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EXISTENCE OF SOLUTIONS FOR INTEGRODIFFERENTIAL
INCLUSIONS IN BANACH SPACES

Nikolaos S. Papageorgiou

Abstract. We examine nonlinear integrodifferential inclusions defined in a separable Ba-
nach space. Using a compactness type hypothesis involving the ball measure of noncompactness,
we establish two existence results. One involving convex-valued orientor fields and the other
nonconvex valued ones.

1. Introduction. In this paper, we prove two existence theorems for
integrodifferential inclusions in a separable Banach space. The first existence theo-
rem concerns convex-valued orientor fields, while the second deals with nonconvex-
valued ones. Our “convex” result extends the works of Davy [3, Theorem 4.2],
Mukshinov [8] and Papageorgiou [15, Theorems 3.2 and 3.5]. All these works
treated differential inclusions with no Volterra operator present. Similarly, our
“nonconvex” result extends the work of Kisielewicz [5]. Furthermore, the results
of the present paper extend to multivalued integrodifferential systems, the recent
work of the author [14] on Volterra integral inclusions.

2. Preliminaries. The purpose of this section is to briefly review some
basic facts about the measurability and continuity properties of multifunctions (set
valued functions) that we will need in the sequel.

Let (2, X) be a measurable space and X a separable Banach space. Through-
out this paper we will be using the following notations:

Py (X) = {A C X: nonempty, closed, (convex)}

and P)k(c) (X) = {4 C X: nonempty, (weakly-) compact, (convex)}.

A multifunction F:Q — P;(X) is said to be measurable, if for every z € X
the R4-valued function w — d(z, F(w)) = inf{||z — 2||:2 € F(w)} is measur-
able. In fact this is equivalent to saying that for every U C X open, F~(U) =
{w € Q:F(w)NU # 0} or that there exists a sequence {f,},>1 of measurable
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functions f,: Q) — X such that F(w) = {fn(w)},>; for all w € Q. A multifunction
F:Q — 2X\{0} is said to be weakly (or scalarly) measurable, if for every z* € X*
its support function w — o(z*, F(w)) = sup{(z*,z):z € F(w)} is measurable. It is
clear that for Py(X)-valued multifunctions measurability implies weak measurabil-
ity (just observe that for every z* € X*, o(z*, F(w)) = sup,,>; (z*, fn(w)), where
fn: Q2 = X are measurable functions such that F(w) = {fn(w)},~; for all w € Q).
The converse is true if there is a o-finite measure p(-) defined on %, ¥ is y-complete
and F(-) is Pygc(X)-valued. For a multifunction F: Q — 2%\{@}, the graph of F(-)
is defined by GrF = {(w,z) € Q@ x X:z € F(w)}. We say that F(-) is graph
measurable, if GrF € ¥ x B(X), with B(X) being the Borel o-field of X. For
Py(X)-valued multifunctions measurability implies graph measurability. Indeed let
fn: 2 = X, n > 1 be a sequence of measurable maps such that F(w) = {fn(w)},,>1
for all w € Q and note that GrF = {(w,z) € Q x X:d(z, F(w)) = 0}. But
d(z, F(w)) = inf,>1 |[[z— fr(w)|| and for each n > 1, (w, z) = ||z — fn(w)|| is measur-
able in w, continuous in z (i.e. a Caratheodory function), hence (w, z) = ||z— fn(w)]|
is jointly measurable = (w,z) = d(z, F(w)) = inf,>1 ||z — fr(w)]| is jointly measur-
able = GrF € ¥ x B(X). Again the converse is true if there is a o-finite measure
u(-) defined on ¥ and ¥ is p-complete. For more details we refer to Wagner [18].

Now suppose that (Q,%, u) is a finite measure space and F:Q — 2X\{(} a
multifunction. By S}. we will denote the set of integrable selectors of F(-); i.e. S} =
{f € L}Y(X): f(w) € F(w)p—a.e.}. This set may be empty. For a graph measurable
multifunction, it is nonempty if and only if w — inf{||z||:z € F(w)} € L%. This
is the case if w = |F(w)| = sup{||z||: 2 € F(w)} € L and such a multifunction is
called “integrably bounded”. For a graph measurable multifunction S}. is closed
in L'(X) if and only if F(-) is P¢(X)-valued, and is convex if and only if F(-) is
convex valued. Also the set S} is decomposable, in the sense that if fi, fo € Sk
and A € X, f = xafi + xacf2 € S}. For further details we refer to [12 ] and [13].
Using the set Si., we can define a set valued integral for F(-) by setting

[ 1@t ={ [ riducor s e st}

The vector valued integrals involved in this definition are understood in the sense
of Bochner. A detailed study of this set valued integral can be found in Kandilakis-
Papageorgiou [4].

Next let Y, Z be Hausdorff topological spaces and F:Y — 2Z\{}. We say
that F'(-) is upper semicontinuous (u.s.c.) (resp. lower semicontinuos (l.s.c.)), if
for every U C Z open, the set F+(U) = {y € Y:F(y) C U} (resp. F~(U) =
{y € Y:F(y)ynU # 0}) is open in Y. If F(-) is both u.s.c. and ls.c., then
we say that F'(-) is continuous. In fact continuity is equivalent to saying that
F:Y — 2%\{0} is continuous from Y into 2Z\{0} the latter equipped with the
Vietoris topology. If Z is a metric space, on Pf(Z) we can define a generalized
metric, known in the literature as the Hausdorff metric, by setting h(A4,B) =
max[sup,¢ 4 d(a, B),supyc g d(b, A)]. The metric space (P¢(Z),h) is complete if Z
is complete. A multifunction F:Y — P;(Z) is said to be Hausdorff continuous
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(h-continuous), if it is continuous from Y into (P¢(Z),h). Since on Py(Z) the Vi-
etoris and Hausdorff topologies coincide (see Klein-Thompson [6, Corollary 4.2.3,
p. 41]), a Py(Z)-valued multifunction is continuous if and only if it is h-continuous.

Let X be a Banach space and B its family of bounded sets. Then the Hausdorff
(ball)-measure of noncompactness 3: B — R is defined by

B(B) = inf{r > 0: B can be covered by finitely many balls of radius r}.

A comprehensive introduction to the subject of measures of noncompactness
can be found in Banas-Goebel [1].

Finally, if {A,}n>1 C 2%\ {0}, we set

w-limA, = {z € X:2 = w-limz,,,Zn, € Ap,,n1 <Ng <...<np < ...}

3. Existence results. Let T' = [0,7] and X be a separable Banach space.
Let K:A = {(t,5):0 < s <t <r} — L(X) be a strongly continuous kernel (i.e.
it is continuous from A into £(X) = {bounded liner operators from X into itself}
equipped with the strong operator topology) and let V:C(T,X) — C(T,X) be
the Volterra integral operator corresponding to the kernel K(t,s); i.e. V(x)(t) =

f(f K (t,s)x(s) ds. We consider the following integrodifferential inclusion:
z € F(t,z(t),V(x)(t)) a.e., z(0) = o (%)

By a solution of (x), we understand a function z(-) € C(T, X) such that

z(t) = zo + /Otf(s)ds

for all t € T and with f € SIIT'(-,J:(~),V($)(~))' Note that such a function is almost
everywhere differentiable and & = f(t) € F(t,z(t), V(z)(t)) a.e.
We will start with a “convex” result. For this we will need the following
hypothesis on the orientor field F (¢, z,y)-
H(F); F:T x X x X — Pj.(X) is multifunction such that
(1) (t,z,y) = F(t,z,y) is weakly measurable,
(2) (z,y) = F(t,z,y) is us.c. from X x X into X,,, where X,, denotes the
Banach space X equipped with the weak topology,
(3) B(F(t,B1,B2)) < k(t)[8(B1) + B(Bz2)], for all B;,B; C X nonempty
bounded and with k(-) € LY,
(4) |F(t,z,y)| = sup{l|zll: 2 € F(t,z,9)} = a(t) + b(t)(l|zl| + [lyll) a.e. with
a(-),b(-) € LL.
In the proof of the “convex” existence result, we will need the following lemma,
which in fact is of independent interest.

LEMMA 3.1 If (Q,%,u) is a o-finite, complete measure space, X is a sep-
arable Banach space, F:Q — 2X\{0} is a graph measurable multifunction and



32 Nikolaos S. Papageorgiou

u: Q2 x X = R is a measurable function, then w - m(w) = sup{u(w,z):z € F(w)}
s measurable.

Proof. We need to show that for every 8 € R, the level set {w € Q:m(w) >
0} € ¥. Note that m(w) > 6 if and only if there exists z € F(w) such that
u(w,z) > 6. So {w € Q:m(w) > 0} = projo{(w,z) € GrF:u(w,z) > 6}.

But since by hypothesis F(-) is graph measurable and u(-,-) is measurable,
we have {(w,z) € GrF:u(w,z) > 0} € ¥ x B(X). Then from von Neumann’s
projection theorem (see Saint-Beuve [16, Theorem 4]), we get that projo{(w,z) €
GrF:u(w,z) >0} € . So m(-) is indeed measurable as claimed by the lemma.

Now we are ready to state and prove our first existence theorem:

THEOREM 3.2 If the hypothesis H(F')1 holds, then the problem (x) admits a
solution.

Proof. We will start by deriving an a priori bound for the solutions of (x). So
let z(-) € C(T, X) be such a solution. Then by definiton we have:

() = 70 +/0tf(s) ds

for all t € T and with f € LY(X), f(t) € F(t,z(t), V(z)(t)) a.e. Hence
o0l < lloll + [ 17N

< lloll + | t (st 005 (1o +

/8 K (s, 7)a(r) dr
0

)) ds
< llall + | t (ats) + 066+ 065) [ il ar ) as

where ||K(t,s)||c < M, for all (¢,s) € A. Invoking Pachpatte’s inequality (see
Theorem 1 in [9]), we get that there exists Ms > 0 such that for all t € T [|z(¢)|| <
M,. Then V(z)(t) < [y Mi||z(s)||ds < MiMasb = Ms

Define F:T x X x X = P;.(X) by F(t,z,y) = F(t,pa, (), pas, (y)), where
P (+), P (-): X — X are the Ms and M3 radial retractions respectively. Recalling
that pas,(-), P, (-) are Lipschitz continuous and using the hypothesis H(F);(1),
we see that (¢,2,y) — F(t,z,y) is weakly measurable, while from the hypothesis
H(F)1(2) and Theorem 7.3.11, of Klein—-Thompson [6], we have that (z,y) —
E(t,z,y) is us.c. from X x X into X,,. Also if By, B, C X are nonempty, bounded
sets, then we have

A

B(F(t, B1, B2)) = B(F (¢, pa, (B1), Py (Bz2)) < k(t)[8(par, (Br) + B(pis (B))]-

But note that

P, (B1) C conv(By U {0} = B(pm, (B1)) < B(conv(By U {0})) = B(B1)
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and similarly we get that B(par, (B2)) < B(Bz). Therefore we have that
B(E(t, B1, B)) < k(t)[B(B1) + B(Bs)] a.e.
Finally, observe that |F'(t,z,y)| < a(t) + b(t)(Ms + Ms) = ¢(t) a.e. with
o(-) € L. Let
¢
W= {y € O X)) =20+ [ g(5)ds, tT, g < olt) ac)
0

Clearly this is a nonempty, bounded, equicontinuous and closed subset of C(T', X).
Next let R: W — 2 be defined by

mmzweWww=m+Af@@

teT, feLY(X), ft)€ F(t,z(t),V(z)(t)) ae.}
First we will show that R(-) has nonempty values. Fix z(-) € C(T,X) and
z* € X* and let 61:T — T x X x X be defined by 0:(t) = (¢, z(t), V(z)(t)).

Clearly 6;(-) is measurable. Also let 82:7 x X x X x X — R be defined by
05(t,z,y) = o(x*,F(t,z,y)). Because of hypothesis H(F);(1), 6a(-,-,-) is mea-
surable. Then 65 0 6;:T — R defined by (65 o 6,)(t) = o(az*, F(t,z(t), V (2)(t))
is measurable = ¢t — F(t,z(t),V(z)(t)) is measurable for the Lebesgue o-field
on T (see Section 2). So from Aumann’s selection theorem (see Theorem 5.10
of Wagner [18]) and since |F(t,z,y)| < o(t) ae. with o) € L%, we see that
s%(.’w(.)’v(w)(.)) # 0, which of course implies that R(z) # 0 for all z(-) € C(T, X).
Clearly R(z) is convex and we will now show that it is closed. Indeed let
{y¥n}n>1 C R(z) and assume that y, — y in C'(T, X). Then by definition y,(t) =

o + [ fn(s)ds, for all t € T and with f, € 5115(_ sy ™= 1 Let G()

conv{ fn(t)}n>1. Clearly G(-) is measurable and G(t) C F(t,z(t),V(t)) € Prc(X
(since B(E'(t, By, By) < k(t)[3(B1) + B(By)] a.e.; just take By = {x(t)} and B, =
{V()(t)}, note that 3(B;) = 8(Bs) = 0 and so obtain that 3(F(t, By, By)) = 0 =
E(t,z(t),V(2z)(t)) € Pee(X). Hence G(t) € Pr(X), t € T, and |G(t)| <
|E(t,2(t),V(z)(t))] < ¢(t) ae. So invoking proposition 3.1 of [10], we de-
duce that SE € Pyr.(L*(X)) and so by the Eberlein-Smulian theorem and

by passing to a subsequence if necessary, we may assume that f, — f in

L'(X). Since S}(_’w(_)’v(w)(_)) € Pur.(X) (see Proposition 3.1 in [10]), we get

that f € Sk iy Then y(t) = zo + [ f(s)ds for all ¢ € T and with
1

fe SF(-,z(-),V(z)(-))' So R(z) € Ps.(C(T, X)).

Next let B C W be nonempty and closed. In what follows, we set B(t) =
{z(t): z(-) € B}. We have

R(B)(t) =

{mo +/0 f(s)ds: f € LN(X), f(s) € F(s,z(s),V(z)(s)) ae.,z € B}
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Note that {F(s,z(s),V (z)(s):x € B} C F(s,B(s),V(B)(s)) for all s € T.
Also for every z* € X*, we have

a(a*,F(s,B(s),V(B)(s)) =0 | =*, ) F(s,2,y)
zEB(s)
yeV(B)(s)

= sup[a(m*,ﬁ'(s,m,y)): (z,y) € B(s) x V(B)(s)]-

Observe that s — B(s) is measurable, since if {z,}n>1 C B is dense in B,
then from the continuity of the evaluation map, we have that B(s) = {zn(5)}, 51,

establishing the measurability of B(-). Similarly, using theorem 3.1 of Kandilakis—
Papageorgiou [4], we have that

V(B)(s) = {/Os K(S,T)$n(T)dT} . = s = V(B)(s) is measurable.

Since (s,z,y) — o(z*, F(s,z,y) is measurable (follows from hypothesis H(F)(1),
from Lemma 3.1, we deduce that

s = suplo(z*, F(s,z,y)):x € B(s),y € V(B)(s)] is measurable
= s — o(z*, F(s, B(s), V(B)(s)) is measurable
= s — convF (s, B(s),V(B)(s)) = H(s) is measurable for the Lebesgue
o-field on T (see Section 2).

Thus there exist h,:T — X, n > 1, Lebesgue measurable functions such that for
allt € T, H(t) = {hn(t)},,»,- So invoking Proposition 1.6 of Mdnch [7] (see also

Lemma 2.2 of Kisielewicz [5]), we have

MMEWSﬂMUMMWM4§AMMmmm@
t t
z/ﬂW@mz/ﬂ@@M%Wm®W
0 0
s/k@wmm+MWM@m
0

t
=Ak@wmm+mwm@m&
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From the definition of the Volterra integral operator V (-), we have
BB = (B)e) =8| [ Ko, 0B
0
=0 [/ K(s,7)xn(r)dr:n > 1]
< / T B(K (s, P)an(r)in > 1)dr  (see Ménch [7])
0
< / MiB({on ()} nz1)dr = / M A(B(r))dr

= [swmenis< [ [ s < [ peen

So we have:

/ k(s ) + MyrB(B(s))]ds.

Let ¢(B) = supicr [exp (—)\ fo ds) B(B(t ))], A > 0. Using the prop-
erties of (-) and the fact that W C C(T,H) is equicontinuous, we can easily

check that (-) is a sublinear measure of noncompactness, in the sense of Banas—
Goebel [1]. We have

) S/Otk(s) (1+ Myr) exp( / k(r dT)
exp ()\ / k(T)dT) B(B(s))ds
/ k(s)(1 + Mir)(B) exp ()\ /0 ) k(T)dT) ds
t exp YdT

(
o [ )

A
= prm@en (~r [ k) < (P e, vt

= w(R(E) < (F5) B,

So if we choose A > (1 + Mir), we have that R(-) is 1-contraction.

Next we will show that the multifunction R(-) has a closed graph. To this
end, let [z, yn] € GTR, n > 1, [Th,yn] = [z,y] in C(T, X) x C(T, X). By definition
for every n > 1, we have y,,(t) = x0+f0 fn(s)ds for all t € T and with f,, € L'(X),
fa(t) € F(t,z,(t),V(z,)(t) a.e. But z,, = x in C(T, X) and so V(z,) — V(z) in
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C(T, X). Since F(t,-,-) is u.s.c. from X x X into X,,, using Theorem 7.4.2, p. 90
of Klein—Thompson [6], we have

conv () F(t,2a(t), V(@) (1)) = G(t) € Puke(X)

and clearly t — G(t) is a measurable multifunction, with |G(t)| = sup{||z|:z €
G(t)} < o(t) a.e. So invoking once again Proposition 3.1 of [10], we get that
S& € Pype(LH(X)). Since {fn}n>1 € S, from the Eberlein-Smulian theorem and

by passing to a subsequence if necessary, we may assume that f,—f in L'(X).
Using Theorem 3.1 of [11] we have

f(t) € convw-im{ f, (t) }n>1 C Convw-ImE (¢, z,(t), V(2n)(t))
C F(t,a(t), V(z)(t)) ae.,

the last inclusion following from the fact that ﬁ’(t, -,+) is w.s.c. from X x X into
X, is convex-valued and z,,—z, V (z,)—=V (x) in C(T, X). Hence

t
y(t) = 20 + / F(s)ds

for allt € T and with f € SII}(
graph in W x W.

Apply Theorem 4.1 of Tarafdar—Vyborny [17], to get x € R(z). Then as
in the beginning of the proof, using the definition of F(t,z,y) and Pachpatte’s
inequality (Theorem 1, in [9]), we get that [|z(t)|| < Ma, ||V (z)(®)|| < M3 for all
t € T and so F(t,z(t),V(z)(t)) = F(t,z(t),V(z)(t)). Hence z(-) € C(T, X) is the
desired solution of (x).

V(D)) Thus [z,y] € GrR; i.e., R(-) has a closed

Now we will prove the “nonconvex” analog of Theorem 3.2. For this we will
need the following hypothesis on the orientor field F (¢, z,y).

H(F); F:T x X x X — P§(X) is a multifunction such that
(1) (t,z,y) = P¢(X) is graph measurable,
(2) (z,y) = F(t,z,y) is L.s.c.,
(3) B(F(t,B1,B2)) < k(t)[8(B1)+3(Bz2)] a.e. for all By, B, C X nonempty,
bounded and with k(-) € L%,
(4) |F(t,2,y)| = sup{|lz]|: z € F(t,2,9)} < a(t) + b(t)(llzl| + [lyl]) a-e., with
a(-),b(-) € LL.
THEOREM 4.3 If hypothesis H(F') holds, then (x) admits a solution.
Proof. As in the beginning of the proof of Theorem 3.2, we can get that for
every solution z(-) € C(T,X) of (x), we have ||z(t)|| < M2 and ||V (z)(#)|| < M3
for all t € T. As before, define F(t,z,y) = F(t,pm,(z),prm;(y)). Again we can

easily check that F'(-,-,-) is graph measurable, F'(t,-,-) is Ls.c., B(F(t, By, By)) <
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KOIB(BL) + B(By)] ae. and |F(t,,) = sup{lsl]: 7 € F(t,,)} < (t) ace. with
o(-) € LL. Set

W = {y € C(T,X):y(t) =m0 + / f(s)ds, t € T, | f(1)]] < olt) ae.}.

Then W is a closed, convex, bounded and equicontinuous subset in C (T, X).
Let R: W — 25" be defined by R(2) = Sk vy

Note that for every x € W, the map n,:T xT — T XX x X x X de
fined by 7, (t,v) = (¢, 2(t),V(x)(t),v) is measurable. Then GrF'(-,z(-),V(z)(:)) =
n;1(GrF) € B(T) x B(X) since F(-,-,-) is graph measurable. So

t = F(t,z(t),V(z)®))

is measurable for the Lebesgue o-field on T. Thus 5113( and in

Sz (), V(2)() # 0
fact it belongs in Py(L'(X)) and is decomposable (see Section 2). Hence R: W —
P¢(L'(X)) and from Theorem 4.1 of [11], we know that it is Ls.c. So we can apply
Theorem 3 of Bressan—Colombo [2] and get v: W — L'(X) continuous map such
that v(z) € R(x) for all x € W. Then define u: W — W by

¢
u(z)(t) = xo +/ v(z)(s)ds, te€T.
0

Let B C W be nonempty and closed. We have B(u(B)(t)) < 8 [f(fv(B)(s)ds]

Let {n}n>1 be dense in B. Then v(B)(s) = {v(zn)(s)},,>;- So using Propo-
sition 1.6 of Ménch [7], we get -

ﬂ(U(B)(t))Sﬁ[ / v(xn)<s)ds=n21] < / B(o(en)(s):n > 1)ds
< / B(E(s, B(s), V (B)(5)))ds < / K(s)BB(s)) + BV (B)(s))lds

t
S/ k(s)[B(B(s)) + MirB((B)(s))]ds.
0

As in the proof of Theorem 3.2, set ¥(B) = sup,cp [exp (—)\ f(f k(s)ds)],
which is a sublinear measure of noncompactness on the nonempty subsets of W.
Then, as before, we get ¥(u(B)) < (1 +rM;)A\~y(B)

If we choose A > (1 +rM,), we get that u(-) is a ¢-contraction. Clearly u(-)
is continuous, since v(-) is. Hence Theorem 4.1 of Tarafdar—Vyborny [17], tells us
that u(-) has a fixed point; i.e. there exists £ € W such that £ = u(z). Using the
definition of F'(t, z,y) and Pachpatte’s inequality, we can easily check that ||z(t)|| <
M, and ||V (z)|| < M for all t € T. So F(t,z(t),V(x)(t)) = F(t,z(t),V(z)(t)).
Therefore z(-) € C(T, X) solves (x).
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Remark. If F:T x X x X — P¢(X) is a multifunction such that (z,y) —

F(t,z,y)) is h-continuous, then (z,y) — bdF(¢t,z,y) is h-continuous too (here
bdF(t,z,y) denotes the boundary of F(t,z,y)). Thus if F(-,-,-) satisfies al-
so H(F)2(1) (3) and (4), we deduce that the integrodifferential inclusion z €
bdF(t,z(t),V(z)(t)), z(0) = zo has a solution. Such results are useful in con-
trol theory, in connection with the maximum principle.

(1]
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