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TRACE FORMULAS OF GELFAND-LEVITAN TYPE

Milutin Dostanié

Abstract. We deduce some abstract formulas for the first and the second regularized
trace of discrete operators under conditions that are easier for verification. Some known results
are improved and completed as well.

Introduction. Gelfand and Levitan [2] proved that for the eigenvalues p,
of the Sturm-Liouville operator

—y" +q(z)y = My
y(0) = y(r) =0, z € [0,7], q real function, g € C*[0,7]

the equality

S (== 1 ey = o [a@)e - T +a@) @)
n>1 0
holds.

If we denote by T the differential operator generated by the differential expres-
sion I(y) = —y" and by the boundary conditions y(0) = y(m) = 0, then \,,(T) = n?
and the corresponding eigenfunctions are @, (z) = /2/7 sinnz.

Denote by P the operator on L?(0,7) defined by Pf(x) = q(z)f(x). In [4] it
was proved that (1) can be rewritten as

Z[Nn —An — (P‘Pnacpn)] =0 (2)

n>1

The hypothesys was stated that formula (2) holds in the abstract case (i.e.
when T is a discrete selfadjoint lower bounded operator on a separable Hilbert
space H and P is some bounded operator).
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In [7] the relation (2) (in case P = P*) was proved under some aditional
conditions concerning the eigenvalue distribution function and under the condition
that the sequence p, — A, — (Py¢n, pn) has special asymptotic behavior. But, to
estimate the behavior of that sequence, it is necessary to know the asymptotic of
eigenvalues of the perturbed operator T+ P. In [1], [5] the relation (2) was proved
under some conditions concerning the spectrum of the distribution function of T,
but with parenthesis. Trace formulas for the powers of the Sturm-Liouville operator
were obtained in [3].

In this paper we find the first and the second regularized trace (in the abstract
case) assuming only that nonperturbed operator satisfies some conditions. Some
results from [5] are upgraded. Also, we consider the case when the perturbation P
is an unbounded operator (which is subordinated to some power of T').

In [8] the problem of regularized traces of higher orders was considered by
the method of analytic extension, but in general case it is hard to find efectively
that extension.

Main result. Let T = T™* be a discrete lower bounded operator and let P
be a bounded operator on a separable Hilbert space H (P € B(#)). Denote by A,
or the eigenvalues of T' and the corresponding eigenvectors (||pr|| = 1). Let (ux)
denote the sequence of eigenvalues of the operator T' 4+ P arranged according to
growing moduli. By a, < b, we denote the fact that there exist constants ¢; > 0,
¢z > 0 such that C1 < a, /b, < Cy

THEOREM 1. If A\pp1(T) — Aa(T) < n/P=1 (0 < p < 1) (A, are the distinct
eigenvalues of T) and P is B(H), then

!
Z (ur — Ak — (Por, pr)) = 0.
k>1

(E' denotes that the terms, arising from the repeated eigenvalues \,, are grouped.
If all the eigenvalues except finitely many are simple, then

Z(Nk = X — (Pog, 1)) = 0).
E>1

Before proving Theorem 1 we prove some Lemmas.

LEMMA 1. Let A1 < o < A3 < ..., Ay = 400 and 0 < p < 1. Then
st — An X 0P if and only if Anp1 — Ap X AP,
Proof. From the condition

CinP™1 < Apyr — Ay < ConP~t (C) > 0,0, > 0),

summing we get Apy1 — A1 < Cs [y 2'/P~'dz and therefore \,, = 0(n'/?). Simlarly,
we obtain ), > const - n'/? (const does not depend on n). So, A, =< n'/?. From



Trace formulas of Gelfand—Levitan type 53

Mgt — An X n'/P=1 it follows A,p1 — Ap <X AL7P. Suppose now Apy1 — A, < AL7P.
Then we have Aut1/An = 1, a1 — An < AL% and therefore

An
n — p
Cl(n_l)sz)"";\lli_p)‘” g/x”‘ldmg AR
v=1

p
v+1 bl

i.e. A\, > constnl/?.

Analogously we get A, < const -n'/?. So \,, < n/P. From \,;1 — A, < AL7P
it follows A1 — Ap < nt/P—1,

Let Ty, = {A:|A] = 1 = (An+An41)/2} and ¢(2) = Y45, [2—Ak| " Observe
that |R.|; = ¢(z2). Here R, = (z — T)~! and | - |; is the nuclear norm.

LEMMA 2. If z € T, then |¢(2)| < Cslnn/n'/P~1 (0 < p < 1), where the
constant Cs does not depend on n.

Proof. Since for z € Ty, ¢(2) < ¢(r,) and 1/(r,, — \,) < n/P~1 it is enough
to prove that

o] n—1
Z 1 S C41nn; (b) 1 < C41nn;
A =Dy nt/p—1 — Tp — Ak nl/p—1

where C4 does not depend on n.

(a) We have
> 1 > )\k — )\k,1
Z <G Z N VY
k=n+2 Ak =T k=n+2 /\k p()‘k - Tn) (4)
T dx _ Anat
< [ S p—1 n+
<G / T =P (z —1y) Carnh ( Tn )
An+1
where
+oo ur-1
o) = [ 2

T

and the constant C5 does not depend on n.

From the asymptotic relation h(z) ~ —In(z — 1), z = 1+ 0, r, =< n'/?,
lim,, 00 Ant1/rn =1 and (4) it follows that

>

k=n+2

n
< const ————.
Me—Tn nl/p—1

The inequality (b) can be proved analogously. O

LeEMMA 3. The operator T + P is a discrete one.
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Proof. For z € T';, we have
PGz =T)" | < [IPll/d(2,0(T)) < Ce/n'/P"* 0 (n— o).

Therefore the operator I — P(z — T)~! has a bounded inverse for 2 € T, if n is
large enough and

(z=T-P)'=(=-T)"'> (P(z-T)"")".

n>0

Since (z — T')~! is compact then (2 — T — P)~! is also compact and so T + P
is a discrete operator.

Remark. Similarly as in [9] we can prove that the multiplicities of eigenvalues
of T'and T + P are equal if the absolute value of the eigenvalues are large enough.
Also, the operators T and T + P have equal number of eigenvalues (with their
multiplicity) in D,, = {A:|A| = r,} for n large enough.

Proof of Theorem 1. Let R\' = A—T —-P) L, R\ =(A-T) Y, A e,
Then Ry’ — Ry — RA\PR) = ) ;5 R\(PR))*. The operator Ry is a nuclear one
and hence N

tr (Ry' — Ry) —tr RAPRy = ) _tr RA\(PR))*
£>2

Since [8]

tr R\(PRy)F = tr (PRy)*;  k>1

| =
S|~

from (5) it follows

1
—/tr Ry — Ry)d\ — W/trPRAd/\ Z P /tr(PRA) . (6)

T, k>2 T,

1

Having in mind that

and

1 n
— / Atr (Ry' — Ry) Z' ur — Ak) (the property of Riesz projectors)
21 =

from (6) it follows

>k =M= (Porsi) = 3 1o [ 1 (PR )
k=1
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Now, we estimate

tr (PR,\) d.
2mi
T

|PRA|1 X||P||*~|Ra|1]|RA||*~!, by Lemma 2 it follows

IN

From |tr (PR, )¥|

r Inn

|tI‘ (PR)\) | < C3||P|| nl— l/p

[[RAIIF. (8)
Let T, = {\: |\ = 75,0 < arg A < 7/2}, T, = {A:|A] = 7, —7/2 < arg A < 0}
dn = (Ant1 — An)/2 and @, = dnr;,t. Clearly, d,, < n'/P~! and ¢, — 0 (n = 00).
Now, we estimate

P .
o tr ( R,\) d\
Fl
From (8) it follows
1 & Cs\ pe Inn k-1
o [ (PRI < 2P T / IRl ©)
1"/
Since
w/2 /2
/||R,\||’“ 1Al = /||RT"6,9 L df + /d0+ / IRy, oio || 1),
1By eioll < di (0< 8 < on) and [|R,., el < r7'sind (0 <6 < 7/2) from (9) it
follows
1 Cs k Inn T'nPn 1 / do
3 [ 5RO < P (dil ") et |
F’ $Pn

Since the function
/2

d6
k—2
T / (sin B)F—1

T

is bounded on [0,7/2] (for k > 3) from previous inequality we get

1  Inm 1 1 1
2m/tr (PRy)kd)| < —” I ) (dg_z + rﬁ_zo (wﬁ—z))

FI

Inn

k
< O D)
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(C7 does not depend on n and k). Similarly, we can prove that

Inn

1 k k
57 | PR AN < OF —q =y

21
L

Because T is semibounded, we have (for k > 3)

1 . X Inn
57 tr (PR))"d\| < Cy n(/p— k1)

I'n

(10)

Analogously we prove

2

1 9 In“n
2—m/tr (PR)\) d\ S COHStW

Tn

where conts does not depend on n. Since 0 < p < 1, from (7), (10) and (11) it

follows
n

> ik — A — (Por, ox))

k=1

In2n
<Gt

where constant Cy does not depend on n, and finally

!
D (e =M — (Por, 1)) = 0. O
E>1

Example. Let T be the linear operator defined by the differential expresion
I(y) = —y" and the boundary conditions y(0) = y(w) = 0. It is easy to verify that
M (T) = n? and ¢, (z) = \/2/m sinnz. Let P:L?(0,7) — L?(0,7) be a bounded
operator defined by Pf(z) = q(x)f(z) (q is a real smooth function on [0,7].) Here
we have p = 1/2, Apy1 — Ap = 2n + 1 < (n?)'/2. By Theorem 1, applying simple
transformations [7], we get (1).

THEOREM 2. If N7(A) = 30\ (1y<x ~ CA (A = +00), 0 < p < 2/3 and

S, m = 0(1), then there exists a sequence of positive integers n., such that

Nm

ml_lfiloo;(“’“ — M — (Por,pr)) =0

(Here the eigenvalues are counted according to their multiplicity).

From the asymptotic relation N7(A) ~ CA? (0 < p < 1) it follows that there

exists a sequence n; < na < ng < ... such that A\, 11 — Ang > C’onz/”_1 (for some
constant Cy > 0) Let II;, = {)\ |/\| =T = ()‘nk+1 + /\nk)/Q}
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LEMMA 4. ¢(ry) = O(rF ™)

Proof. Since

1 2p—1 = 1 N 2p—1
— = d < = P
Tk — Ank O@," ) an ; Th— Ay ~ Tp— Ap, O™ )
it is enough to prove that
- 1 2p—1
> =0(ry" ). (12)
v — Tk
V="Np42
Since
> 1 N N N(A
5 < [ WOV N,
4 v — Tk )\—rk /\—rk np+1 ()\—T‘k)
V=N}k42 A"k+1 Ank+1
—ng s AP
= +0 / d\
)‘nk-i-l — T ()\ - Tk)2
An g +1
and g /(A — 1) = O(ri?™"), we obtain
> 1 S 7 AP
— =0 ) +0 / —=dA
V:n2k+2 Ay — T ) 2 (A —1p)?

Now, we estimate [y - AP(X = r)~2d). Having in mind that
np

Pt — 1)-2dt ~
[ee-n=a~ 2t @o1v0
and
oo foe) )
[ wo-ma=agt [ ea-nas T~ o)
net1 Tk

Anp+1 Ang+1/7p

we get (12). O

Proof of Theorem 2. is obtained similarly as for Theorem 1 using Lemma 4.
Integration is performed over the sequence of contours II;. One obtains

s _ 1] 1

E (,U,,, - - (PQOV;(PV)) < COHSth 2/p + 5 2_2 /tr (PR)\)Qd)‘
T

v=1

I
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It has to be proved that

57 tr (PRy)?d\ = 0 (k — +00). (13)
Iy
Since P \(P )
Pv, Pk Pk, Pv
tr(PRy)* = ) :
22 D)= A)
we get
= P‘puagol P‘Pl:‘ﬂu)
tr (P d)\ =2 .
HPR) Zu Z+1 Av =N
v= T

Applying Abel transformatlon and Bessel inequality we get

o0

22 3 P%,sz —i(lpl’%

v=1l=n+1

< const Z 3 =0 (k> 400)
ne+1 —

(const does not depend on k), which proves (13). O

Remark. Theorem 2 is proved in [5] in case 0 < p < 1/2. If the additional
condition Y ) (Any1 — Ay) ' = 0(1) is satisfied, then Theorem 2 is valid also for
1/2 < p<2/3.

THEOREM 3. If Apy1(T) — An(T) < n/P~1 (0 < p < 1/2) then

lim (Z(ui — A — 2\ (Pook, 1)) — An> =0

n—oo
k=1

where

=2 (Z(PSOM%)(P%%) =Y (Pou o) (Por, ) +)"“> _

k=1 v=1 v=n+1 )\V o )\k
Proof. Starting from

R\ = Rx=)_ R\(PR))*,

k>1

/X%r R\ — R)\)d\ = Z'( 2_ 22

/)\2trR,\(PR,\ /)\tr PR,\

Cn={NA=rp = ()‘n + Ant1)/2}
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we get
"(u2 —)\2)—2—/)\trPR>\d)\——/)\tr (PRy)?d\
= (14)
k2m/)\tr PR)\
k>3
Since "
1
5 / Atr (PRA)A =) M(Por, )
mrn =
and )
— /)\tr (PRy)%d\ = 4,
2mi
from (14) we obtain
S0 = X~ 2u(Poogr) — An = Y0 2L / Mr(PRyMIA. (15)
k=1 k>3 2m

Similarly as in Theorem 1, we prove that

1 k & Inn ]
o /)\tr (PR))"dA| < C1y oy Gy Ry k>3

where the constant C1o does not depend on n and k. From (15) and the previous
inequality it follows that

n

. Inn
> (k= AF = 20(Pp, 9r)) — An| < Cui 7y
k=1

(C11 does not depend on n). Since 0 < p < 1/2, this inequality implies the
statement of Theorem 3. O

THEOREM 4. Let T = T* be a discrete lower bounded operator (on H) with
the eigenvalues N\, and with the orthonormal system of eigenvectors ¢y; P € B(H)
and Np(\) ~ CAP where 0 < p < 1/3. If uy are the eigenvalues of T + P, then
there exists a sequence of positive integers ny such that

Nk
lim (Z(ui - X, =20, (Pyy, 0u)) — Ank> =0

k—oo
v=1

Proof. We follow the proofs of Theorems 1 and 3. Crucial step is the
estimation of the integral

Atr (PRy)™dA
27r

g
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(I1x and ny, are previously defined). Using Lemma 4 we obtain

1 m m 1
I

where contant C}2 does not depend on k and m. The equality

Nk

Z(N?f — A0 = 20(Pou,00)) — Apy, = Z

v=1 m>3

21
Iy

combined with (16) gives

23

Z(/ﬁ/ — A0 =20 (Ppu, p0)) — An,

v=1

< Cl3m-
Ny,

This implies the statement of Theorem 4 (because 0 < p < 1/3). O

Consider now the case when perturbation P is an unbounded operator which
is “subordinated” to some power of T'.

THEOREM 5. Let T = T* be a discrete, positive operator on the Hilbert
space H, kerT = {0}. Let (\) be the distinct eigenvalues of T, let {¢r} be the
corresponding system of eigenvectors and Apy1(T)—Ap(T) < n'/*71 (0 < a < 1/2).
If P is a closed operator, D(T) C D(P) (D(T), D(P) are the domains of T and P)
such that | Px|| < Ao||TPz||, Vz e D(T), 0<B<1/2—a, Ay =const then the
operator T + P is also discrete and the formula

!

Z (. — An = (PPn; Pn)) =0

n>1

holds.

(i are the eigenvalues of T + P. ' denotes that the terms arising from
the repeated eigenvalues \,, are grouped). Before proving this Theorem, we prove
a few lemmas.

LEMMA 5. If ¢1(A) = Y o A = M| ™8, 2(N) = 35,50 A28 A = M| 72,
then for A € T, = {\: A =71, = (A + Ang1)/2) the following inequalities
$2() < g2(rn) = O(n>=2=D2), 41 (N) < ¢ (ra) = O(n "9 2Inn)

hold.
Proof of this Lemma is obtained similarly as the one of Lemma 2. O
From Lemma 5 it follows

= —(1—a—p)/2 = —(1—a—p)/a
/{ré%):HPR,\H O(n ), }I\Ié%)n(|PR,\|1 O(n Inn). (17)
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LEMMA 6. Under the assumptions of Theorem 5 the equlity
tr Rx(PRy)* = =k ltr (PRy)*, keN (18)
holds.

Proof. From the assumptions of Theorem 5 it follows that the operator
P, = PT7 can be extended to a bounded operator on H. Let Gy = TPRy. Then
PRy = P,Gy. The operator GG is bounded and

Gy = Z )‘T_Lﬂ(/\ - /\n)_l('v ‘pn)‘pn

n>1
The relation (18) can be rewritten as
tr Rx(PR)\)® = =k 'd(P,G))*/d). (19)

Since P; and G are bounded operators (therefore G is nuclear) then

%tr (PiGy) = tr %(PlGA)’“
=tr (P,G PiGy... P,G) (20)
k—1
+PGy...P.Gy+ ...+ P.Gx...P,G» P,Gy") (G = dGx/d))

k—1
= tI‘PlG;\ Ple e PlG)\
—_
k—1
+ tI‘PlG)\PlG; PGy...PGy+...+tr PG, ... PG, PlGI)\
—_— —_—
k—2 k—1

Having in mind that dG/d\ = —TP R} we obtain

tr PLGy PiGy ... P,Gy = —tr (P,T®R3 PR, ... PR))
N—_— ——— N————
k—1 k—1
= —tr (PRAR) PR, ... PR)) = —tr R\(PR))*.
N————
k—1

Similary
tr (PLGAPLG) ... PiGy) = —tr R\(PR))*

tr (PG ... PGy P,G)y) = —tr R\(PRy)".
~————
k—1
From the previous equalities we get (20), then (19) and finaly (18). O
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Proof of Theorem 5. From (17) and Lemma 6 it follows that for n large
enough we have

1 1
/ Mr (Ry — R)\)dA — — / tr PRadA — — / tr (PRy)2dA
27 211 4mi
I'n I'n
= Z / tr (PRy)"d\
k>3 r,

where Ry = (A—T — P)~', Ry = (A — T)~". Since

o /,\tr — Ry)dA =" (k= M),

k=1

L / PR =3 (Poe. os).

k=1
1

e
Ty

tr (PRA)?d\ = 0 (n — oo) (because a+ 3 < 1/2),

we obtain

Z—E/tr PRy dX + o(1). (21)

n
> (k= Mk — (Por, or))
k=1 k>3

From (17) it follows

1 Inn
Fn
where C14 does not depend on k and n. Combining this inequality and (21) we get

n

D ik = Mk — (Pook, 1))

k=1

Inn
<Cl5 n(2—3a—30)/a + (1)

where the constant Cy5 does not depend on n. Since a + 8 < 1/2 the statement of
Theorem 5 follows immediately.

Ezample. Let T be the differential operator generated by the differantial
expresion I(y) = —y(® and the boundary condition

y(0) = y"(0) = y™(0) = y(m) = y"(m) =y () = 0 (22)

Let P be an operator defined by Py(z) = r(z)y(z¢) where zo € (0,7), r € C[0, 7]
and 7(0) = r(x) = 0. It is easy to verify that \,(T) = nb, Np(A) ~ A6,
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on(x) = \/2/7 sinnz and ||Py|| < const||T'/%y||, where the function y satisfies
the conditions (22). So, in this case @ = f = 1/6. Applying Theorem 5 we get

Z(/\H(T+P) —-n® - (P¢n, ¢n)) =0.
n>1

Since the series

2 r 2
E (Ppn,pn) = E \/j sinnwo/r(:l:)\/j sinnz dx
™ T
n>1 0

n>1

is absolutely convergent and its sum is r(xg), we obtain

S On(T + P) = %) = r(a).

n>1
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