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ON SUBHARMONIC BEHAVIOUR AND OSCILATION
OF FUNCTIONS ON BALLS IN R"

Miroslav Pavlovié

Abstract. We give sufficient conditions for a nonnegative function to behave like a sub-
harmonic function. If f is a C!-function on a domain D C R™ such that |7 f(a)| < Kt~ ! w(a,r)
(K = const.), where w¢(a,r) is the oscillation of f on the ball B.(a) C D, then both |f|? and
| v f|? (p > 0) have a weakened sub-mean-value property.

Let D be a domain in the Euclidean space R™. If f is a function harmonic in
D, then the function |f|P (p > 0), although need not be subharmonic when p < 1,
yet behaves like a subharmonic function. This fact was established by Hardy and
Littlewood [2] for n = 2 and generalized by Fefferman and Stein [1, Section 9,
Lemma, 2] to several variables.

THEOREM (HLFS). Let p > 0. If f is harmonic in D, then

s@p <k [ |fpam
Br(a)

whenever B(a): = {z: |z — a| < r} C D, where K is a constant depending only on
p and n.

Here dm denotes the Lebesgue measure normalized so that m(B) =1, B =
{z:|2| < 1}.

The theorem romains true if | f| is replaced by |grad f| (f harmonic) or, more
generally, by a nonnegative subharmonic function.

In this paper we prove two results which, via the simplest properties of har-

monic functions, imply Theorem HLFS and can be applied to wider classes of
functions. We start with two observations. If f is harmonic in D, then (for K = 1)
(shk) F(a) < Kr™" / Fdm whenever B,.(a) C D,

B(a)
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where F' = |f|; and (for K = n)
(hk) L(a, f) < Kr~" sup |f] whenever B.(a) C D,
B.(a)

where L(-, f) = |grad f|. (The letter is verified, for example, by differentiation of
Poisson’s integral.)

In the general case L(-, f) is defined by

L(a, f) = lim sup [f(2) = fla)l f(a)|.

z—a |.Z‘ - al
If f is differentiable at a, then L(a, f) = |grad f(a)|. If f is continuous, then the
function @ — L(a, f) is Borel measurable. (See [5] for further information on the
operator L.)

THEOREM 1. If a nonnegative, locally integrable function F on D satisfies
condition (shg) for some K, then the function FP (p > 0) satisfies condition (sh¢)
for some C' depending only on K, p and n.

Observe that the hypotheses of the theorem imply that F' is locally bounded
and consequently F? is locally integrable.

THEOREM 2. If a locally bounded function f on D satisfies condition (hi)
for some K, then the function |f|P (p > 0) satisfies condition (sh¢) for some C
depending only on K, p and n.

Although the general case of Theorem 2 can be deduced from the case p =1
by using Theorem 1, we will give an independent proof, and this will be a new
proof of Theorem HLFS.

Note that the hypothesis of Theorem 2 implies that f is continuous.

We will apply Theorems 1 and 2 to a class of “regularly oscillating” functions.
The oscillation of f on the ball B,.(a) is defined by

wy(a,r) = sup{|f(z) — f(a)|:x € Br(a)}.

We have
L(a, f) = limsupwy(a,r)/r.
r—0
If f is convex or concave on D, then the function r — wy(a,r), where a is fixed, is
convex, and since wy(a,0%) = 0, this implies that

() L(a, f) < Kr'wy(a,r) whenever B.(a) C D,

with K = 1. As noted above, a harmonic function satisfies (h,), and applying this
to f — f(a)we see that it satisfies (h;') as well. There are many other examples of
functions satisfying (h}}), for some K > 1. In a separate paper we shall discuss
certain relations, sufficient for the validity of (hx) or (h};), between the Lapplacian
and the gradient of a C?-funcition.
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THEOREM 3. Let p > 0. If a continuous function f on D satisfies condition
hi) for some K, then L(-, f)P satisfies (shg) for some C = C(K,n,p).
K

Proofs. Proof of Theorem 1. Let F satisfy (shgk) for some K > 1, and let
p< 1. (If p > 1, we apply Jensen’s inequality.) By considering the functions x — F
(a + rz), defined on the unit ball if B,.(a) C D, we see that the proof reduces to
proving that

F(0) < C [ FPdm (1)
/

provided that B C D, where C' depends only on K, p and n. In proving this we
can also assume that the closed unit ball is in D and

(i) B/ FPdm = 1.

Since F is locally bounded, then we can choose a € B so that

() F(z)P(1 - |z|)™ < 2F(a)P(1 — |a|)™ for all z € B.

Let r = (1 — |a|)/2. It follows from (shg) that

(i) F(a)(1 - |a)" < 2"K / FPE P dm,
B,(a)

On the other hand, it follows from (ii) that F(x)? < 2"*1F(a)P for z € B,(a) and
therefore, by (i) and (iii),

F(a)(1 —la])" < C1F(a)'"?,
where C; depends only on K, p and n. Hence, by (ii) (z = 0),
£(0) < 2F(@)"(1 - |a])" < 2C4,
which was to be proved. O

Remark. This proof is similar, but simpler, to the proof of Lemma 2.4 of [4],
where the complex hyperbolic space was considered.

Proof of Theorem 2. Let F = |f|, where f satisfies (hx) for some K > 0, and
let p > 0. As in the case of Theorem 1, it suffices to prove (1) under the assumption
that the closed unit ball is contained in D. Assuming (i) we choose a € B so that
there holds (ii). Then we use the inequality

[f(a+h) = f(a)| <h] ig};L(a+Th;f), (2)

which is proved by the standard compactness argument, to find that

F(a) < F(z)+tsup L(-,f) for z € Ba) C B.
Bi(a)
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From this and (hg) it follows that

F(a) < F(z)+ K(t/r) sup F (s=t+r).
B,(a)

Now choose t and 7 so that s = t + 7 = (1 — |a])/2 and K (t/r) = 2-'1~(n+1)/p,
Since, by (ii), F(z)? < 2" F(a) for z € Bs(a), we get that

F(a) < F(z)+ (1/2)F(a) for z € B(a) C Bs(a),

whence
F(a)? <2PF(z)P for x € B(a).

Integrating this inequality over B;(a) we obtain
" F(a)? < 2P / FPdm < 27,
Bi(a)
Since t = ¢(1 — |a|) (¢ = const.), we finally get
F(0) <21~ la))"F(a)? < 2PF'c7T,
and this completes the proof. O

Proof of Theorem 3. Let f satisfy (hf;). By theorem 1, it suffices to prove
that, for some ¢ and C, the function L(-, f)? satisfies (sh¢), which is reduced to
proving that

LWJVSC/M%ﬁWM@

provided that B C D. Since the function f — f(0) satisfies (hax), we have, by
Theorem 2,

mf<a/u £(0)ldm(z).

On the other hand, it follows from (2) and the hypotheses of the theorem that f
satisfies a Lipschitz condition on balls and therefore the functions r — f(a + rh)
are absolutely continuous. Hence

£@) = 1) < el [ Lira,f)ar

Combiming these estimates we get

ﬁf 0)dm(z jw/ L(ra, f)|o| dm(z).
0
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Hence, by the change « = y/r and Fubini’s theorem,

1

L(0,f) < C) / L(y, f) dm(y) / Ly dr

B ly]

<Cin! / L(y, Hly*~"dm(y).

B

Now the requred inequality is proved by Holder’s inequality with the indices ¢ =
2n—1and ¢’ = (2n—2)/2(n—1), and by using the fact that the function y — |y[*~"
belongs to the space L? (B,dm). O

(1]
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