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CURVATURE PINCHING FOR ODD-DIMENSIONAL
MINIMAL SUBMANIFOLDS IN A SPHERE

Li Haizhong

Abstract. Using Gauchman’s method, we have improved Simons’ pinching constant (for
codimension p > 3 —2/(n — 1)) and Ejiri’s Ricci curvature pinching constant for odd-dimensional
minimal submanifolds in a sphere.

0. Introduction Let M™ be an n-dimensional compact minimal sub-
man ifold in an (n + p)-dimensional Riemannian manifold N"*?. Let h be the
second fundamental form of M™ and f(u) = ||h(u,u)||*> for any v € UM. In
[2,4,5], Gauchman developed a method which is different from that of Ros [10,11],
but influenced by Ros’ method. By use of this method, Gauchman studied the
f(u)-pinching problems for minimal submanifolds in S™*? [4], totally real minimal
submanifolds in CP™*P(¢) [5], and totally real minimal submanifolds in HP™*?(1)
[2], respectively. In this paper, we find that Gauchman’s method can be used
for a study of curvature pinching problems of minimal submanifolds. We apply
Gauchman’s method and some other techniques to curvature pinching problems of
minimal submanifolds in a sphere S"*?. For odd-dimensional minimal submani-
folds in a sphere, we have improved Simons’ pinching constant (for codimension
p >3 —2/(n —1)) (Theorem 2.2) and we have improved Ejiri’s Ricci curvature
pinching constant (Theorem 3.2). We also obtained a Ricci curvature pinching
theorem which generalizes Shen’s result for 3-dimensional minimal submanifolds in
a sphere (Theorem 3.3). This paper is a part of my Ph.D. thesis (see [9]), which
includes various results on curvature pinching theorems for minimal submanifolds
in a sphere S™*P, totally real minimal submanifolds in a complex projective space
CP™?(c) and totally real minimal submanifolds in a quaternion projective space
HP™P(1), respectively (see also [7,8]).
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her many valuable suggestions and discussions.
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1. Preliminaries Let M be an n-dimensional compact Riemannian mani-
fold which is immersed isometrically in an (n+p)-dimensional Riemannian manifold
N™tP_ We choose a local field of orthonormal frames e, . .. , €54, in N7 in such a
way that, when restricted to M, vectors ey, ... , e, are tangent to M. The following
conventions for the range of indices will be used

1<AB,C,...<n+p; 1<4,5,k,...<nm;
n+15a7/ﬁ777"'sn+p'
Let w4 be the field of dual frames with respect to the frame field of N™*+?

chosen above. Then, if they are restricted to M, we have

i —_ [e3 o [e3
Wa =0, wy= E hijCUj, hij = hji.
J

The second fundamental form of M in N™*P is
WX, Y) =Y h&wi(X)w;j(Y)es, for X,Y € TM. (1.1)
a,i,j
Let UM = J,epy UMy and UM, = [u € TM, ¢ ||u|| = 1]. Thus UM — M is

the unit tangent bundle over M. We define f(u) = ||h(u,u)||? for u € UM. Setting
u=7Y,u'e;, from (1.1) we have

flu) = Z Z h%uiuj . (1.2)

a iJ
f(u) may be considered as a measure of the degree at which an immersion fails to
be totally geodesic.

Let x € M, suppose that v € UM, satisfies f(v) = max,cun, f(u). We
shall call v a maximal direction at z (see [4,5]). Assume that e; = v is a maximal

direction; we have at the point z, for any ¢t,x5,... ,2, € R
2 2
h(er + th’“ek, e1+ tZa:kek) < [1 + 12 Z(mk)2] |hae % (1.3)
k#1 k#1 k#1

Expanding this in term of ¢, we obtain
4t Y aFhgihgy, + O < 0.
a,k#1
It follows that
Zh?lh(llk =0, (k#1)
a

which implies that v = e; is an eigenvector of the (n x n)-matrix (3_, h{;hd;) at .
Hence, we can choose ey, ... ,e, such that the matrix (3_, h1h;) is diagonalized

at 2. Therefore we have
D hihE =0, (i # ). (1.4)
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Once more expanding (1.3) in terms of ¢, we obtain

22| 3 (067 = kit — 20050%) o)
. (1.5)

-2 Z & ‘fjxixj] +O0(%) > 0.
@, i ], i#1,jF#1

Since (1.5) must hold for any real z¢, we obtain the following variational
inequality
D [(h31)* = A by = 2(h5)*] 20, (k£ 1), (1.6)

a

Let M be a Riemannian manifold and L be a covariant tensor field on M
of the type (0,k). At any z € M, L can be considered as a multilinear mapping
L: T,Mx...xT,M — R. Suppose that v € UM, satisfies L(v,...,v) =
maxyecum, L(u,...,u). We shall call v a maximal direction at  with respect to
L. For any z € M, we set fr(xz) = L(v,...,v), where v is a maximal direction at
x with respect to L. We have the following generalized Bochner’s lemma.

LEMMA 1.1 (Proposition 3.1 of [5]). Let M be a compact Riemannian mani-
fold and L be a covariant tensor field on M of the type (0, k). If (AL)(v,... ,v) > 0
for any mazimal direction v with respect to L, where A denotes the Laplace oper-
ator, then fr = constant on M and (AL)(v,...,v) = 0 for any mazimal direc-
tion v.

Let M be an n-dimensional compact submanifold in N**t?. For any point
x € M,leteg,...,entp be aframe chosen above at x such that e; = v is a maximal
direction at x, and >_ , hfyhg; = 0 for i # j. Let us define a 4-covariant tensor field
L on M by the formula

L(X,)Y,Z,W) = (MX,Y),(Z,W)), (1.7)
where X,Y,Z, W € T,(M), € M. It is clear that f(u) = L(u,u,u,u) =
|h(u,u)||? for any u € UM. We shall write (AL);jr = (AL)(es, €5, ek, €1)-

Therefore we have proved the following lemma ensuing from (1.2), (1.4), (1.6),
(1.7) and Lemma 1.1.

LEMMA 1.2 Let M be a compact n-dimensional submanifold in an (n + p)-
-dimensional Riemannian manifold N"*P. Let b;; = 3, h$hi;. With respect to
the frame field chosen above, we have at any point x € M

f@) =t = Y (h5)* = max [Ia(u,0)|P, (18)
S(AD = Y (4007 + 3 B i, (19)
a,k a,k

by=0 (i), (1.10)
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23 (h$)” + b — f(0) <0, (k#1). (1.11)
[e3

If (AL)1111 > 0 for any mazimal direction ex = v, then f(v) = b1y = constant on
M and (AL)1111 = 0 for any mazximal direction e; = v.

2. Scalar curvature pinching for odd-dimensional minimal subman-
ifolds in S™*?., Now we let ambient space N"? be a unit sphere S"*? of dimen-
sion n + p. Let M™ be an n-dimensional compact minimal submanifold in S™*P.
Gauss-Codazzi-Ricci equations of M™ are

Rijei = (ikSj — 0udjn) + > _(h§ihs — hhsy), (2.1)
hiik = Rikjo (2.2)
Ragij = > (hghl), — huhl), (2.3)

k

where R;;r; and R,p;; are the respective curvature tensors for tangent connection
and the normal connection of M™ and hy is the covariant derivative of hg;.

By (2.1) the Ricci curvature and scalar curvature of M™ are

Rij = (n—1)6;; — Z PP 24
a,k
R=n(n— 1)~ lol, (25)
where [|o||* = 3=, ; ;(hg)?

It is well known [1,13] that if the lenght square ||o||? of the second funda-

mental form on M™ satisfies n

2-1/p
everywhere, then either ||o||? = 0 (i.e. M™ is totally geodesic) or

llo]* <

n
2—-1/p

In the latter case M™ is either a Clifford hypersurface or a Veronese surface in S*.
In [8], we have improved Simons’ pinching constant for higher codimension. In
fact, we have established

lloll* =

THEOREM 2.1 [8]. Let M™ be an n-dimensional (n > 2) compact minimal
submanifold in S™tP. If

lloll* <

7"(?;" ) (2.6)

5n—4 "’
then M™ is either a totally geodesic submanifold or a Veronese surface in S*.

In this section, we will improve the theorem above for odd-dimensional min-
imal subamnifolds in S™tP. We will prove
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THEOREM 2.2. Let M™ be a compact n-dimensional (n > 3) minimal sub-
manifold in S™*P, and let n be odd. If

n(3n — 5)

2
<
lol? < 25 =2,

2.7)

then M™ is either a totally geodesic submanifold or n = 3 and ||o||?> = 2 on M3
and the second fundamental form is given by

1/v2. 0 0 0 1/vV2 0
hi)=1 o -1/v2 0|, G®H={1/v2 0o 0],
0 0 0 0 0 0 (2.8)

(hi;) =0, a>6.

Remark 2.1. For odd-dimensional minimal submanifolds in S™*?, our pinch-
ing constant n(3n — 5)/(5n — 9) is independent of the codimension p of M™ and is
not smaller than Simons’ pinching constant n/(2—1/p) in case of p > 3—-2/(n—1)
(ie. n=3 and p>2; n>5 and p > 3).

Remark 2.2. Theorem 2.2 improves Theorem 2.1 for odd-dimensional mini-
mal submanifolds in a sphere S™*7,

COROLLARY 2.1 [12]. Let M3 be a compact 3-dimensional minimal subman-
ifold in S3TP. If
loll* < 2, (2.9)

then M3 is a totally geodesic submanifold.

Remark 2.3. In [4], Gauchman obtained results (Theorem 3 and Theorem 4
of [4]) of kind described in Theorem 2.1 and Theorem 2.2 in which f(u) was used
instead of ||o||? for minimal submanifolds in a sphere, where f(u) = ||h(u,u)||? for
any u € UM.

Proof of Theorem 2.2. We begin with Lemma 1.2. All the calculations below
will be made at a point z € M, unless otherwise stated. By Ricci identities, (2.2)
and (1.10), from (1.9) we get

1
5(AL)1un > > b,

> (2.10)
= (B kG Rixsi + (h$)*Ruaw) + Y hiy Y Rpani
a,i a,B,i

Making use of (2.1), (1.10) and (2.3), one easily sees that

Z(hlﬂ R Ritvi + (h$1)*Ruis)

@,i

(2.11)
=nf@)+ Y bk (h)* = > (br)® — F(v) D_(h5H)?,
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2 2
> bk Reari = ) bee(h)? = f(0) Y_(h§)°.
a,B,i a,k a,k
Substituting (2.11) and (2.12) into (2.10), we obtain

(AL)1111 >nf(v) + 2 Z bik (ASy)?
a,k#1

— S b2 —2f(0) 3 (h5)? — £(0) S ().

k#1 a,k#1 a

(2.13)

From (1.8) and (1.11) it follows that
23 (h)? < F(0) — bee < f(0) + \/Z(h‘ﬁ P23 (h)? < 2f (0

ie. >, (h%)? < f(v). Combining this with an elementary inequality, we find

2 > bi(hiy)? z——z (bkr,) —aZ(Z )2

a,k#1 k#1 k#1 @

) (2.14)
> ——f(v) > () —af) Y (b))

a,k#1 a,k#1

where a > 0 is an arbitrary real number. On the other hand (bx)? < f(v) > (h$)?
< f)?%  (f() + brr)(f(v) — bgx) > 0. Combining this with (1.11), we have
brr > —f(v), therefore we get the following estimate

2 ) bre(hfy) > —2f(v) D (h§y)”. (2.15)

a,k#1 a,k#1

Combining (2.14) with (2.15), we obtain the following estimate

2 > bk(h§)? =0 Y bk (h)> +(2-0) Y bi(hy)?

a,k#1 a,k#1 a,k#1 (2 16)
bf(v ab o )
> MO S g b s Dyge) Y 0,
a,k#1 a,k#1
where a > 0 and 2 > b > 0 are arbitrary real numbers.
By (2.13) and (2.16), we have
1 ab o \2
§(AL)1111 >nf(v) = (4=b+ — 5 —)f () Z (hi%)
okl (2.17)

o f0) D () = Y w)? — )

a,k#1 k#£1
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We can write by = bgr = D, h{1hjy- By (1.8) and minimality of the immer-
sion, we have

—f) <br < fv), (k#1). (2.18)
Z b = Zbkk = —f(v). (2.19)
k=2 k=2

Because we assume that n is an odd number, it can easily be seen that the

convex function f(bs,...,b,) = > p_,(bk)? of (n — 1) variables b, ... ,b, subject
to the linear constraints (2.18) and (2.19) attains its maximal value when (after
suitable renumbering of ey,... ,e,) (see [5])

bg =... :bm = _bm—i-l =...= —b2m Zf(U); b2m+1 =0,

where n = 2m + 1. Therefore, we have

D (br)® < (n = 2)f (0)%. (2.20)

k#1

We also know, by the Cauchy inequality, that

D (bkk)* < f(0) D () (2.21)

k#1 o, k#1

Combining (2.20) with (2.21), we have

=D () = ~(1~ ﬁ) > (bek)® — ﬁ > )

k1 k#£1 k#£1
(2.22)
b a \2 (’I’L - 2)b 2
>—(1- m)f(v) aél( k) — mf(v) .
Substituing (2.22) into (2.17), we obtain
(AL
_ (2.23)
> f)n- -0+ D) X () - 1+ o) Y (h?].
a,k#1 a.k
et b 1+ (n—2)b A(n — 1)
R R T e gy s TC TSIk

Noting that [[ol|? = Y., (h%)? > 3, (h2)? +2 ¥, s ()2, choosing a = 1,
we obtain from (2.23)

5n —
3n —

AL > f@)[n — 22 o] @)]. (224
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By (2.7), (AL)1111 > 0. We obtain (AL);;1; = 0 from Lemma 1.2. Thus,
if f(v) =0, then ||h(u,u)||?> = 0 for any u € UM, so that M" is totally geodesic.
If f(v) # 0, then ||o]|?(z) = n(3n — 5)/(5n — 9), so that (2.13) - (2.24) all are
equalities with a =1 and b =4(n —1)/(3n — 5). We easily get n = 3, and we have
hiy = —h$y, h3 =0, his = h33 =0, 3, (h{;)* = f(v) and ||o]|* = 2 on M?. By
(1.10), we can choose ey = h(ej,e1)/+/f(v) and e5 = h(e1,es)/+/f(v). Therefore
we have (2.8) and that completes the proof.

3. Ricci curvature pinching for odd-dimensional minimal submani-
folds in S™*P. Ejiri [3] obtained the following well known Ricci curvature pinching
theorem

THEOREM 3.1. Let M™ be a compact n-dimensional (n > 4) minimal sub-
manifold in S™tP. If the Ricci curvature of M™ satisfies
Ric(M") >n -2, (3.1)
then M™ is totally geodesic, or n = 2m and M™ = S™(1/1/2) x S™(/1/2) or
n =4 and M* = CP?(4/3) — S".
It is generally considered that the above theorem is the best possible re-
sult, but, in fact, Ejiri’s theorem above is only the possible best result for even-
dimensional minimal submanifolds in S™*P. In this section we establish the follow-

ing best possible Ricci curvature pinching theorem for odd-dimensional minimal
submanifolds in S"*?

THEOREM 3.2. Let M™ be a compact n-dimensional (n > 5) minimal sub-

manifold in S™TP. Assume that n is odd. If the Ricci curvature of M™ satisfies
Ric(M™)>n—-2-1/(n-1), (3.2)

then M™ is either a totally geodesic submanifold or n =5 and R11 = Ros = R33 =
R44 =3- 1/4, R55 =4 and ||0'||2 =5 on M5.

Remark 3.1. Our Ricci curvature pinching constant (n —2 —1/(n — 1)) is
better than Ejiri’s (n — 2) for odd-dimensional minimal submanifold M™ in S"*?.

Proof of Theorem 3.2 By (2.13), (2.15) and (2.20), we get

L ALun 2nf0) - 410) Y ()~ (- DI@R. (33)
a,k#1

From (2.4), our assumption (3.2) and from: R;; = (n — 1) — f(v) —
D kr1 (P5)?, we have

3 (h§)? < —— — f(v). (3.4)

a,k#1 n—1

Substituting (3.4) into (3.3), we get
S (AL > nf(0) = 4fw) (=" = f©)) = (1= D f o)
= (n=5)10) (-5 - f).

n—1
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By (3.4) we know that n/(n —1) — f(v) > 0. Thus (AL);111 > 0. By Lemma
1.2, (AL)1111 = 0 and f(v) = constant on M™. Therefore it follows that f(v) =0,
or f(v)=n/(n—-1),orn=>=.

(1) Case f(v) =0. M™ is totally geodesic.

(2) Case f(v) =n/(n—1). In this case (2.20) is an equality. Thus for all «

we get (after suitable renumbering of e, ... ,e;,)
= =hym=—ht me1=---= =D om, b =0. (3.6)
On the other hand, by (3.4), we have h{), =0, k#1, a=n+1,... ,n+p.
Since by (3.6), directions ey, ... ,ea, all are maximal, it follows that
hy =0, i#n, j#i, a=n+1,...,n+p. (3.7

This implies hf; =0, i #j, a =n+1,... ,n+p,ie, M" is a submanifold with a
flat normal connection. From (3.6) and (3.7), we have

lol* = > (h$)" = (ki) = n. (3-8)

a,t,J a,k

By Kenmotsu’s theorem [6], we have M™ = S*(\/k/n) S* *(y/(n — k)/n) and

p = 1. But it contradicts the following

]’L11 =...= ]’me = —hm+1 m+l = ... = —h2m 2m = \/n/(n— 1), hnn =0. (39)

Thus f(v) =n/(n—1) is false. We have f(v) =0, i.e. M™ is totally geodesic.

(3) Casen =5and f(v) #n/(n—1). By Lemma 1.2, f(v) = constant on M®
and (3.5) is an equality. Thus, (2.13), (2.15), (2.20), (3.3) - (3.5) all are identities
and R;; =3 — 1/4. By (2.20), we have for all «

f= D% = —h§y = —hiy, hi5=0. (3:10)

By (2.4) (in this case), for all @ we have h$y = 0. Because (3.10) implies that the
directions e, ez, e3 and e4 are all maximal, we have hf; = 0 and

Ri1 = Ry = R33 = R4y = 3 — 1/4, Rss = 4. (311)
Thus R = 15 and ||o||?> = 5 on M5. By (1.11) and (3.4), we find that 5/12 < f(v) <

5/4. From (2.15), we also know that h$, = hg, = 0 and the proof is completed.

Neither Theorem 3.1 nor Theorem 3.2 yields any results for 3-dimensional
minimal submanifolds in a sphere. For that case we establish the following theorem

THEOREM 3.3. Let M?® be a 3-dimensional compact minimal submanifold in
S3+P_ If the Ricci curvature of M3 satisfies

Ric(M?) > 1, (3.12)

then M3 is either totally geodesic, or Ry1 = Ros = 1, R33 = 2 and ||o||> = 2 on
M3 and the second fundamental form is given by (2.8).
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COROLLARY 3.1 [12]. Let M? be a 3-dimensional compact minimal subman-
ifold in S3*P. If the Ricci curvature of M3 satisfies

Ric(M?) > 1, (3.13)

then M3 is totally geodesic.

Proof of Theorem 3.3. By bgr, > —f(v) and the 3-dimensional minimality,
we can see that

bao <0, bss <0, > (bex)” < [ D baw | = (brr)* (3.14)
k£1 k£l

By the definition of b;; (see Lemma 1.2), we have from (2.4)

- Z (h$%)? = Riy — 2+ by
a,k#1
From (3.14) and (1.11), we get
1 1
Z by (h§e)? > 3 Zbkk(bll — b)) = ~3 Z(bkk)Q- (3.16)

a,k#1 k£l k
Substituting (3.15) into (2.13) in case of n = 3 and using (3.14), we come to
1 a \2
i(AL)nn > —f(v) +2 Z bk (h1y)” + 2f(v)Rus. (3.17)
a,k#1

Applying (2.15) and (3.16) on (3.17), by (3.14)

(A0 220 = )+ JO) R =240 = 5 S0u?
> 3f(v)(Ri1 — 1).

By Lemma 1.2, (3.12) and (3.18) imply that either f(v) = 0, i.e. M?3 is

totally geodesic, or Ry; = 1. In the latter case, (3.14) - (3.18) all are identities. By
a similar argument as in the proof of Theorem 3.2, we have

R11 = R22 = 1, R33 =2. (319)

Thus ||o||> =6 — R = 2 on M3. So, we complete the proof of Theorem 3.3 from
Theorem 2.2.
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