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THE MONGE-AMPERE EQUATION AND
AFFINE MAXIMAL SURFACES

Michael Kozlowski

Abstract. Improper affine spheres are affine maximal surfaces. Examples are given as
solutions of the Monge-Ampere equation. Three improper affine spheres are thus described by
exact differentials.

1. Introduction. A wide class of affine hypersurfaces is formed by improp-
er affine spheres. This class is of particular interest because it forms a subclass of
the affine maximal surfaces.

In the theory of equiaffine surfaces an elliptic paraboloid has vanishing mean
curvature. The question whether the converse is true leads to the affine Berstein
problem; i.e. are complete affine hypersurfaces necessarily elliptic paraboloids?

2. Preliminaries. Suppose that A is an (n+1)-dimensional real affine space
with associated vector space V and denote by M an n-dimensional differentiable
manifold without boundary. A pair (M, z) where x : M — A is an immersion,
is called a hypersurface of A. Choosing a fixed origin in A we identify A with its
vector space V. A relative normalization of a hypersurface (M, ) is a mapping
y : M — V such that in every point of M

(i) the vectors y,z1,... ,z, are linearly independent;

(ii) the vector y; is contained in the span of x1,... ,z, for every i =1,2,... ,n.
As usual an index denotes partial differentiation with respect to a local coordinate
system on M. The triple (M,z,y) is called a relative nomalized hypersurface.
Denote by V* the dual vector space and by (, ): V* x V — R the nondegenerate

scalar product. Then the differentiable mapping X : M — V* such that in every
point of M

(i) (X,z;)=0 forevery i=1,...,n and (ii) (X,y)=1
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is called the induced conormal of the tangential plane. It is uniquely determined by
the hypersurface (M, z,y). The immersion x : M — A is said to be regular when
{X,X;,..., X} forms a basis of V*. A metric on M is induced from (M,z,y)
by the formula G = —(X;, X;), 4,j = 1,2,...,n. Gj; is definite whenever
x: M — A is nondegenerate.

The hypersurface (M,z,y) induces the relative Weingarten tensor B;; by
Bi; = (X:,Y;), 4,5 =1,2,...,n; the affine mean curvature H is the first curvature
function, i.e. H = 1B

A hypersurface (M, z,y) is called affine mazimal if the affine mean curvature

vanishes identically. An affine maximal hypersurface is an improper affine sphere
if the relative normalization is constant.

Suppose || || : V™ — R is a fixed determinant form. Define 6;;, and g;;, i,j =
1,...,n, by

0i; = llzij, x1, ..., zall, 9ij = |det(0ij)|_1/(n+2)0ij-

Then g;; defines a definite tensor field on M which is, by proper choice of orienta-
tion, positive definite.

The Laplacian of (M, g;;) induces a relative normalization y by y = L1 Az.

n
This normalization is called the equiaffine normalization of (M, x).

The introduction above is given by Schneider in [SCHN], where the Wein-
garten tensor differs by sign from the above definition.

Suppose that 2 is a region in the plane and that an affine surface X : Q — A3
is given by a differentiable function z as a graph over (.

X
S(z,y) = y
2(z,y)

Denote by d the determinant of the Hessian of z:

(1) d = Zeo2yy — 25y

¥ : Q — Ajz is an affine maximal surface (cf. [CAL], [SCHN], [SI)) if z: Q - R
satisfies the Euler-Lagrange equation

(2) H 2oadyy + 2yylos — 220yday} = T{2ood2 + 2yyd2 — 224y dydy}.

We assume that ¥ : Q — Aj only consists of elliptic points, i.e. d is positive
everywhere in Q. ¥ :  — A3 is an improper affine sphere if z : 2 — R satisfies
the Monge-Ampere equation

(3) ZaaZyy — Zay = 1.
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3. Main results. A well-known solution of (1) is given by
(4) z= (2" +y?)/2

and describes an elliptic paraboloid.

Whenever d is constant, the equation (2) is satisfied. Nontrivial solutions of
(3) are given by the exact differentials

dz = tgz/cos?z + y2dzx + arsh[y/cosz]dy,
_ —yy/1— [y~ 'sinh2z — cosh2z]?

1 1
- ~Iinh2z — cosh2
dz P dr + 2arcos[y sinh2z — cosh2z]dy,
1 1 2
dz = [§{c052$ — ctg2z/sin?2z + 4y2} + sin’z]dz + Earsh [singx] dy

The last differential is defined in a region with sin2z # 0. Suppose f : Rt — R
is defined by the integral f(r) = [; V14 72dr, and z : R?\{0} — R is given by
z = f(r) with 72 = 22 +42. Then z is also a solution of the Monge-Ampeére equation
(3). A solution of (2) is given by the following surface

(5) z=—5322/% 4 Ly2, z>0, y€R.

From (3) we get for the Berwald-Blaschke metric and its inverse

G = Hess(z) = [z‘” Z””y] , G '= [ Pyy _zzy] _

Zzy  Zyy —Zzy  Zzz

Like z : Q@ — R the determinant of the Hessian d : 9 — R also induces an affine
surface © : Q — A3

We consider here the elliptic case, i.e. d:  — R is strictly positive and © : Q — Aj
lies in the ”upper” half plane. For example consider the elliptic paraboloid. Then
d=1,ie ©:Q — A3 is aplane.

A solution of the Euler-Lagrange equation (2) is given by

9 1
z(w,y)=—§$2/3+§y2, x>0, y€R.

. . _ 43
For this solution one gets d = zyz2yy — 2592 = T /3.
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