence if $S/\rho \in \mathcal{C}$. The least inverse congruence on a regular semigroup is denoted by Y.

Result 2. [1, Lemma 3.1] Let ρ and ξ be any congruences on an orthodox semigroup S. Then

$$(\rho \subseteq \mu \text{ and } \xi \subseteq Y) \Rightarrow \rho \lor \xi = \rho \circ \xi.$$

AMS Subject Classification (1985): Primary 20 M 19 Research supported by Science Fund of Serbia, Grant 0401A, through Matematički institut.

If S is a regular semigroup and $a \in S$, then V(a) denotes the set of all inverses of a in S.

Result 3. [7, Lemma 1] Let ρ be an inverse congruence on a regular semigroup S. Then

$$(\forall a, b \in S)(a\rho b \Rightarrow (\forall a' \in V(a))(\forall b' \in V(b))a'\rho b').$$

RESULT 4. ([4],[12], [5, Theorem VI.1.12]) If S is an orthodox semigroup, then the relation Y defined by $aYb \Leftrightarrow V(a) = V(b) \ (a,b \in S)$ is the least inverse congruence on S.

Result 5. [3] If f is an order isomorphism of a lattice L onto a lattice L', then f is a lattice isomorphism.

Lemma 1. Let ρ be an idempotent separating congruence on a regular semigroup S and $a, b \in S$. The following conditions are equivalent:

- (i) $a\rho b$,
- (ii) $a\mathcal{H}b$ and $(\forall a' \in V(a))(\exists b' \in V(b))a'\rho b'$,
- (iii) $a\mathcal{H}b$ and $(\exists a' \in V(a))(\exists b' \in V(b))a'\rho b'$.

Proof. (i) \Rightarrow (ii) Let $a\rho b$ and $a' \in V(a)$. Then $a\mathcal{H}b$ that is a'a = b'b and aa' = bb' for some $b' \in V(b)$ (by [5, Proposition 4.1]). Therefore

 $a' = a'aa' = b'ba'\rho \ b'aa' = b'bb' = b'.$

- $(ii) \Rightarrow (iii)$ This is trivial.
- (iii) \Rightarrow (i) Let $a\mathcal{H}b$ and $a'\rho b'$ for some $a' \in V(a)$ and $b' \in V(b)$. Then $a\mathcal{H}b$ implies a'a = b''b and bb' = aa'' for some $a'' \in V(a)$ and $b'' \in V(b)$ (by [5, Proposition 4.1]). So we have $a = aa''a = bb'a\rho$ ba'a = bb''b = b.

The implication (iii) \Rightarrow (i) is valid for any semigroup S and any congruence ρ on S [8, Lemma 2.1].

2. The congruence $\rho \circ Y$. In the remainder of the paper, S will denote an orthodox semigroup with the band of idempotents E.

Let $a \in S$, $a' \in V(a)$ and $e \in E$. Then by Result 4 we have $aYe \Leftrightarrow V(a) = V(e)$ which yields $a' \in V(e)$. According to [11] (see also Theorem VI.1.1 of [5]) we have $a' \in E$. Since $a \in V(a')$, by the same argument we get $a \in E$. Therefore, $\ker Y = E$.

Lemma 2. Let ρ be an idempotent separating congruence on S and let ξ be a congruence on S such that $\xi \subseteq Y$. Then

(1) $\operatorname{tr}(\rho \circ \xi) = \operatorname{tr} \xi$, (2) $\ker(\rho \circ \xi) = \ker \rho$.

Proof. According to Result 2, we have $\rho \lor \xi = \rho \circ \xi$.

(1) For $e, f \in E$ we obtain

$$\begin{split} e(\rho \circ \xi)f &\Rightarrow e\rho a \text{ and } a\xi f \text{ for some } a \in E \qquad \text{(since } \ker \xi = E) \\ &\Rightarrow e = a \text{ and } a\xi f \qquad \qquad \text{(since } \operatorname{tr} \rho = \varepsilon) \\ &\Rightarrow e\xi f. \end{split}$$

Therefore $\operatorname{tr}(\rho \circ \xi) \subseteq \operatorname{tr} \xi$ and thus $\operatorname{tr}(\rho \circ \xi) = \operatorname{tr} \xi$.

(2) For $a \in S$ and $e \in E$, we get

$$a(\rho \circ \xi)e \Rightarrow a\rho b$$
 and $b\xi e$ for some $b \in E$ (since $\ker \xi = E$)
 $\Rightarrow a \in \ker \rho$.

Therefore $\ker(\rho \circ \xi) \subseteq \ker \rho$ and hence $\ker(\rho \circ \xi) = \ker \rho$.

Notice that (1) is a consequence of Proposition of [13], and (2) is a special case of Lemma 2.1 of [1].

If ρ and ξ are congruences on S such that $\rho \subseteq \xi$, then the relation ξ/ρ on S/ρ defined by $(a\rho)\xi/\rho(b\rho) \Leftrightarrow a\xi b \ (a,b\in S)$ is a congruence.

According to Lemma 2 we have that for any idempotent separating congruence ρ on S, $(\rho \circ Y)/Y$ is an idempotent separating congruence on S/Y. In particular, $(\mu \circ Y)/Y$ is an idempotent separating congruence on S/Y [8, Lemma 2.2].

The next theorem describes the inverse congruence $\rho \circ Y$, where ρ is an idempotent separating congruence on S.

Theorem 1. Let ρ be an idempotent separating congruence on S and $a,b \in S$. Then the following conditions are equivalent:

- (i) $a(\rho \circ Y)b$,
- (ii) $(\exists a' \in V(a))(\exists b' \in V(b))aa' = ab'ba', bb' = ba'ab', ab' \in \ker \rho,$
- (iii) $(\forall a' \in V(a))(\exists b' \in V(b))a'\rho b'$,
- (iv) $(\exists a' \in V(a))(\exists b' \in V(b))a'\rho b'$.

Proof. (i) \Leftrightarrow (ii) Since $\rho \circ Y$ is an inverse congruence on S, we have

$$\begin{split} a(\rho \circ Y)b &\Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))a'a(\rho \circ Y)b'b, \ ab' \in \ker \rho \\ & \text{(by Theorem 1 of } [\mathbf{7}]) \\ &\Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))a'aYb'b, \ ab' \in \ker \rho \\ & \text{(by Lemma 2)} \\ &\Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))a'a = a'ab'ba'a, \ b'b = b'ba'ab'b, \\ & ab' \in \ker \rho \\ &\Leftrightarrow (\exists a' \in V(a))(\exists b' \in V(b))aa' = ab'ba', \ bb' = ba'ab', \ ab' \in \ker \rho \end{split}$$

(i) \Rightarrow (iii) Let $a, b \in S$ and $a' \in V(a)$. Then

$$a(\rho \circ Y)b \Rightarrow a\rho c$$
 and cYb for some $c \in S$
 $\Rightarrow (\exists c' \in V(c))a'\rho c'$ and $V(c) = V(b)$ (by Lemma 1 and Result 4)
 $\Rightarrow (\exists b' \in V(b))a'\rho b'$.

(iii)⇒(iv) This is trivial.

 $(iv) \Rightarrow (i)$ Let $a' \in V(a)$ and $b' \in V(b)$. Then

$$a'\rho b' \Rightarrow a'(\rho \circ Y)b'$$

 $\Rightarrow a(\rho \circ Y)b$ (by Result 3).

Let ρ be an idempotent separating congruence on S and let ξ be a congruence on S such that $\xi \subseteq Y$. Let $a, b \in S$. The proof of Theorem 1 shows that $a(\rho \circ \xi)b \Rightarrow$ (iii) \Rightarrow (iv). But (iv) \Rightarrow (i) follows from the fact that $\rho \circ Y$ is an inverse congruence on S. In this context, the following result is of interest.

PROPOSITION 1. Let ρ be an idempotent separating congruence on S and let ξ be a congruence on S such that $\xi \subset Y$. Then

(1)
$$Y \subseteq \rho \circ \xi \Leftrightarrow \xi = Y$$
, (2) $\mu \subseteq \rho \circ \xi \Leftrightarrow \rho = \mu$.

Proof. It is evident that $\xi = Y$ implies $Y \subseteq \rho \circ \xi$ and $\rho = \mu$ implies $\mu \subseteq \rho \circ \xi$.

$$Y \subseteq \rho \circ \xi \Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} (\rho \circ \xi)$$

$$\Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} \xi \qquad \text{(by Lemma 2)}$$

$$\Rightarrow \operatorname{tr} Y = \operatorname{tr} \xi \qquad \text{(since } \xi \subseteq Y\text{)}.$$

Also, $\xi \subseteq Y \Rightarrow \ker \xi \subseteq \ker Y \Rightarrow \ker \xi = E$ (since $\ker Y = E$). Therefore $\operatorname{tr} Y = \operatorname{tr} \xi$ and $\ker Y = \ker \xi$, so by [2] we have $Y = \xi$.

$$\mu \subseteq \rho \circ \xi \Rightarrow \ker \mu \subseteq \ker(\rho \circ \xi)$$

$$\Rightarrow \ker \mu \subseteq \ker \rho \qquad \text{(by Lemma 2)}$$

$$\Rightarrow \ker \mu = \ker \rho \qquad \text{(since } \rho \subseteq \mu\text{)}.$$

Since $\operatorname{tr} \rho = \operatorname{tr} \mu$, by [2] we have $\rho = \mu$.

Lemma 3. Let ρ be an idempotent separating congruence on S.

- (1) Then $\rho = (\rho \circ Y) \cap \mathcal{H} = (\rho \circ Y) \cap \mu$. In particular, $Y \cap \mathcal{H} = Y \cap \mu = \varepsilon$.
- (2) If ξ is a congruence on S such that $\xi \subseteq \rho \circ Y$, then $\xi \cap \rho = \xi \cap \mathcal{H} = \xi \cap \mu$.

Proof. (1) From Lemma 1 and Theorem 1 we have $\rho = (\rho \circ Y) \cap \mathcal{H}$. Hence $\mu = (\mu \circ Y) \cap \mathcal{H}$. So we have $(\rho \circ Y) \cap \mu = (\rho \circ Y) \cap (\mu \circ Y) \cap \mathcal{H} = (\rho \circ Y) \cap \mathcal{H}$. From the preceding equalities for $\rho = \varepsilon$ we get $Y \cap \mathcal{H} = Y \cap \mu = \varepsilon$.

(2) Let $\xi \subseteq \rho \circ Y$. By (1) we get $\xi \cap \rho = \xi \cap (\rho \circ Y) \cap \mathcal{H} = \xi \cap \mathcal{H}$, and also $\xi \cap \rho = \xi \cap (\rho \circ Y) \cap \mu = \xi \cap \mu$.

The equality $Y \cap \mathcal{H} = \varepsilon$ can be found in [5] and [8].

3. Description of $[Y, \mu \circ Y]$. In this section we describe inverse congruences on S contained in $\mu \circ Y$. This leads to a characterization of idempotent separating congruences on S (Theorem 2).

Lemma 4. Let ξ be a congruence on S such that $\xi \in [Y, \mu \circ Y]$. Then $\xi = (\xi \cap \mu) \circ Y$.

$$\begin{array}{ccc} \textit{Proof.} \ Y \subseteq \xi \subseteq \mu \circ Y \Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} \xi \subseteq \operatorname{tr} (\mu \circ Y) \\ \Rightarrow \operatorname{tr} Y \subseteq \operatorname{tr} \xi \subseteq \operatorname{tr} Y \\ \Leftrightarrow \operatorname{tr} Y = \operatorname{tr} \xi \\ \Leftrightarrow \operatorname{tr} ((\xi \cap \mu) \circ Y) = \operatorname{tr} \xi \end{array} \qquad \text{(by Lemma 2)}.$$

Also,

$$\xi \subseteq \mu \circ Y \Rightarrow \ker \xi \subseteq \ker(\mu \circ Y)$$

$$\Rightarrow \ker \xi \subseteq \ker \mu \qquad \text{(by Lemma 2)}$$

$$\Leftrightarrow \ker(\xi \cap \mu) = \ker \xi \qquad \text{(by Result 1)}$$

$$\Leftrightarrow \ker((\xi \cap \mu) \circ Y) = \ker \xi \qquad \text{(by Lemma 2)}.$$

Hence, by [2] we get $\xi = (\xi \cap \mu) \circ Y$.

Proposition 2. Let $\xi \in [Y, \mu \circ Y]$ and let ζ be any inverse congruence on S. Then $\xi \cap \mu \subset \zeta \cap \mu \Rightarrow \xi \subset \zeta$.

```
Proof. Let a, b \in S and let \xi \cap \mu \subseteq \zeta \cap \mu. Then a\xi b \Rightarrow a'\xi b' and a'\mu b' for some a' \in V(a), \ b' \in V(b) (by Result 3 and Theorem 1) \Rightarrow a'(\xi \cap \mu)b' for some a' \in V(a), \ b' \in V(b) \Rightarrow a'(\zeta \cap \mu)b' for some a' \in V(a), \ b' \in V(b) \Rightarrow a'\zeta b' \Rightarrow a\zeta b (by Result 3).
```

The following theorem describes idempotent separating congruences on S by means of inverse congruences contained in $\mu \circ Y$.

THEOREM 2. Let ρ be an idempotent separating congruence on S. Then $\xi = \rho \circ Y$ is the unique inverse congruence on S contained in $\mu \circ Y$ and for which $\rho = \mathcal{H} \cap \xi$. Conversely, if ξ is a congruence on S such that $\xi \subseteq \mu \circ Y$, then $\mathcal{H} \cap \xi$ is an idempotent separating congruence on S.

Proof. Let ρ be an idempotent separating congruence on S and let $\xi = \rho \circ Y$. Then by Lemma 3, $\rho = \mathcal{H} \cap \xi$. Clearly, ξ is an inverse congruence on S contained in $\mu \circ Y$. Let $\zeta \in [Y, \mu \circ Y]$ such that $\mathcal{H} \cap \xi = \mathcal{H} \cap \zeta$. Then by Lemma 3 we have $\mu \cap \xi = \mu \cap \zeta$. According to Lemma 4 we have $\zeta = (\zeta \cap \mu) \circ Y = (\xi \cap \mu) \circ Y = \xi$.

Now suppose that ξ is a congruence on S such that $\xi \subseteq \mu \circ Y$. Then by Lemma 3 we have $\mathcal{H} \cap \xi = \mu \cap \xi$. Hence $\mathcal{H} \cap \xi$ is an idempotent separating congruence on S.

If ρ is a congruence on S and α is a congruence on S/ρ , then the relation $\bar{\alpha}$ on S defined by $a\bar{\alpha}b \Leftrightarrow (a\rho)\alpha(b\rho), (a,b\in S)$ is a congruence.

COROLLARY 1. [8, Theorem 2.4] Let ρ be an idempotent separating congruence on S. Then $\alpha = (\rho \circ Y)/Y$ is the unique congruence on S/Y contained in $(\mu \circ Y)/Y$ and for which $\rho = \mathcal{H} \cap \bar{\alpha}$. Conversely, if α is a congruence on S/Y such that $\alpha \subseteq (\mu \circ Y)/Y$, then $\mathcal{H} \cap \bar{\alpha}$ is an idempotent separating congruence on S.

Proof. Let ρ be an idempotent separating congruence on S and let $\alpha = (\rho \circ Y)/Y$. Then $\alpha \subseteq (\mu \circ Y)/Y$ and $\bar{\alpha} = \rho \circ Y$. By Theorem 2 we have $\rho = \mathcal{H} \cap \bar{\alpha}$. Let γ be a congruence on S/Y such that $\gamma \subseteq (\mu \circ Y)/Y$ and $\rho = \mathcal{H} \cap \bar{\gamma}$. It is clear that $Y \subseteq \bar{\gamma} \subseteq \mu \circ Y$. According to Theorem 2 we have $\bar{\alpha} = \bar{\gamma}$, that is $\alpha = \gamma$.

Conversely, let α be a congruence on S/Y such that $\alpha \subseteq (\mu \circ Y)/Y$. Then $\bar{\alpha} \subseteq \mu \circ Y$. By Theorem 2, $\mathcal{H} \cap \bar{\alpha}$ is an idempotent separating congruence on S.

4. An isomorphism theorem. The preceding characterizations lead to the following theorem.

Theorem 3. For S, the mappings φ and ψ defined by

$$\begin{split} \varphi : \rho &\longmapsto \rho \circ Y & \qquad (\rho \in [\varepsilon, \mu]), \\ \psi : \xi &\longmapsto \xi \cap \mu & \qquad (\xi \in [Y, \mu \circ Y]) \end{split}$$

are mutually inverse complete lattice isomorphisms between $[\varepsilon, \mu]$ and $[Y, \mu \circ Y]$.

Proof. Let $\rho \in [\varepsilon, \mu]$ and $\xi \in [Y, \mu \circ Y]$. Then

$$\rho(\varphi\psi) = (\rho\varphi)\psi = (\rho\circ Y)\psi = (\rho\circ Y)\cap\mu = \rho \qquad \text{(by Lemma 3), and}$$

$$\xi(\psi\varphi) = (\xi\psi)\varphi = (\xi\cap\mu)\varphi = (\xi\cap\mu)\circ Y = \xi \qquad \text{(by Lemma 4)}.$$

So we have $\varphi\psi = I_{[\varepsilon,\mu]}$ and $\psi\varphi = I_{[Y,\mu\circ Y]}$. Since $[\varepsilon,\mu]$ and $[Y,\mu\circ Y]$ are complete lattices, and φ and ψ are order preserving, they are both complete lattice isomorphisms [3].

$$\begin{array}{ll} \text{COROLLARY 2.} & (1) & (\cap_{\rho \in F} \rho) \vee Y = \cap_{\rho \in F} (\rho \vee Y) & \qquad (F \subseteq [\varepsilon, \mu]), \\ & (2) & (\vee_{\rho \in F} \rho) \cap \mu = \vee_{\rho \in F} (\rho \cap \mu) & \qquad (F \subseteq [Y, \mu \circ Y]). \end{array}$$

Notice that the first part of Corollary 2 is a special case of Theorem 2.4 of [1].

Acknowledgement. The results of this paper were presented at the International Symposium on The Semigroup Theory and Its Related Fields, Ritsumeikan University Kyoto, Japan, August 30.-September 1. 1990.

I wish to express my thanks to Professors M. Yamada and T. Imaoka for inviting me to participate.

REFERENCES

- [1] C. Eberhart, and W. Williams, Congruences on an orthodox semigroup via the minimum inverse semigroup congruence, Glasgow Math. J. 18 (1977), 181-192.
- [2] R. Feigenbaum, Regular semigroup congruences, Semigroup Forum 17 (1979), 373-377.
- [3] G. Grätzer, General Lattice Theory, Academic Press, New York, 1978.
- [4] T.E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195-208.
- [5] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [6] P.R. Jones, Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 1-16.
- [7] D.N. Krgović, Inverse congruences on orthodox semigroups, Proc. Conf. Alg. Log, Zagreb '84, Institut za Matematiku. Novi Sad, (1985), 75-82.
- [8] D.B. McAlister, A note on congruences on orthodox semigroups, Glasgow Math. J. 26 (1985), 25-30.

- [9] F. Pastijn, and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (1986), 607-633.
- [10] M. Petrich, Inverse Semigroups, Wiley, New York, 1984.
- [11] N.R. Reilly, and K.E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967),349-461.
- [12] B.M. Schein, On the theory of generalized groups and generalized heaps, in: Semigroup Theory and its Applications, Saratov University 1 (1965), 286-324 (in Russian); Amer. Math. Soc. Transl. (2) 113 (1979), 89-122.
- [13] P.G. Trotter, On a problem of Pastijn and Petrich, Semigroup Forum 34 (1986), 249-252.
- [14] M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.

Matematički institut Kneza Mihaila 35 11001 Beograd, p.p. 367 Yugoslavia (Received 27 10 1992)