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INDUCED GENERALIZED CONNECTIONS
IN VECTOR SUBBUNDLES

Irena Comié

Abstract. Using special coordinate transformations we introduce subbundles and comple-
mentary subbundles of a vector bundle. The new results come from the fact that these bundles
are considered together. In the former investigations as in Dragomir [5], Miron [7], Oproiu [8]
the subbundle of the vector bundle was defined. In the relations between their tangent spaces the
unit normal vectors of the subbundle were involved. Here, they are substituted by the tangent
vectors of the complementary subbundle. B

The coordinates in the vector bundle £ = (E,n, M) are (z*,y%) in the subbundle ¢ are
(u®,v*) and in the complementary subbundle £ are (a®,74). We need six types of indices.
With respect to the special coordinate transformations (given by (1.1), (2.1) and (2.5)) the non-
linear connections N¢(z,y), NZ(u,v) and NZ (4,) are given. Using them, the adapted bases
B = {6;,8,} and B = {0a,04,0a,045} of T(E) are constructed. The generalized connection
V : T(E) ® T(E) — T(E) in the basis B has 23 types and in the basis B 43 types of connection
coefficients. The relations between these coefficients are given. These formulae are very general

and have nice special cases.

When the second fundamental forms of the subbundle and complementary subbundle are
equal to zero, i.e. when the so called induced nonlinear connections N&“ and N(f are used, then
these relations are simpler ((3.4)'—(3.7)’). In this case we obtain that Miron’s d-connection defined
in T(E) induces also d-connection in the tangent space of the subbundle, in T(E).

(e}

1. The Geometry of Vector Bundles. Let £ = (E,7,M) be a C*®
vector with dim M = n, dim £ = n + m. In some local chart the point u € E has
the coordinates

("L'l’_‘_,m",ylj“‘,ym) = (xZJya) = m’y)
L,5,klm=1....n a,b,c,d,e, f=1,...,m.

The allowable coordinate transformations (z,y) — (2',y') are given by

(1.1) L C I | rank [8mi’/8xi] n

<
Il

@ Mg’ (z)y® rank [M‘;’] m,

AMS Subject Classification (1980): Primary 53 B 25, 53 B 40



102 Comié
so the inverse transformation (z',y') — (z,y) exists and is determined by

’

(1.2) o=z, .,z") MY ME =6y

Y =M ()" Mg MG, = 5.

The tangent space T(E) is spanned by {9;,8,}, where 8; = 8/0z% 8, = 0/0y°.
They have the following law of transformation:

(1.3) 8o = M (2)8y 8y = M%(2')0,
8; = (8;2" )0y + (BiM{ ())y"Bar.

If M is paracompact, then there exists a family of functions N¢(z,y), obeying the
following law of transformation:

(14)  Ni(z,y) = Ni (@',y) (0" ) MG (') = (00 My (2')y" (9.

These functions are called the coefficients of nonlinear connection. By using them
we can transform the basis {0;,9,}, whose vectors, under the coordinate transfor-
mation (1.1) or (1.2) do not transform as vectors, into the basis B = {4;, 0, } whose
vectors have this property. J; is defined by

(1.5) 0; =0; — N?0,.

It is easy to prove, form (1.3) and (1.4), that &; = &;(0y2%). Any vector field X in
T(E) can be represented in the basis B in the following form

X =X +X%,, X'=X"(9y2"), X°=X"M%.
We call X8, the vertical vector field and X'§; the horizontal vector field of T'(E),
respectively. The subspace of T'(E) spanned by {d;} we shall denote by T (E) and
the subspace spanned by {9,} by Ty (E). So we have

T(E)=Ty(E)®Ty(E), dimTyg(E)=n, dimTy(E)=m.

Let us consider T*(E), the dual tangent space of E. The natural basis in
T*(E) is {dz',...,dz",dy",...,dy™} = {dz',dy®}. From (1.1) we have

(1.6)  (a) da' = (&iz")da (b)) dy® = (B; M%)y da’ + M® dy°.

It is obvious that dy® a = 1,...,m do not transform as tensors, so we introduce a
new basis

B* = {dx",0y"} of T*(E), where 0y = dy® + Nidz".
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According to the coordinate transformation (1.1) and (1.2) the bases B* and B*' =
{dz?,6y*'} are related by (1.6a) and

(1.7) Sy = M&(a")oy”,  oy” = MY (2)5y°.
If B* and B*' are two bases of T*(E) related by (1.6a) and (1.7), then any 1-form
w € T*(E) satisfies the relations

. -1 i
w = widx® + wedy® = wydr® + wedy®
where
wiy = wi(Opx*), Wy = we M.

Let us consider T*(E) @ T*(E). In this space the metric tensor G with respect to
the basis B* is given by

(1.8) G = gijdz’ ®@ do? + gipdz® @ 5y + gaj0y® @ dr? + gapdy® @ dy°.
Tu(E) is orthogonal to Tv (E) with respect to the metric G iff g;5 = 0 and go; =0
forall a,b=1,...,m.

With respect to the coordinate transformations (1.1) and (1.2) the coordinates
of the metric tensor G transform in the following way

girj = 9i;(0xx?) (05 2%), gy = gin(Osx*) My,
Garjt = Gag M2 (05 27), 9oty = GarM 3 M.

We shall define the covariant coordinates of the vector X = X%§; + X9, by
Xi =g X7 + g X’ Xo=go; X7+ gun X’

Definition 1.1. The generalized connection V:T(E) ® T(E) — T(E)
(V:(X,Y) - VxY) or equivalently Vx:T(E) - T(E) (Vx:Y — VxY)isa
linear connection defined by

(1.10) Vgiéj :ij,'(sk +chz'6¢, V(;j@a = Fakjék +Facjac
Vaa(Sj = Cjka6k + Cjcaé?c, Vaaab = Cb’“aék + Cp¢40,.-

PrOPOSITION 1.1. If (x,y) and (z',y") are two coordinate systems connected
by the transformation laws (1.1) and (1.2), then Vx:Y' = VxY if and only if

Fili = Fr o (0ca® ) (05 27) (0ia" ) + (010527 ) (027
Foi = Fo® s (0" )My M¢ + (9, MY) M,

Fyli = Fy? MY (8;27)(8iz")

Fibi = F® o (0ya® ) (82" ) MY,

Cila = Cp?' 0 (85 27) (O™ Y MY

Cylo=Cp? 8z ) MY MY

Cila = Cp¥ o (Bpa™ ) MY MY

Cly=Cu oy MUME MY .
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PROPOSITION 1.2. The torsion tensor T(X,Y) = VxY — Vy X — [XY] for
the connection V has the form

(L.11) T(X,Y) = (T;%YVIX + Ty*, VP X + T;F VIX® + TF, YO X )5+
(T;YIX + Ty Y X! + T Y X + Ty Y X %),
where

(112)  T%=F* - F*, T =F;%—Fi°j +06;Nj — ;N
Tk = ¥ — CiF, Ty = Fp° — Cp® — OpN§
Tk =Ci*a—Fo*j,  Tj%=Cj% — Fofj + 8.N;
Tyk, = Co¥q — CoFy, Tyq =Cp — Cop-

2. Decomposition of T(E). Let us consider a special transformation of
(1.1) and (1.2), which has the form:

(2.1) ot =it u™) + 2@ an) = 2t (u®) + 24 (a)
(aaﬁa’yf":la' 7ﬁ O_‘7B7’_Y7"'=ﬁ+17 Jn)
y® = B (u)v? + BY(a)o”
(A,B,C,“‘:]., ,'fh A:-B:éa _m+17 7m)7

where
(2.2) rank [8,2"] = rank [BL] =7

rank [05z°] = rank [B%]

n—f, 0y = 0/0u%, rank [ Z"] =n,

rank [04y°] = rank [BY] = m,

rank [04y°] = rank [B%] = m — 1, d; = 0/0v”, rank [Ba ] m.

A

B

Let £ = (E,#, M) be a vector subbundle of a vector bundle ¢ = (E,, M),

having dim M = 7, dimE = i +m, 1 <7 < n, 1 <7 < m. The function £ — &

is an embedding if: there are embeddings f: E — E, f: M — M, such that the
following diagram is comutative:

1 5 E
b

E
l-
M —L5 M
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and f(Ei):Egc = Ejps, T € M is a monomorphism. Therefore if (u®,V*)
(a, 8, = 1,...~,ﬁ,A,B,--- = 1,...,m) are the local coordinates on E, then
the embeding f: £ — & may be given by

=zt u™) + O rank [0z’ /0u®] = rank [BY] = i
y® = B% (u)v? + C°, rank [B%]

m,

where BY (u) is a tensor field on E. The 7 vectors B (u) and m vectors BY(u) are
tangent vectors to the coordinate curves in E. They are, for fixed a and A, vectors
in T(E) and are defined only on E.

For a® = C® 34 = C4 (C*,C4 € R) the relations (2.1) and (2.2) give the
equations of subbundle £ of the form (2.3). For u® = C%, v4 = C4 (2.1) and (2.2)
give the equations of an another subbundle denoted by £.

Bi,, BY are the tangent vectors of the coordinate curves in E and they form
a basis By = {B%,, B4} of T(E). In the same way B%, B% are the tangent vectors
of the coordinate curves in E and they form a basis B, = {B%, B%} of T(E). It is

obvious that under the conditions (2.2) we have T(E) = T(E) @ T(E). From (2.1)
we obtain

(2.4) (@) Oa = BL(u)di + (9B (w))vA0,,
(b)  9a = By(w)di + (9aB% (@)5" 0.,
(¢) 9a=B4(wds, 0z =DB%(a)d
and

dx' = B! (u)du® + B (@)da®
dy® = (8, B%)vAdu® + (95 BY%)v du® + B (u)dv® + BY(a)do?.

We shall introduce the following coordinate transformations:

(25) (a) w® =u(ut,...,u") & u¥=u(ul, .. u)
®) v = M4 (u)v? & ot = M4 (W)
() a® =a® @*,... 2" =a% @) < a®=ua"@@")
@ oY = M3 (a)p? o o =M @)t

O = 0 (@%)0s + (B MA,(@))o% 83, 8z = M4, (@)d;.
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The following relations are valid:

M4 Mp =64 M3 =&,
(Dau® )(8a/u ) = ag, (Dars” )(6a/u°‘) =47,
MEME =63, (8au™)(@xu’) = BY BY, =03,
As B%(u) is a tensor field on F it transforms in the following way: BY,(u') =
B (u)M® (u)M4, (u'). The tangent space T'(E) is spanned by {84, 84}, but from
(2.4a) it is obvious that d, do not transform as tensor. We shall introduce in T(E)

a nonlinear connection with coefficients N4 (u,v) as a family of functions, which
under coordinate transformations (2.5) transform in the following way

(2.6) NA(u,v) = N4 (W', 0" M4 () 0qu® — (8o M4 (u')) v 8qu®
Substituting 0; = d; + N0, from (1.5) into (2.4a) and adding on the both sides of
this equation — NV é@A we obtain
(2.7) 6o = Bi0; + H0,,
where
8q: = 8y — N23y,

(2.8) HA:= (8, B4)v* + BLN? — N4BY.

The intrinsic adapted basis in T(E) is B = {04,04}. It can be shown that
0a> 04 and H? are tensors with respect to the coordinate transformation (2.5) on

E,ie.
bor = (Bu®)bg, Oar = M4.0a, HS=H%ME(Bpu®).

Introducing the nonlinear connection N2 (@, ) in T(E ) which has the transforma-

tion law of the form (2.6), we can form an adapted basis B= {65,07} of T(E),
where

b5:=0s — NA0;,

(2.9) HY(u,0): = (0aBY)o™* + BLN} — BYNZ,
and
(2.10) 65 = BL6; + HLO,.

It can be shown that 5, 07 and H% are tensors with respect to the coordinate
transformations (2.5) on E, i.e.

oo = (0a@*)da, 0z= Mﬁ,aA, HY = Hy M (0,0%).
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PROPOSITION 2.1. The bases B = {6,0,} of T(E), B = {0a,04} of T(E)
and B {05,045} of T( ) are connected by
(2'11) do =Bi5i+H33a, da =Bf§6i+Hg8a,
94 = B%(u)0,, 0z = B%(2)0,.

Proof. (2.11) follows from (2.7), (2.10) and (2.4).

The intrinsic adapted basis in T* (E) is B* = {du®, jv2}, where dv4: = dv? +

N#4du®. The adapted basis in T*(é) is B = {da®, v}, where 604: = do? +
NAda®.

PROPOSITION 2.2. The adapted bases B and B* of T(E) and T*(E) respec-
tively are dual to each other, i.e.

(2.12) (du®,85) = 68, (du®,0p) = 0,
<6UA755) =0, <5UA76B> = 6§

The adapted bases B= {05,041} and B = {du 61}’4} are dual to each other, i e.
(2.12) (du®,d5) = 85, (du*,0p) =0,
(09%,65) =0, (30 B> =05

PROPOSITION 2.3. The bases B* = {dx?, 5y} of T*(E) and B* = {du®, v},
B = {da®, v} of T*(E) and T*(E) respectively, are connected by the formulae
(2.13) da’ = Bidu® + Bida®,  6y® = H%du® + H%da® + B%6v” + B4

3. The Linear Connection V Expressed in the Basis B. The point
u € E in the coordinate system (1.1) and (2.5) (which are connected by (2.1)) has
coordinates (z,y%) = (u®,a®,v*,52). The adapted bases of T'(E) for these two
coordinate systems are B = {8;,0,} and B = {04,085,04,07} respecitvely. The
linear connection Vx:T (E) — T(E) in the basis B can be expressed by

PROPOSITION 3.1. The linear connection Vx:T(E) — T(E), introduced by
Definition 1.1, in the basis B = {04, 05,04,07} is given by

(3.1)  (a) Vb, =F, 46, +F, 8y + F,*.04+ F,4,0;

() Vs, 0u=Fu 20, + F, 7205+ F,* .04 + F, 2,0

()  Va,0, = F, 8, + F, 705 + F,A,04 + F, 2,05
() Vo,8u = F, 00y + Fy,7 .05+ Fy 2,04 + Fu 2,04

z € {a,a}, y € {8, 3}, u € {B, B}, v € {D,D}.
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In (3.1) there are 64 types of cooefficients. In [3] the relations between the
different kinds of covariant derivatives of vector fields, expressed in bases B and
B, were given. It was proved, that the covarint derivatives of vector fields in the
basis B, with respect to the coordinate transformations of type (2.5) transform
as tensors; iff F,%5, F.,* g transform “as connection coefficients” (for instance
vaa'ﬁ,B;Y' = Bg’Bg,Fvaﬂ — Bg,aﬂB‘;') and the other 60 types of coefficients
(from (3.1)) as tensors (for example Fn® 5 MS = BY BZ,Fcag). Here we want
to give the relations between the connection coefficients from (1.10) and (3.1). To
obtain the desired formulae, the relations (2.11) and the linearity of connection V
will be used.

From (3.1a) and (2.18) we have
(3.2) Vs = Fopdy + Fo7 05 + FoC 500 + Fo 0
= F,"3(BY6, + HS0.) + Fo g(BL6, + HEO,)
+ FoC3B&d. + FoC 3 BS0..
On the other hand from the linearity of V and (2.18) it follows
(3.3) Vis0a =V (pis, 1110, (Bisi + H.0,)
= (6B 6; + (0pHZ) 0q + BLBLV5,6; + HyBLV 5,6;
+ BLHV 5,0, + HyH2V 5,0,
Substituting (1.17) into (3.3) and equating the corresponding components of
0 and 0. in (3.2) and (3.3) we obtain:

THEOREM 3.1. The connection coefficients of linear connection V in the bases
B and B are related by
(3-4) Fog+ Fa:yﬁB'l;

= 0pBk + Fi*;BLB: + F.*;BLHE + C* HYBY + C. HYHS,
Fo'gHS + Fo gHS + FoC 3B + FoC 5B
=0gHS, + Fi*;BLBl, + Fo*;ByHS + Ci*, HyBL, + Co Hy H.

In a similar way we obtain
(3.5) F4"sBE + F473BE = F,*;BLBY + C % H)BY,
FA"gHS + F 4 gHE + F o€ 3BE+F 4% 3BS
=03B% + Fo°jB4B% + Co% H)BY,
(3.6) CipB + ClpB% = C}yBy B + ChyBy H,
ClpHS + C)lpHS + O pBE+CE 5B
=dpHS, + C{yBY B + C¢,BYL HC,
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(3.7) Ca"pBY + C47pBE = C,* By BY,
Ca"pHS + CAVpHE + CACpHE + CaCpHE = O, BY BY.

Remark 1. Formulae (3.4)—(3.7) are valid if one or two indices from the set
{a,8,A, B} everywhere appear overlined. (It is known that d;B% = 6gB% =
03B% = 64B% =0.)

Theorem 3.1. has many consequences. For example

PROPOSITION 3.2. If the nonlinear connections N4 (u,v) in T(E) and N4(a, v)

in T(E) are chosen in such a way that
(3.8) Ho =0, H=0

(see (2.12) and (2.15)), then the coeficients of the linear connection V defined by
the Definition 1.1 in the bases B and B satisfy the relations

(3.4) Fo"gBY + Fo73B% = 64 B% + F;* ;B B!,
Fo“sBY + Fo“pBg = Fi*;B}BL,,

(3.5 F4"sBY + FA7pBE = F.*;B,BY
F49gB¢ + FA“sBY = 0gBY + F,°;B%BY,

(3.6") Co"pB% + C.7pBE = C*,BYL B,

Co’BBE + CoCpBS = Ci%BY B,
(3.7) Ca"pBY +CA"pBE = C,* By BY,
CaCpBL + Ca°pBS = 0, BY BY.

Remark 1 remains valid for (3.4)—(3.7)’.

The relations (3.8) have very important geometric meaning. From (2.11) and
(2.13) it follows, that, under the conditions (3.8), we have

(3.9) Tu(E) =Tu(E)®Tu(E), Tv(E) =Tv(E)®Tv(E),

TH(E) =Ty(E) Ty (E),  Ty(E) =Ty(E) @ Ty(E).

A

In this case it is very easy to obtain the connection coeficients in the basis B
of Miron’s d-connection defined by
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Definition 3.1. The linear Miron’s d-connection is determined by
(3.10) Vs, 0; = Fi* i, V5;00 = Fu®j0.,
V.6 = Ci*abk,  Va,0 = Cp°a0..
From Definition 3.1 it follows that the d-connection V has the property:
Vx:Te(E) - Tg(E)  Vx:Ty(E) = Ty(E) (for every X € T(E)).
From (3.8), (3.9) and (3.10) it follows

PROPOSITION 3.3. The d-connection V, which in the basis B was defined by
(3.10) in the basis B for which (3.8) hold, i.e.

(3.11) 8o = B'6;, 05 =DBLS;, 0a=B%0,, 0z= B%0,,

is given by

(3.12) Ve 0y = Fy7.0, + F7 .65 z € {a,a}
Vo0 = F 00+ F, 204 ye (8,5}
Vo,0y = CyY 00y + Cy 05 u € {B, B}

v&,au = C_’uAvaA + éuAvag v E {C, CY}

THEOREM 3.2. The coefficients of the d-connection V in the bases B and B
in the case when (3.8) and consequently, (3.11) hold, are connected by

(3.47) Fo pBY + Fo73B% = 63BE + Fi*;B} B,
(3.5”) FA%sBg + FuC3BY = 85B4 + Fi¢;BLBY
(3.6”) Co"pBE +Co7pBE = C*BY B,

(3.77) Ca° BB + CA°BS = C,°BY BY,.

The Remark 1 remains valid for (3.4)”—(3.7)".

4. The Subbundles of Vector Bundles. Let us consider the case
when (2.1) reduces to (2.3) i.e. when the subbundle £ is defined. In this case the
coordinate transformations are given by (2.5a) and (2.5b). Now we have B = 0,
B% =0= H% =0.

THEOREM 4.1. The bases B = {8;,0,} of T(E) and B = {8,,04} of T(E)
are connected by
(4.2) 8o = BLo; + HO, 04 = B%(u)d,

and the dual bases B* = {dz?,6y°} of T*(E) and B* = {du?,dv*} are connected
by dz® = B du®, dy® = B4 v + H%du®. Formulae (2.12) are valid.
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Definition 4.1. The linear connection Vx:T(E) —» T(E) (X € T(E)) in the
basis B is defined by

(42)  Vs,00 = Fo"56, + Fo%50c, Vs,04 = Fa"56, + F4%50c,

Vogda = Co 5y + CoB00, Vor0a = Ca"5d, + Ca%Boc,
In this case overlined indices do not exist, because the complementary subbundle
is not considered.

The linear connection Vx:T'(E) — T(E), defined by (4.2), in the basis B can
be expressed by (1.10), but in this case the basis vectors of B and B are connected

by (4.1).
THEOREM 4.2. The coefficients of linear connection Vx:T(E) - T(E) ex-
pressed in the bases B and B are connected by the following relations:
(4.3) Fo'BY = 63BE + Fi*; BB},
+ F*BLHS + Cif g HY B, + CoF g HYHE,
FogHS + Fo“sB = dgHS, + Fi*;BLBY, + F,°;BLH,
+Ci%HpBl, + Cu "y HRHY,
F4"gBE = F,*;B,BY + Cof g HYBY,
FA"pHS + F4%3BE = 63BS + F.°jBLBY + C. H}BY,
C."BBt = C*BY B, + C.,*,BLHE,
Co"sHS + Co“pBE = 0pHS, + Ci°, By B, + C,°,ByBH?,
Ca"sB% = C,* By BY,
Ca'pHS + C4“pBg = C,°BYLBY.
It can be proved that, with respect to the coordinate transformations of type

(2.5a) and (2.5b), all the coefficients in (4.2) transform as tensors, except Fo"g
and FA¢ @, which transform “as connection coefficients”.

THEOREM 4.3. If the nonlinear connection N2(u,v) in T(E) satisfies the
relation H% =0 (see (2.8)), then (4.3) reduces to the form

(4.3") F,"sBE =3Bk + Fi¥;BiBi,  F,°3B¢ = F;*;B)B:,
Fp'BY = F.*;B}BY, F4°pB¢ = 03B + Fo°;B,BY,
Ca"BBY = Ci*BYBi, Co’BB = C¢,BY B,
Ca"pBt = C,*BYBY, Ca°pBY = C,%BY BY,.
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THEOREM 4.4. The distinguished connection

Vx:Tu(E) = Tu(E), Vx:Tv(E) = Ty (E) (for every X € T(E),)

given by (3.10), reduced on T(E) is distinguished connection:

(4.4) Vis0a = Fo 56, V.04 = Fa50c,
Vogba = Co"Bds, V04 = Ca%poc.

iff He = 0.

THEOREM 4.5. The coefficients of d-connection V in the basis B (defined by
(3.10)) and B (defined by (4.4)) for H% = 0 are connected by the relations

(4.3") Fo"pBY = 63BE + Fi*;BiB!,,  Fa°sB¢ = 063BS + F.°;B,BY,
Co.’pBY = C*,BLB.,, Ca®pBS = C,°BYBY.

The other connection coefficients appearing in (4.3)” for the d-connection are equal
to zero.

The coefficients (appeared in (1.10)) for the recurrent and metric connection
are determined in Comié [3] as functions of the metric tensor G ((1.8), (1.9)), the
vector of recurrency A and the torsion tensor T ((1.11), (1.12)). The curvature
theory of vector bundles and subbundles is given in Comié [4]. In Anastasiu [1],
using the d-connection (which is generalized in Comié [2]) the dual spaces are
examined. In Miron [6] the theory of vector bundles in Finsler spaces is given.
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