ON THE SPACE OF ANALYTIC FUNCTIONS OF LOGARITHMIC TYPE T ## G.S. Srivastava and Arvind Kumar **Abstract**. We consider the space of functions analytic in a finite disc. Using the coefficient characterization of the logarithmic type we define a norm and show that the space obtained is a Frechét space. Characterizations for continuous linear functional and proper bases are also obtained. 1. Introduction. The study of spaces of entire functions was initiated by Ganapathy Tyer [3]. He introduced the notion of a proper base and established a relationship between proper bases and automorphisms of the space. Arsov [1] considered the space of functions analytic in the finite disc |z| < R endowed with the topology of uniform convergence on compact sets and obtained a relationship between proper bases and linear homeomorphisms. Srivastava [5] defined a norm on the space of analytic functions with the help of growth parameters and studied the properties of this space. Let U_R denote the class of all functions f analytic in $|z| < R < \infty$, where $f(z) = \sum_{n=0}^{\infty} a_n z^n$. We set $M(r, f) = M(r) = \max_{|z|=r} |f(z)|$, 0 < r < R. Then f is said to be of order ρ_0 if (1.1) $$\lim_{r \to R} \sup \frac{\log^+ \log^+ M(r)}{-\log \log(R/r)} = \rho_0, \quad 0 \le \rho_0 \le \infty,$$ where $\log^+ x = \max(0, \log x)$ for x > 0. If $0 < \rho_0 < \infty$ then the type T_0 of f is defined by (1.2) $$\lim_{r \to R} \sup \left[\log^+ M(r) (\log(R/r))^{\rho_0} \right] = T_0, \quad 0 \le T_0 \le \infty.$$ Srivastava [5] used the coefficient characterization of the type T_0 to define a norm as follows. It is known [2] that (1.3) $$\lim_{n \to \infty} \sup \left\{ \left[\log^+ (|a_n| \, R^n) \right]^{\rho_0 + 1} \right\} n^{-\rho_0} = T_0 A^{\rho_0 + 1},$$ where $A = (\rho_0 + 1) \rho_0^{-\rho_0/(\rho_0 + 1)}.$ Let $U_R(\rho_0, T_0)$ denote the class of all functions f, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, analytic in the disc |z| < R, having growth parameters not exceeding (ρ_0, T_0) . Then for $f \in U_R(\rho_0, T_0)$, we have (1.4) $$\lim_{n \to \infty} \sup n^{-\rho_0} \left[\log^+ (|a_n| R^n) \right]^{\rho_0 + 1} \le A^{\rho_0 + 1} T_0.$$ For any $\delta > 0$, define $$||f; \rho_0, T_0 + \delta|| = |a_0| + \sum_{n=1}^{\infty} |a_n| R^n P(n, \rho_0, T_0 + \delta)$$ where $P(n, \rho_0, T_0 + \delta) = \exp\left[-An^{\rho_0/(\rho_0+1)}(T_0 + \delta)^{1/(\rho_0+1)}\right]$. Evidently, if $\rho_0 = 0$ or $\rho_0 = \infty$, then the type T_0 can not be defined and consequently the norm above can not be defined either. In this paper, we study the spaces of analytic functions of slow growth, (i.e. when $\rho_0 = 0$). For such functions, the logarithmic order ρ is defined as in [4]: (1.5) $$\lim_{r \to R} \sup \frac{\log^+ \log^+ M(r)}{\log \log[R/(R-r)]} = \rho, \quad 0 \le \rho \le \infty.$$ Further, if $0 < \rho < \infty$, the logarithmic type T is defined by $$\lim_{r\to R}\sup\frac{\log^+M(r)}{\{\log[R/(R-r)]\}^\rho}=T,\quad 0\le T\le\infty.$$ For $1 < \rho < \infty$, the logarithmic type T is given by [4; Lemma, p. 448] (1.7) $$\lim_{n \to \infty} \sup \left[\log^+ \left(|a_n| \, R^n \right) \left(\log n \right)^{-\rho} \right] = T$$ We denote by $U_R(\rho,T)$ the class of all functions $f(z) = \sum_{n=o}^{\infty} a_n z^n$ analytic in the disc |z| < R, and of logarithmic growth (ρ,T) , that is, the logarithmic order of f does not exceed ρ and if f is of logarithmic order ρ , its logarithmic type T does not exceed T, $1 < \rho < \infty$, $0 \le T < \infty$. From (1.7), it follows that $f \in U_R(\rho,T)$ if and only if (1.8) $$\lim_{n \to \infty} \sup \left[\log^+(|a_n| R^n) (\log n)^{-\rho} \right] \le T.$$ From (1.8), we have for any $\varepsilon > 0$ and all $n > n_0(\varepsilon)$ $$(1.9) |a_n| < R^{-n} \exp\left[(T + \varepsilon)(\log n)^{\rho} \right].$$ For each $f \in U_R(\rho, T)$ we define for $\delta > 0$, (1.10) $$||f; \rho, T + \delta|| = |a_0| + \sum_{n=1}^{\infty} |a_n| R^n \exp\left[-(T + \rho)(\log n)^{\rho}\right].$$ In view of (1.9), (1.10) clearly defines a norm for any $\delta > 0$. We denote by $U_R(\rho, T, \delta)$ the space $U_R(\rho, T)$ equiped with the norm (1.10). Let $U_{R,\lambda}(\rho, T)$ be the space $U_R(\rho, T)$ equiped with the weakest topology which is stronger than the topologies of each $U_R(\rho, T, \delta)$. The equivalent metric on $U_{R,\lambda}(\rho, T)$ can be expressed as (1.11) $$\lambda(f,g) = \sum_{q=1}^{\infty} 2^{-q} \frac{\|f - g\|_q}{1 + \|f - g\|_q}$$ where $||f - g||_q = ||f - g; \rho, T + 1/q||$, as defined by (1.10). **2. Linear transformations on** $U_{R,\lambda}(\rho,T)$. In this section we obtain characterization of continuous linear transformation on $U_{R,\lambda}(\rho,T)$. First we prove Theorem 1. The space $U_{R,\lambda}(\rho,T)$ is a Frechét space. *Proof.* We show that the space $U_{R,\lambda}(\rho,T)$ is complete. Let $\{f_{\alpha}\}$ be a Cauchy sequence in $U_{R,\lambda}(\rho,T)$. Then it is a Cauchy sequence in each $U_{R}(\rho,T,\delta)$, $\delta>0$. Hence if we set $f_{\alpha}(z)=\sum_{n=0}^{\infty}a_{n}^{(\alpha)}z^{n}$, then for a given $\eta>0$ and q, there exists a positive integer $m_{0}=m_{0}(q,\eta)$ such that $\|f_{\alpha}-f_{\beta}\|<\eta$ for $\alpha,\beta\geq m_{0}$. Thus $$(2.1) \qquad \left| a_0^{(\alpha)} - a_0^{(\beta)} \right| + \sum_{n=1}^{\infty} \left| a_n^{(\alpha)} - a_n^{(\beta)} \right| R^n \exp\left[-(T + 1/q)(\log n)^{\rho} \right] < \eta$$ for $\alpha, \beta \geq m$ and q a fixed positive integer. Hence for $n=0,1,2,\ldots$, we get $\left|a_n^{(\alpha)}-a_n^{(\beta)}\right|<\eta$ for all $\alpha,\beta\geq m_0$. Hence $\left\{a_n^{(\alpha)}\right\}_{\alpha=1}^\infty$ is a Cauchy sequence of complex numbers for each $n=0,1,2,\ldots$. Thus there exists a sequence $\left\{a_n\right\}_{n=0}^\infty$ of complex numbers such that $\lim_{\alpha\to\infty}a_n^{(\alpha)}=a_n,\,n=0,1,2,\ldots$. Let $\beta\to\infty$ in (2.1). Then for $\alpha\geq m_0$ we have $$(2.2) \left| a_0^{(\alpha)} - a_0 \right| + \sum_{n=1}^{\infty} \left| a_n^{(\alpha)} - a_n \right| R^n \exp\left[-(T + 1/q)(\log n)^{\rho} \right] < \eta.$$ Let k be arbitrary integer, $1 \le q < k$. Since $f_{m_0} \in U_{R,\lambda}(\rho,T)$, we have from (1.9), $$\left| a_n^{(m_0)} \right| < R^{-n} \exp\left[(T + 1/k) (\log n)^{\rho} \right]$$ for $n \geq N_1(k,\eta)$. Also, $|a_n| \leq \left|a_n^{(m_0)}\right| + \left|a_n^{(m_0)} - a_n\right|$ for any n. Hence for $n \geq N_1'$ $$|a_n| < \eta R^{-n} \exp\left[(T + 1/q)(\log n)^{\rho} \right] + R^{-n} \exp\left[(T + 1/k)(\log n)^{\rho} \right].$$ Since $\eta > 0$ was arbitrary and k > q, there exists a positive integer $N_2(q)$ such that for $n > N_2$, $$|a_n| R^n \exp\left[-(T+1/q)(\log n)^{\rho}\right]$$ $< \eta + R^{-n} \exp\left[\left\{(T+1/k) - (T+1/q)\right\}(\log n)^{\rho}\right] < 1.$ Hence $|a_n| < R^{-n} \exp\left[(T+1/q)(\log n)^\rho\right], \ n > N_2$. Thus the sequence $\{a_n\}$ satisfies (1.9) for every fixed $q=1,2,\ldots$. So, $f\in U_{R,\lambda}(\rho,T)$, where $f(z)=\sum_{n=0}^\infty a_n z^n$. Now from (2.2), for any fixed q, we have $\|f_{\alpha} - f\|_{q} < \eta$, $\alpha \geq m_{0}$. Hence $f_{\alpha} \to f$ as $\alpha \to \infty$, in each $U_{R}(\rho, T, 1/q)$. Thus $f_{\alpha} \to f$ in $U_{R,\lambda}(\rho, T)$, and the space $U_{R,\lambda}(\rho, T)$ is complete, and therefore a Frechét space. In the next theorem, we give a characterization of linear continuous functional on $U_{R,\lambda}(\rho,T)$. We thus have Theorem 2. A continuous linear functional F on $U_{R,\lambda}(\rho,T)$ is of the form $F(f) = \sum_{n=0}^{\infty} a_n C_n$ if and only if $$(2.3) |C_n| \le A R^n \exp\left[-(T+1/q)(\log n)^{\rho}\right], \quad n \ge 1, \quad q \ge 1,$$ where A is a positive number depending on ρ but not on n and $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Proof. Let $F: U_{R,\lambda}(\rho,T) \to C$ be a continuous linear functional, where C is the field of complex numbers. Then for any sequence $\{f_m\}$, $f_m \in U_{R,\lambda}(\rho,T)$ such that $f_m \to f$ as $m \to \infty$ in $U_{R,\lambda}(\rho,T)$, we have $F(f_m) \to F(f)$. Now let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ where a_n 's satisfy (1.9). Then $f \in U_{R,\lambda}(\rho,T)$. Also, for $m = 0, 1, 2, \ldots$, let us put $f_m(z) = \sum_{n=0}^{m} a_n z^n$. Then $f_m \in U_{R,\lambda}(\rho,T)$ for each $m = 0, 1, 2, \ldots$. Let q be any fixed, positive integer and let $0 < \varepsilon < 1/q$. Then from (1.9) we can find a positive integer m such that $$|a_n| < R^{-n} \exp\left[(T + \varepsilon)(\log n)^{\rho} \right], \quad n > m.$$ Now $$||f - f_m||_q = \left\| \sum_{n=m+1}^{\infty} a_n z^n \right\|_q = \sum_{n=m+1}^{\infty} |a_n| R^n \exp\left[-(T + 1/q)(\log n)^{\rho} \right]$$ $$< \sum_{n=m+1}^{\infty} \exp\left[(\log n)^{\rho} (\varepsilon - 1/q) \right] < \varepsilon.$$ for sufficiently large values of m. Hence for these values of m, $$\lambda(f, f_m) = \sum_{q=1}^{\infty} 2^{-q} \frac{\|f - f_m\|_q}{1 + \|f - f_m\|_q} < \sum_{q=1}^{\infty} 2^{-q} \left(\frac{\varepsilon}{1 + \varepsilon}\right) < \varepsilon.$$ Hence $f_m \to f$ in $U_{R,\lambda}(\rho,T)$ as $m \to \infty$. Therefore $\lim_{m \to \infty} F(f_m) = F(f)$. Let us put $C_n = F(z^n)$. Then $$F(f) = \lim_{m \to \infty} F(f_m) = \lim_{m \to \infty} \sum_{n=0}^{m} a_n C_n = \sum_{n=0}^{\infty} a_n C_n.$$ Further, $|C_n| = |F(z^n)|$. Since F is continuous on $U_{R,\lambda}(\rho,T)$, it is continuous on $U_R(\rho,T,1/q)$ for each $q=1,2,\ldots$ Consequently there exists a positive number A independent of q such that $$|F(z^n)| = |C_n| \le A \|\alpha_n\|_q$$, $q \ge 1$, where $\alpha_n(z) = z^n$. Now, using the definition of the norm for $\alpha_n(z)$, we get $$|C_n| \le A R^n \exp \left[-(T + 1/q)(\log n)^{\rho} \right]$$ for all $n \ge 1, q \ge 1$. Hence we have $$F(f) = \sum_{n=0}^{\infty} a_n C_n$$, where C_n 's satisfy (2.3). Conversely suppose that C_n 's satisfy (2.3) and for any sequence of complex numbers $\{a_n\}_{n=0}^{\infty}$ let $F(f) = \sum_{n=0}^{\infty} a_n C_n$. Then for $q \geq 1$, $$|F(f)| \le A \sum_{n=1}^{\infty} |a_n| R^n \exp\left[-(T+1/q)(\log n)^{\rho}\right] + |a_0 C_0|.$$ Let us put $A_1 = \max(A, |C_0|)$. Then we have $|F(f)| \leq A_1 ||f||_q$, $q \geq 1$. Hence F defines a continuous linear functional on $U_R(\rho, T, 1/q)$ for each $q = 1, 2, \ldots$ In view of the metric defined by (1.11), F is continuous linear functional on $U_{R,\lambda}(\rho, T)$. This completes the proof of Theorem 2. For $f \in U_R(\rho, T)$ and $\delta > 0$, let $||f; \rho, T + \rho||$ be defined by (1.10). Then we have the following result. Theorem 3. A necessary and sufficient condition that there exists a continuous linear transformation $F: U_{R,\lambda}(\rho,T) \to U_{R,\lambda}(\rho,T)$ with $F(\alpha_n) = \beta_n$, $n = 0, 1, 2, \ldots, \alpha_n = z^n, \beta_n \in U_R(\rho,T)$, is that for every $\delta > 0$, (2.4) $$\lim_{n \to \infty} \sup \frac{(\log n)^{\rho}}{\log^{+} \left\{ \left\| \beta_{n}; \rho, T + \delta \right\|^{-1} R^{n} \right\}} < \frac{1}{T}$$ *Proof.* Let F be a continuous linear transformation from $U_{R,\lambda}(\rho,T)$ into $U_{R,\lambda}(\rho,T)$ with $F(\alpha_n)=\beta_n,\ n=0,1,2,\ldots$ Then for any given $\delta>0$ there exists a $\delta_1>0$ and a constant $K=K(\delta)$ such that $$||F(\alpha_n); \rho, T + \delta|| \le K ||\alpha_n; \rho, T + \delta_1||, \text{ i.e.}$$ $$||\beta_n; \rho, T + \delta|| \le K R^n \exp\left[-(T + \delta_1)(\log n)^{\rho}\right], \text{ i.e.}$$ $$\frac{(\log n)^{\rho}}{\log^+ \left[||\beta_n; \rho, T + \delta||^{-1} R^n\right]} < o(1) + (T + \delta_1)^{-1}.$$ Hence $$\lim_{n \to \infty} \sup \frac{(\log n)^{\rho}}{\log^{+} \left[\left\| \beta_n; \rho, T + \delta \right\|^{-1} R^n \right]} \leq \frac{1}{T + \delta_1} < \frac{1}{T}.$$ Conversely suppose that the sequence $\{\beta_n\}$ satisfies (2.4). Then for any given $\eta' > 0$, there exists a positive integer $N_0 = N_0(\eta')$ such that (2.5) $$\frac{(\log n)^{\rho}}{\log^{+} \left[\|\beta_{n}; \rho, T + \delta\|^{-1} R^{n} \right]} < \frac{1}{T + \eta'}$$ for all $n > N_0$ and all $\delta > 0$. Let $f \in U_R(\rho, T)$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, and let $0 < \eta < \eta'$. Then from (1.8), there exists a positive integer $N_1 = N_1(\eta)$ such that for all $n > N_1$, $$|a_n| < R^{-n} \exp\left[(T + \eta)(\log n)^{\rho} \right].$$ Let $N = \max(N_0, N_1)$. Then from (2.5) and (2.6), we have for n > N, $$|a_n| \|\beta_n; \rho, T + \delta\| < \exp\left[(\eta - \eta')(\log n)^{\rho}\right].$$ Since $0<\eta<\eta'$, this inequality implies that the series $\sum_{n=0}^{\infty}a_n\beta_n$ converges absolutely in $U_R(\rho,T,\delta)$ for each $\delta>0$. Since each $U_R(\rho,T,\delta)$ is complete, we conclude that this series converges to an element of $U_R(\rho,T,\delta)$. Let us define a transformation $F\colon U_{R,\lambda}(\rho,T)\to U_{R,\lambda}(\rho,T)$ by putting $F(f)=\sum_{n=0}^{\infty}a_n\beta_n$ for $f\in U_{R,\lambda}(\rho,T)$. We note that F is linear, $F(\alpha_n)=\beta_n$ and for any $\delta>0$, there exists a $\delta'>0$ such that $$\frac{(\log n)^{\rho}}{\log^{+}\left[\|\beta_{n}; \rho, T + \delta\|^{-1} R^{n}\right]} \le \frac{1}{T + \delta'} \quad \text{for } n > N(\delta, \delta'), \quad \text{i.e.}$$ $$\|\beta_{n}; \rho, T + \delta\| \le K R^{n} \exp\left[-(T + \delta')(\log n)^{\rho}\right]$$ for all $n \geq 0$, $K = K(\delta)$ being a constant. Hence $$\begin{split} \|F(\alpha); \rho, T + \delta'\| &\leq \sum_{n=0}^{\infty} |a_n| \, \|\beta_n; \rho, T + \delta\| \\ &\leq |a_0| + \sum_{n=1}^{\infty} |a_n| K \, R^n \exp\left[-(T + \delta') (\log n)^{\rho}\right] \\ &\leq K' \, \|\alpha_n; \rho, T + \delta'\| \,, \quad \text{where } K' = \max(1, K^{-1}). \end{split}$$ Hence F is continuous on $U_R(\rho, T, \delta)$ for each $\delta > 0$. Consequently F is continuous on $U_{R,\lambda}(\rho, T)$. This proves Theorem 3. 3. Proper bases. In this section, we will study the properties of bases in $U_{R,\lambda}(\rho,T)$. We give some definitions. Let f_k , $k=0,1,\ldots$, be a sequence of functions in $U_R(\rho,T)$. If $\sum_{k=0}^{\infty} C_k f_k = 0 \Rightarrow C_k = 0$ for all $k=0,1,2,\ldots$ and all sequences $\{C_k\}$ of complex numbers for which $\sum_{k=0}^{\infty} C_k f_k$ converges in $U_{R,\lambda}(\rho,T)$, then the sequence $\{f_k\}$ is said to be linearly independent. We say that $\{f_k\}_{k=0}^{\infty}$ spans a subspace $V_{R,\lambda}(\rho,T)$ of $U_{R,\lambda}(\rho,T)$ provided $V_{R,\lambda}(\rho,T)$ consists of all linear combinations $\sum_{k=0}^{\infty} C_k f_k$ where $\{C_k\}_{k=0}^{\infty}$ is any sequence of complex numbers such that $\sum_{k=0}^{\infty} C_k f_k$ converges in $U_{R,\lambda}(\rho,T)$. A sequence $\{f_k\}$ which is linearly independent and spans a closed subspace $V_{R,\lambda}(\rho,T)$ of $U_{R,\lambda}(\rho,T)$ is called a basis of $V_{R,\lambda}(\rho,T)$. Lastly, a basis $\{f_k\}_{k=0}^{\infty}$ of a subspace $V_{R,\lambda}(\rho,T)$ is said to be a proper base if for all sequences of complex numbers $\{C_n\}$, $\sum_{k=0}^{\infty} C_k f_k$ converges if and only if $\sum_{k=0}^{\infty} C_k \alpha_k$ converges in $V_{R,\lambda}(\rho,T)$. From (1.8) we know that $\sum_{k=0}^{\infty} C_k \alpha_k$ converges in $U_{R,\lambda}(\rho,T)$ if and only if (3.1) $$\lim_{n \to \infty} \sup \left[\log^+ \left(|C_n| \, R^n \right) (\log n)^{-\rho} \right] \le T.$$ Now we prove Theorem 4. The following three conditions are equivalent: (3.2) $$\lim_{n \to \infty} \sup \frac{(\log n)^{\rho}}{\log^{+} \left[\|\beta_n; \rho, T + \delta\|^{-1} R^n \right]} < \frac{1}{T}, \quad \delta > 0;$$ (3.3) for all sequences $\{a_n\}$ of complex numbers the convergence of $\sum_{n=0}^{\infty} a_n \alpha_n$ in $U_{R,\lambda}(\rho,T)$ implies convergence of $\sum_{n=0}^{\infty} a_n \beta_n$ in $U_{R,\lambda}(\rho,T)$; (3.4) for all sequences $\{a_n\}$ of complex numbers, convergence of $\sum_{n=0}^{\infty} a_n \alpha_n$ in $U_{R,\lambda}(\rho,T)$ implies that $\lim_{n\to\infty} a_n \beta_n = 0$ in $U_{R,\lambda}(\rho,T)$. *Proof.* In proving the sufficiency part of Theorem 3 we have already shown that $(3.2) \Rightarrow (3.3)$. Further, the implication $(3.3) \Rightarrow (3.4)$ is evident. Thus we have only to show that $(3.4) \Rightarrow (3.2)$. Therefore, let (3.4) be true but for some $\delta > 0$, (3.2) be not satisfied. Then for $\delta = \delta'$ (say), there exists a sequence $\{n_k\}$ of positive integers such that (3.5) $$\frac{(\log n_k)^{\rho}}{\log^+ \left[\|\beta_{n_k}; \rho, T + \delta'\|^{-1} R^{n_k} \right]} > \frac{1}{T + k^{-1}}, \text{ for all } k = 1, 2, \dots.$$ We define a sequence $\{a_n\}$ of real numbers as follows: $$a_n = \left\{ \begin{array}{ll} \left\|\beta_n; \rho, T + \delta' \right\|^{-1}, & n = n_k \\ 0, & n \neq n_k \end{array} \right.$$ Then for all large values of k, we have $$\frac{\log^{+} \left[|a_{n_{k}}| \, R^{n_{k}} \right]}{(\log n_{k})^{\rho}} = \frac{\log^{+} \left[\|\beta_{n_{k}}; \rho, T + \delta'\|^{-1} \, R^{n_{k}} \right]}{(\log n_{k})^{\rho}} < T + k^{-1}.$$ Hence $$\lim_{k \to \infty} \sup \left\{ \log^+ \left[|a_{n_k}| \, R^{n_k} \right] (\log n_k)^{-\rho} \right\} \le T.$$ Thus the sequence $\{a_n\}$ defined as above satisfies (3.1) and hence $\sum a_n \alpha_n$ converges in $U_{R,\lambda}(\rho,T)$. So, by (3.4), we have $\lim_{n\to\infty} a_n\beta_n = 0$. However $$||a_{n_k}\beta_{n_k}; \rho, T + \delta'|| = |a_{n_k}| ||\beta_{n_k}; \rho, T + \delta'|| = 1.$$ Therefore $\{a_n\beta_n\}$ does not converge to 0 in $U_{R,\lambda}(\rho,T)$. This is a contradiction. Hence (3.2) must hold for all $\delta > 0$. This proves Theorem 4. Next we prove Theorem 5. The following three conditions are equivalent: - (a) for all sequences $\{a_n\}_{n=0}^{\infty}$ of complex numbers, $\lim_{n\to\infty} a_n\beta_n = 0$ in $U_{R,\lambda}(\rho,T)$ implies that $\sum_{n=0}^{\infty} a_n\alpha_n$ converges in $U_{R,\lambda}(\rho,T)$; - (b) for all sequences $\{a_n\}$ of complex numbers, convergence of $\sum_{n=0}^{\infty}$ implies that $\sum_{n=0}^{\infty} a_n \alpha_n$ converges in $U_{R,\lambda}(\rho,T)$; (c) $$\lim_{\delta \to 0} \left[\lim_{n \to \infty} \inf \frac{(\log n)^{\rho}}{\log^+ \left[\|\beta_n; \rho, T + \delta\|^{-1} R^n \right]} \right] \ge \frac{1}{T}.$$ *Proof.* Obviously (a) \Rightarrow (b). To prove (b) \Rightarrow (c), we assume that (b) holds but (c) does not. Then we have $$\lim_{\delta \to 0} \left[\lim_{n \to \infty} \inf \frac{(\log n)^{\rho}}{\log^{+} \left[\|\beta_n; \rho, T + \delta\|^{-1} R^n \right]} \right] < \frac{1}{T}.$$ Hence for any $\delta > 0$, (3.6) $$\lim_{n\delta\to\infty}\inf\frac{(\log n)^{\rho}}{\log^{+}\left[\left\|\beta_{n};\rho,T+\delta\right\|^{-1}R^{n}\right]}<\frac{1}{T}.$$ Let $\eta > 0$ be any fixed number. From (3.6), we can find an increasing sequence $\{n_k\}$ of positive integers such that (3.7) $$\frac{(\log n_k)^{\rho}}{\log^+ \left[\|\beta_{n_k}; \rho, T + \delta\|^{-1} R^{n_k} \right]} < \frac{1}{T + \eta}.$$ For η_1 , $0 < \eta_1 < \eta$, we define a sequence $\{a_n\}$ as follows: $$a_n = \begin{cases} R^{-n} \exp[(T + \eta_1)(\log n)^{\rho}], & n = n_k \\ 0, & n \neq n_k. \end{cases}$$ Then for any $\delta > 0$ we have (3.8) $$\sum_{n=0}^{\infty} |a_n| \|\beta_n; \rho, T + \delta\| = \sum_{k=1}^{\infty} |a_{n_k}| \|\beta_{n_k}; \rho, T + \delta\|.$$ Now for any $\delta > 0$, we omit those terms of the series on right-hand side for which $\delta < 1/k$. Then the remainder of the series in (3.8) is dominated by $\sum |a_{n_k}| \|\beta_{n_k}; \rho, T + k^{-1}\|$. Consequently by (3.7) we obtain $$\sum_{k=1}^{\infty} |a_{n_k}| \|\beta_{n_k}; \rho, T + k^{-1}\|$$ $$\leq \sum_{k=1}^{\infty} R^{-n_k} \exp\left[(\log n_k)^{\rho} (T + \eta_1)\right] R^{n_k} \exp\left[-(T + \eta)(\log n_k)^{\rho}\right]$$ $$= \sum_{k=1}^{\infty} \exp\left[(\log n_k)^{\rho} (\eta_1 - \eta)\right].$$ Since $0 < \eta_1 < \eta$, the series on the right-hand side is convergent. Since $a_n = 0$ for $n \neq n_k$ the series $\sum_{n=0}^{\infty} a_n \beta_n$ is convergent for the above sequence $\{a_n\}$. Since this is true for every $\delta > 0$, the series $\sum a_n \beta_n$ converges in $U_{R,\lambda}(\rho,T)$. On the other hand, for this sequence $\{a_n\}$, we also have (3.9) $$\lim_{n \to \infty} \sup \{ \log^+ [|a_n| \, R^n] (\log n)^{-\rho} \} = T + \eta_1 > T,$$ which gives a contradiction to (3.1) and consequently to (b). So, we must have (b) \Rightarrow (c). Lastly we prove that (c) \Rightarrow (a). Hence, suppose that (c) holds but (a) does not. Then there exists a sequence $\{a_n\}$ of complex numbers for which $\lim_{n\to\infty} a_n\beta_n = 0$, but $\sum_{n=0}^{\infty} a_n\alpha_n$ does not converge in $U_{R,\lambda}(\rho,T)$. Hence from (3.1) we have $$\lim_{n \to \infty} \sup \left\{ \log^+ \left[|a_n| R^n \right] (\log n)^{-\rho} \right\} > T$$ Thus there exists a positive number ε and a sequence $\{n_k\}$ of positive integers such that $$\log^+\left\{\left[|a_{n_k}|\ R^{n_k}\right](\log n_k)^{-\rho}\right\} > T - \varepsilon.$$ Let $0 < \eta < \varepsilon/2$. From (c) we can find a positive number δ such that $$\lim_{n \to \infty} \inf \frac{(\log n)^{\rho}}{\log^{+} \left[\|\beta_n; \rho, T + \delta\|^{-1} R^n \right]} \ge \frac{1}{T + \eta}.$$ Hence there exists an integer $N = N(\eta)$ such that for $n \geq N$, $$\frac{(\log n)^{\rho}}{\log^{+}\left[\|\beta_{n}; \rho, T + \delta\|^{-1} R^{n}\right]} \ge \frac{1}{T + 2\eta}.$$ Therefore $$\begin{aligned} \max\left[\|a_n\beta_n;\rho,T+\delta\|\right] &= \max\left[|a_n|\ \|\beta_n;\rho,T+\delta\|\right] \\ &\geq \max\left[|a_{n_k}|\ \|\beta_{n_k};\rho,T+\delta\|\right] \\ &\geq \exp\left[\left(\log n_k\right)^{\rho}(\varepsilon-2\eta)\right] > 1 \end{aligned}$$ since $\varepsilon > 2\eta$. Hence the sequence $\{a_n\beta_n\}$ does not converge to zero in $U_{R,\lambda}(\rho,T)$. This is a contradiction to (c). So we must have (c) \Rightarrow (a) and proof of Theorem 5 is completed. Lastly we give a characterization of proper bases. This result follows from the last two theorems. THEOREM 6. A base $\{\beta_n\}$ in a closed subspace $V_{R,\lambda}(\rho,T)$ of $U_{R,\lambda}(\rho,T)$ is proper if and only if the conditions (3.2) and (c) stated above are satisfied. ## REFERENCES - [1] G. Arsov, Proper bases and linear homeomorphisms in spaces of analytic functions, Math. Anallen 135 (1958), 235-243. - [2] S.K. Bajpai, J. Tanne and D. Whittier, A decomposition theorem for an analytic function, J. Math. Anal. Appl. 48 (1974), 736-742. - [3] V.Ganaparthy Iyer, On the space of integral functions III, Proc. Amer. Math. Soc. 3 (1952), 874–883. - [4] G.P. Kapoor and K. Gopal, Decomposition theorems for analytic functions having slow rate of growth in a finite disc, J. Math. Anal. Appl. 74 (1980), 446-455. - [5] P. D. Srivastava, On the space of certain class of analytic functions, Indian J. Pure Appl. Math. 10 (1) (1979), 84-93. Department of Mathematics University of Roorkee Roorkee – 247 667 India (Received 15 10 1991)