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ON THE DIFFERENCE BETWEEN THE PRODUCT
AND THE CONVOLUTION PRODUCT
OF DISTRIBUTION FUNCTIONS

E. Omey

Abstract. If F' is a subexponential d.f. it is well known that the tails of the distributions
of the partial sums and partial maxima are asymptotically the same. In this paper we analyse
the difference between these two d.f. The main part of the paper is devoted to the asymptotic
behavior of F(z)G(z)—F*G(z), where F(z) and G(z) are d.f. and where * denotes the convolution
product. Under various conditions we obtain a variety of O-, o- and exact (asymptotic) estimates
for F(z)G(z) — F % G(z). Compared to other papers in this field, we don’t assume the existence
of densities to obtain our estimates.

1. Introduction

Let F' denote a distribution function (d.f.) with F(0—) = 0 and F(z) < 1 for
all z. The d.f. F belongs to the subexponential class (i.e. F' € §) if

. 1—F*(z)
lim oy =2 (1.1)

where F*2?(z) is the convolution of F' with itself, i.e. F*?(z) = P{X +Y < z},
where X and Y are i.i.d. with d.f. F. If (1.1) holds, then for all n < 2,

1-F(r)

where F*™ is the n-fold convolution of F. Many papers have been devoted to
properties of functions F' € S and classes of functions related to S. Also some
papers are devoted to the remainder term in (1.1) and (1.2). More precisely, for
n > 2, let R,(z) be defined as follows: R,(z) =1— F**(z) —n(1 — F(z)). In the
case where F' has a regularly varying density f € RV_, (defined below) Omey and
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Willekens [12, 13] proved that

lio @) = un(n —1) (a>2) (1.3)
. Ra(z)
lggl A—F@)Z kE(a)n(n—-1) (1<a<?2) (1.4)
lim wR“@ =n(n—1) (a=2). (1.5)
T @ [A-F@)dy
Here p = }o(l — F(y))dy and k() is a constant depending on «. Later there
0

have been efforts to remove the condition of a regularly varying density. Geluk and
Pakes [6] studied the class of d.f. F' for which

. Ry ()

lim ———— = -1 1.6

= (1— F(z))? (1.6)
which corresponds to (1.4) with @ = 1. In this paper we replace the density
condition by a condition on the asymptotic behavior of F/(z +y) — F(x) as x tends
to infinity. Among others we shall consider the class D(m, a) of d.f. F/(x) for which
there exists a measurable and positive function m(z) such that for some o € R and
ally € R,

i F@ 1) = F@)

in m(@) = ay. (1.7

This class (and related classes) of functions has proved to be useful in e.g. local limit
theorems in extreme value theory, in the theory of difference equations, convolutions
of functions, see e.g. [14,15]. In this paper we shall consider the following classes
of functions. In each of the definitions m is a positive and measurable function,
bounded on bounded intervals. Also without further comments, all O(1), o(1) and
other limit statements are considered to hold as x — co. For appropriate function
u(z) and v(x) we define

T T

wrev@) = [ue = vdy), weo@ = [ul-y)o)dy,
0 0
RV, = {m|m(xy)/m(z) — y*,Vy > 0},
ORY = {mfm(xy) = O(1)m(x),¥y > 0},
L = {m|m(log(z)) € RVy}, OL = {m|m(log(z)) € ORV}

SD = {m € LN L[0,00)|m ® m(z)/m(z) — Z/m(y) dy},

0
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OSD = {m|m @ m(z) = O(1)m(z)},
D(m) ={FdL.| ||F||lm:= sgpm * F(z)/m(z) < oo},

D%(m) = {F € D(m)|m = F(z)/m(z) = a},

OD(m) = {Fdf|| F(z +y) — F(z) |= O(1)m(x),Vy € R},
D(m,a) = {FdL|(F(z +y) — F(z))/m(z) — ay,Vy € R},

Mg(m) = {f: Rt = RY|(f(xt) — f(z))/m(z) — Blogt,Vt > 0}.

Some of these classes of functions have been used before in connection with
asymptotic expansions for convolutions of functions and sequences. Obviously if
m(z) = 1—F(z), then F € D*(m) iff Ry(z)/F(z) — 0iff F € S. If F has a density
f €SD, then F € D(f(x),1)ND2(f). It can be shown that for all classes where the
quantors Yy € R or Yy > 0 appear, the limit relation holds locally uniformly in y,
(see e.g. [2,5]). We summarize some more relations between the previous function
classes:

(i) 1— F(z) € ORVNL implies F(z) € S and F(z) € S implies 1 — F(z) € L;

(if) m(z) € ORV N L[0, co0) implies m(z) € OSD;

(iii) m(z) € LN ORV N L0, c0) implies m(z) € SD;

(iv) for m(z) € L N ORV:m(z) € L[0, c0) iff m € OSD;

(v) if F(x) € D(m,a) with m(z) = (1 — F(z))/z, then F(z) € RV_,.

Relations (i)—(iv) are well known; relation (v) is proved in [15]; see also
section 3 below. Being interested in d.f. F(z) € S C L, the auxiliary function m(z)
in OD(m) or D(m, ) should satisfy m(z) = o(1 — F(z)). If F(z) € D(m,a) with
a # 0, then F(logz) € II_,(m(log z)) and automatically m(z) = o(1— F(z)) holds
(cf. [5,8]).

Remark. In several of the results below, the condition that F' is a d.f. can be
omitted. Often it is sufficient to assume that F' is bounded on bounded intervals.

The paper is organized as follows. In section 2 we consider various closure
properties of the classes D(m) and D%*(m). Section 2.2 provides useful O-estimate
of R,. We also give a number of sufficient conditions on F and m to conclude
F € D(m) or D*(m). In section 3 we discuss closure properties of D(m, ) and in
section 4 we discuss the asymptotic behavior of the convolution of d.f. in OD(m)
or D(m,0) and we obtain several estimates of F(z)G(z) — F = G(x) under various
assumptions on F' and G. In Corollary 4.6 we obtain asymptotic estimates of
the form R, (z) = O(1)F(z)/z or R,(z) = O(1)F?(x). In section 5 we discuss
F(z)G(z) — F % G(x) for the classes D(m,a) and this section is divided into three
parts. In part 1 we assume F and G have a finite mean and obtain estimates
of the form R, (z) ~ constant - m(z); the infinite-mean case in part 2 is more
complicated and the mixed case (i.e. F has a finite mean and G an infinite mean)
is a combination of parts 1 and 2. In Corollary 5.7 we summarize the conditions
under which R, (z) ~ (3)Rz(z) as ¢ — oo. In the final section 6 we consider some
examples and give two applications.
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2. Closure properties of D(m), D*(m) and OD(m).

2.1. Closure properties. In this section, we consider closure properties of
the classes D(m) and D®(m) introduced in section 1. In the first proposition, no
extra conditions on m are used.

ProPOSITION 2.1. (i) F,G € D(m) implies F xG € D(m); (ii) F,G €
OD(m)N D(m) implies F *G € OD(m)N D(m); (iii) F,G € D(m,0)ND(m)
implies F x G € D(m,0) N D(m); (iv) Suppose U(z) is locally bounded and
U(z)/m(z) = B. If F € D*(m) N D(m,0) then U x F(z)/m(z) = af. (v)
F € D*(m)ND(m,0) and G € D?(m)N D(m,0) imply FxG € D*?(m)ND(m,0).

Proof. (i) Obviously we have

mx F s G(z) < ||Fllmm « G(z) < ||F|m]|Gllmm(z).

(if) For h > 0 and some fixed z¢(0 < z¢ < z) we decompose F * G(z + h) —
F « G(z) as follows:

r—To

I+ 11+ 11 = / (F(z+h—y)— F(zx —y))dG(y)

T z+h
+ /(F(x+h—y)—F(w—y))dG(y)+/F(x+h—y)dG(y).
Now ~
OSISZSXW J m(z — y) dG(y)
F(z+h) — F(2)

< G
<mxG(z) zs;lfo @)

and 0 <IT+ 11T < G(z + h) — G(x — xo). It follows that

F+«G(z+h)— FxG(x) F(z+h) — F(2)

lim sup < ||G||m sup
. G(z + h) — G(x — o) ’
+ lim sup m(@)

The result (ii) follows.
(iii) Similarly to (ii) we arrive at (2.1) which simplifies to:

lim sup Fx«G(z+h)— FxG(x) < |G]lon sup F(z+h) — F(2)
o m(z) - ™ >0 m(z) .

Now let xo 1 oo to obtain result (iii).
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(iv) For each € > 0 we can find zo such that | U(z — y)/m(z —y) — 8 |< e,
for x —y > xo. Now let V(z) = U % F(z) — fm * F(z) and write

T—To T
V@ = [ Ue-y)-fne-y)dFe)+ [ Ua-y)-psmia-1)dFw.
0 T—To
It follows that
z—w0o
V@I <e [ m-y)dP)+KFE) - F - 20)
0
where k = supg<,<,, |U(2) — fm(z)|. Hence limsup,, |V (z)|/m(z) < ea. Now let
el0.
(v) Apply (iv) with U =m xG. O
Remark. In (ii) we proved that OD(m) N D(m) is closed under x; if we

only consider functions in the class OD(m), more has to be assumed about m to
conclude that OD(m) is closed under . See section 3 below.

2.2. First estimates of R,(x). The previous result can be applied to
obtain a first useful estimate of R,,.

COROLLARY 2.2. Assume F € D*(m) N D(m,0). If Ra(z)/m(z) — B, then
for alln, 22 5 3 where B, = B(5) fa=1and B, = ﬁ% if a # 1.

Proof. 1t is easy to prove that
Ryi1(z) = nRy(z) + Ry, x F(z). (2.2)

It follows from Proposition 2.1 (iv) and by induction on n, that 8, < oo and that
Bnt1 = nB+ B (B2 = B). This shows that 8, = 83 7_; ka™ =% and the result
follows. O

In the next proposition we obtain O-estimates of R,,.

PROPOSITION 2.3. Suppose B2 = sup,>q |R2(z)|/m(z) < oo.
(i) If F € D(m), then for n > 2, fn: = supyso 2@ < 8, (%) max(||F||7,,1).

(if) If F € D*(m) N OD(m), then for each € > 0 there exist constants o and
k = k(zo) such that for n > 2, v, (0): = SUp,> 4, (@] < (a + e)"(3).

m(z)
Proof. (i) Using (2.2) we obtain that 8,11 < nf2 + Bu||F||m. By induction
on 7 it follows that for all n > 2, 8, < oo and that B, < B2 Yp—; k||F||%1-F.
Hence result (i) follows.

(ii) For » > 2 and z¢ to be fixed later, define

Yn(@0) = sup |Rn(x)|’ G(z0) = sup |[Fx) — Fla - 3’0)|,
T>To m(.ZC) o>70 m(.ZU)
mx*F(z)

and D(.’L'O) = Supzzzo W
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Ry * F(z) = / Ro(z - y) dF(y) + / Ro(z —y) dF(y)

we obtain

r—x

| R % F(2)] <yn(20) / m@—y)dF(y) + sup [Rn(2)|G(zo)m(z)
0 >2>T0

<n(zo)m * F(x) + (n + 1)G(x0)m(x)

and hence sup, >, |[Rn * F(z)|/m(z) < vn(z0)D(x0) + (n + 1)G(x0). Using the
relation (2.2) again we obtain

Ynt1(Zo) < ny2(o) + Vn(o)D(20) + (n + 1)G(0)
< nmax(y2(20),3/2 - G(20)) + Yn(20)D(z0)
::nE(:co) +’Yn(.’ll'0)D(.'L'0).

Hence vn(20) < E(zo) Yp—; kD" *=1(z0). As in part (i) we obtain y,(zo) <
E(z0)(3) max(1, D"~%(z)) and by an appropriate choice of zo the result follows.

Remarks. (1) From (2.2) it follows that Ry (z) = Y p—; kF** %1 x Ry(z)
and this equality makes the previous results more transparant.

(2) If a < 1, in Proposition 2.3(ii) we can choose € such that v,(20) < k(5).

(3) For sets of conditions under which Ra(z)/m(z) — B we refer to [9,12,
11,14]. See also section 5 below.

(4) For the class S with remainder term, Corollary 2.2 and Proposition 2.3
are only useful if m(z) = o(1 — F(x)).

In [6] the authors consider the class S%(m) of d.f. for which Ra(z) + F?(x) =
o(m(z)), where m(z) = o(1 — F(z)). Obviously S2(m) c S. If also m(z) =
O(F?(x)), more can be said.

COROLLARY 2.4. Suppose F € S?(m) with m(z) = O(F*(x)). Then
(i) F € DY(F*(z)) N D(F?(x),0) and Ra(z)/F?(z) — —1.

(ii) For all n > 2, Rn(z)/F?(z) = —(}).

(iii) F(z) € RVg and —R,(x) € RVq for all n > 2.

Proof. (i) Using the inequality

T

Ry(z) + F*(z) = /(F(w) — F(z —y))dF(y) > (F(z) — F(A))(F(z) - F(z — A))
0

we obtain that F' € D(m,0). By taking A = z/2 the inequality also shows that
(F(z) - F(z/2))* = o(m(x)). (2.3)
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Now
0< F?x F(z) — F*(z)F(z) = /(F(w) —F(z—y)2 - F(z) — F(z —y)) dF (y).
0

Since 0 < F(z) + F(xz — y) < 2, we obtain

2 / (F(z) - Fa — 1)) dF (y)

0
= 2(Rs(z) + F?*(x)) = o(m(z)).

0< F?% F(z) — F?(2)F ()

IA

Using m(z) = O(F?%(z)), this implies that F € D'(F2(z)). By the definition of
S2(m), the proof of (i) is complete.

Part (ii) follows from (i) and Corollary 2.2. Finally, part (iii) follows from
part (ii), (2.3) and m(z) = O(F?(z)). O

2.3. Necessary and sufficient conditions. To see the implications of the
assumption F' € D(m) or F € D'(m) we assume that m is nonincreasing. For a
fixed number A < z/2 we have :

A -4 2
m*F(w)=</+/+/)m($—y)dF(y)
0 A z-a

>m(x)F(A) + m(z — A)(F(x — A) — F(A)) + m(A)(F(z) — F(z — A)).
Using this inequality we immediately obtain the following result.

PROPOSITION 2.5. Suppose m is nonincreasing. Then

(1) Allways liminf m x F(z)/m(z) > 1;

(if) If F € D(m), then limsup(F'(z) — F(z — A))/m(z) < oo;
(iii) If F € DY(m) thenm € L iff F € D(m,0). O

In the next result we collect sufficient conditions to conclude F' € D(m) or
F € D*(m).

PROPOSITION 2.6. Suppose m is bounded. Then

(i) If m € ORV and F(z/2) — F(z) = O(m(z)), then F € D(m) N OD(m).
(ii) If m € ORVNL and F(z/2)—F(z) = o(m(z)), then F € D*(m)ND(m,0).
(iii) If m € OSD N L and F € D(m,0), then F € D(m).

(iv) Supposem € SD and H:=1-m € S. If F € D(m,a), then F € D?(m),

where 3 =1+ a [ m(s)ds.
0

z/2 T
Proof. (i) We have mxF(z) = (f + [ ) m(z—y) dF(y) =:I+IL. Obviously
0 z/2

I <sup, 2<.<, m(2)F(z/2) = O(m(z)) and, since m is bounded by, say K, we also
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have II < K(F'(z) — F(x/2)) = O(m(z)). Hence the first result follows. To prove
that F' € OD(m), take y > 0 and = > y. Since F(z +y) — F(z) < F(2z) — F(z) =
O(m(2z)) and m € ORV, the result follows.

(ii) As in part (i) we have m x F'(z) = I +II. Clearly, II = o(m(z)) and using
m € ORV N L and Lebesgue’s theorem, we obtain I/m(z) — 1. Hence F € D'(m).
The second result follows as in (i).

(iii) Let zyp € N be fixed and write

o [33_330] z
mx F(z) = /+ / + / m(z —y)dF(y) =T+ IIT + 1L
0 Zo [z—=0]

Since m € L, we have
m(z —y)/m(z) — 1, locally uniformly in y; (2.4)
and for x > x,
1/2 <m(z —y)/m(z) < 2 uniformly in 0 <y < 1. (2.5)

From (2.4) it follows that
I/m(z) — F(x). (2.6)
Also, since m is bounded by, say K, we have Il < K (F(z) — F([x — z¢]), and using

F € D(m,0) it follows that
ITI = o(m(x)). (2.7

k1
As to II, note that IT = ngz;zoo] J m(z — y) dF(y); using (2.5) we obtain II <
k

23 m(z —k—1)(F(k+1) — F(k)). By using F € D(m,0) again, for arbitrary
€>0, we can choose zg so that (F(k+ 1) — F(k)) < em(k), for all k¥ > z9. Hence
II< 2 Z o wo] m(x —k—1)m(k). Using (2.5) and standard arguments we can find
a constant C (independent of zg) such that II < eCm ® m(z). Since m € SD, it
follows that

limsup IT/m(z) < eK. (2.8)
Now combine (2.6)-(2.8) to obtain limsup |m * F(z)/m(z) — 1| <1 — F(xzo) + K.
By letting ¢ T oo and € | 0 we obtain the desired result.

(iv) Since F € D(m a) and m € L, we have (F(z+h)—F(z))/m(z)

in h. If we deﬁne R(z fo (z + h) — F(z)) dh this implies R(z)/m(z) = a/2.
Now let G(z f F (z + h) dh; obviously we have R(z) = G(z) — F(z =
G(0), R(c0 ) = 0 and m * F(xz) = m * G(z) — m * R(x). Moreover G'(z) ~ am(x).
First we estirnate m * R. Since m(z) = 1 — H(xz) we have m x R(z) = R(z) —
R(0 — Jy R(z —y)dH(y). Using H € S we have H € D'(m) N D(m,
and an appllcatlon of Proposition 2.1(iv) yields m x R(z)/m(z) — a/2 — R(0) —
a/2 = —R(0). Next we consider m * G(z) and for fixed zo write m x G(z) =
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( 0" +f;0) m(z —y)dG(y) =:I + II. Using m € L, we have I/m(z) - G(zg) —

G(0). As to IT we have II = f;o m(z —y)G'(y) dy. Using G'(z) ~ am(z), for each
e > 0 we can find z( so that

a—c¢) /mx_ y)dy < IT < (a+e) /mm—y)m(y)dy-

Zo

Using m € SD this implies that

(a—¢) {2/m<y) dy—/m<y) dy}
0 0
< lim jfff’mf(i) <(a+e) {20/m<y)dy—0/m<y)dy}.

Now combine the two estimates and let ¢ 1 o0, € | 0 to obtain

mx G(z)/m(z) - G(o0) — G(0) + a/m(y) dy=1— R(0) + a/m(y)dy
0

The result follows. O

Remarks. (1) If in Proposition 2.6(i), m(z) satisfies m(z) = o(F(z)), then
automatically F'(z) € RV, with remainder term m(z)/F(z). (2) The conditions of
Proposition 2.6(i) and (ii) show that Ry(z) + F?(x) = O(1)m(z) (resp. o(1)m(z)).
To see this it is sufficient to rewrite

Toa

z/2

Ry(z) + F*(2) = 2 /(F(w) — F(z —y))dF(y) + (F(z) - F(2/2))*.

0

3. The classes OD(m) and D(m, )

3.1. Preliminaries. In this subsection we study into further detail, classes
of functions related to OD(m) and D(m,a). More precisely, we shall consider the
classes of positive, measurable functions a(x), f(z) for which one of the relations
below holds.

f € OD,(a) iff limsup W

f € Dy(a,c) iff ligﬂ.}pw

Note that these classes are defined in general and not for distribution functions
only. These classes of functions were studied in [15] and in order to state the

< 00, Yz > 0;

= cz, Vz > 0.
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main results of [15], we need some more definitions and notations. Recall that for
f € ORV, the upper and lower Matuszewska indices a(f) and 3(f) are defined as
follows :

o) — fim EESD, o Fa)/ @) g ogTimints o f(ay)/ (@),

T o logy ’ y—00 logy

It is well known that f € ORV if and only if both a(f) and 3(f) are finite.

A positive function has bounded increase (BI) if a(f) < oo and has bounded
decrease (BD) if 8(f) > —oo. The function f has positive increase (PI) if 8(f) > 0
and it has positive decrease (PD) if a(f) < 0. In studying OD4(a) and Dy (a,c),
the results of Bingham et al. [2] provided the necessary framework. In [2] the
authors study classes of functions satisfying general asymptotic relations of the
following form. For a(z) € RV,, the class I1, is the class of measurable f satisfying

T

Vz > 1, lim W = ckq(x), where ky(z) = /ua—ldu_
1

The constant c is called the a-index of f. For a(z) € BI, the class OII, (resp. oll,)
is the class of measurable f that satisfy:

Ve > 1, f(tx) — f(t) = O(a(t)) (resp. o(a(t))) (as t — o0).

If A(z):= a(log(z)) € BI and f(z) € OD4(a(z)) it follows immediately that the
function F(x): = f(logx) belongs to OIl 4 and if a(t) = o(1) f(t) we have D (a,c) C
OD4 (a) C L. In [15] the following two results were proved.

ProposTION 3.1.1. Suppose f € ODy(a) (resp. f € Dy(a,0)) and let
A(z): = a(log(z)).
(i) If A(x) is of bounded increase, then

fl@x)=C+n(z /m z)dz, Vx> X

where C, X are constants and n(x) and m(zx) are measurable and bounded functions
(resp. n(x) and m(x) are measurable and o(1)).

(ii) If a(z) € BI, then f(x) € OIIy (resp. olly) with b(z) = za(x);
(iii) If a(x) € BD and A(x) € BI, then for each ¢ (0 < ¢ < 1) there exists
constants K (resp. Ve > 0) and X such that for all y with 0 <y < cz,

|f(z) = f(z —y)| < K(1+y)a(z), (resp- e(1+y)a(z)), Vo> X.

(iv) If za(x) € PD, then f(z) = C + O(1l)za(x) (resp. C + o(1)za(x)) and
f(z) = C as z — 0.

(v) If za(x) € PIN B, then f(x

(vi) If f € OD(a) with a(z) =

) = O(L)za(z) (resp. o(l)za(z)).
f(z)/z, then f € ORV.
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PROPOSITION 3.1.2. Assume that f is locally integrable.
(i) If f(z) € Dy(a,c) with a(x) € RVg, then:
(1) if B> —1, then f(z)/za(z) = ¢/(B+1);
(2) If B < —1, then f(x) — f(oo) exists, finite and
(f(0) = f(z))/za(x) = —c/(B +1).
(3) If B = —1, then f(z) € Il.(za(x)).
(ii) If f(z) € Dy(a,c) with a(z) = f(z)/z, then f(z) € RV..

3.2. Distribution functions in OD(m) and D(m,«). In this section we
analyse in further detail the classes D(m,a) and OD(m). In many cases we shall
assume that m(z) € L and/or m(z) € ORV. In the first proposition we connect
1 — F(x) with m(x) and integrals of m(z).

ProposiTioN 3.2.1. (i) If F(z) € D(m,«a) with a # 0, then m(z) € LN
L[0,00) and

Flz) = (a+o(1)) / m(s) ds. (3.2.1)

(ii) If F(z) € D(m,0) and m(z) € LN L[0,00), then (3.2. 1) holds.
(iii) If F(z) € OD(m) and m(z) € OLN L[0,0), then F(z 1) [Zm(s
(iv) If F(xz) € OD(m) and zm(z) € PD, then F(z) = 0(1)$m($).
Proof. (i) Since F(z) € D(m,a) we have
Flx+y+z)—F(z)

aly + z) = lim

m(z)
:limF(:c+y+z) — F(x +y) m(z +y) i F(z+y)— F(x)
) m(z +y) m(x) ) m(x)
= azlim w + ay.

Since a # 0 it follows that m(z) € L. To prove (3.2.1), note that for € > 0 we can
find ng so that (a —e)m(n) < F(n+1) — F(n) < (a+e¢e)m(n), n > ng. Hence for
N > M > ng we obtain

N N
(@—2) > mn) <F(N+1)-F(M) < (a+¢e) Y m(n)
n=M n=M
It follows that
Zm(n)<oo and (a—e)Zm(n)Sl—F( <(a+e) Zm
n=M n=M n=M

Using standard arguments we obtain (3.2.1).
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(ii) and (iii) The proof is similar and omitted.

(iv) This is Proposition 3.1.1(iv). O

Remarks. (1) If F(xz) € D(m,a) with a # 0, then the mean E(X) is finite
iff m(z) € L]0, 00).

(2) If F(z) € OD(m) with m(z) € OL N L1[0, 00), then E(X) < oo.

A similar result can be proved for Fj(x fo ydF(y). Obviously F(x) €
OD(m(z)) iff F;(z) € OD(zm(z)) and F(z) € D( (2), ) iff F1(z) € D(zm(z),q).
Also note that in case the mean E(X) is finite, it equals E(X) = Fj(0c0).

PROPOSITION 3.2.2. (i) Suppose m(z) € L1[0,00). Then

(a) If F(z) € OD(m) and m(z) € OL, then E(X) < oo and Fi(o0) — Fi(x) =

1) f;o ym(y) dy; if also z?>m(x) € PD, then Fi(o0) — Fi(z) = O(1)z%m(x).

(b) If F(z) € D(m,a) and m(z) € L, then E(X) < oo and Fi(o0) — Fi(z) =
(e +o(1)) [, ym(y) dy;

(i) Suppose [y ym(y)dy = co. Then:

(a) If F € D(m,a) and m(z) € L, then Fi(z) = (a + o(1) )fo ym(y) dy.

(b) If F € OD(m) and m(z) € OL, then Fi(z) = O(1) fo ym(y) dy; if also

z?m(x) € PINBI, then E(X) = 00 and Fi(z) = O(1)z*m(x).

3.3. Closure properties of OD(m) and D(m,a). Now we prove the
analogue of Proposition 2.1 for OD(m) and D(m,a). The main result of this
section is the following:

PROPOSITION 3.3.1. Suppose F' € D(m,a) and G € D(n, (). Then:
(i) If myne BDNL (e.g. m,n € ORVN L), then
F «G(z + h) — F xG(z) = ahm(x) + Bhn(z) + o(m(z)) + o(n(z));
(ii) If m € SD and n(z)/m(z) — C, then F G € D(m,a + C).
Proof. (i) We have
2/2

F+Gla / Flz —y) dG(y) + / Gz — y)dF(y) — F(z/2)C(z/2)

so that (for h > 0):
z/2
FeG@+h)— FxGz) = /(F(x+h—y) — F(z —y))dG(y)

0
z/2 (z+h)/2

+ / (G@+h—y) - Gz —y)) dF(y) + / (F(z +h—y) - F(z/2)) dG(y)

0 z/2
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(z+h)/2
+ / (G +h—y) = G((z+h)/2)dF(y) = I + I + I + L.
z/2

As to I, use F' € D(m,a) and fix £ > 0 and zo to see that

z/2 z/2
(ah —e) / m(z —y)dG(y) < T < (ah—¢) / m(z — y)dG(y), Yz > z0.
0 0

Using m € BD N L and dominated convergence we have:

z/2
| ma =) d6w)/me) -1
0
It readily follows that
lim I; /m(z) = ah. (3.3.1)

In a similar way we find
lim I /n(z) = Bh. (3.3.2)

To estimate Iz and I4 note that for € > 0 we can find zg so that
0< I3+ 1y <e(G((z +h)/2) - G(z/2) + F((z + h)/2) - F(x/2))
<e((Bh/2+e)n(x/2) + (ah/2 + e)m(z/2)).
Since n,m € BD, this yields
0< I3+ I) <eKin(z) + eKam(x). (3.3.3)

Combining (3.3.1)—(3.3.3) gives the proof of (i).
(ii) To prove (ii) we fix 2o > h and write for z > zq,

FxG(x)—FxGz—h {/ /} —F(z —y—h))dG(y)

+ / Flx—y)dGy) =T+ 11+ 1III
z—h

First consider I11; we have

h

IIT = / /dF ) dG(y /
y=z—h z= z2=0y=z—h

/h
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Using G € D(n, 3) it follows that

h
lim 2L _ g /(h—z) dF(2).

Next consider I7; using partial integration we have

7= 7h 7y dF(z) dG(y)

y=r—=xo z=x—y—h

h

[ 7T 7+ 7 awware

e=0y=x—2—h z=h y=x—2—h 2z=z0—hy=z—20

/

2=0

a)o—h

z=h
T

+ / (G(x — 2) — G(x — x0)) dF (2).
z=zo—h

Using G € D(n,8) again we obtain

h zo—h Zo
II
@aﬁzz/ozdﬂz)wr/h hiF@)+5 [ (0 -dFG).

z=z0—h

Combining the estimates (3.3.4) and (3.3.5), we obtain that

zo
(IT + I11) /
b)) F(2) dz.
@) — (z)dz
wo—h
It follows that
T
lim sup | 1L _ C’ﬁh‘ < CBh(1 - F(zo — h)).
m(z)

(3.3.4)

G(x —h) — Gz —z—h))dF(2) + / (Glz — 2) —G(x — z — h))dF(z)

(3.3.5)

(3.3.6)

Finally we consider I; since F' € D(m,a) and m € L, for each € > 0 we can find

o such that

— T—To

(ah —e) / m(z —y)dG(y) <I < (ah+e) / m(z — y) dG(y).
0

0
To estimate the integral term we write

T—z0 [zo] [z—z0o] @—=0

/ m(z —y)dG(y) = / + + / m(z —y)dG(y) = L + Ir + Is.

0 0 [zo]  [z—=o]
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Using (2.4) we have
L /m(z) = G([zo]). (3.3.7)

In I3 we have g < z —y < z — [z — z0] < T + 1; using (2.5) we obtain m(z —y) <
2m(zo) and hence I3 < 2m(z0)(G(z — o) — G([z — z0])). We conclude

lim sup I3 /m(z) < 2m(zo)Cp. (3.3.8)

For I we write (using a constant K which may be different in each inequality)

[z—z0]—1 k41
=Y [ me-yicw
k=[zo] %
[z—zo]—1
<K Z m(z — k)(G(k +1) — G(k)) (since m € L)
k=[z0]
[z—zo]—1
<K m(z — k)m(k) (since G € D(n,B) and n/m — C)
k=[z0]
[2—ao]—1 k11
<K / m(z —y)m(y)dy (since m € L)
k=[zo] 7
[z—=o0]
<K m(z —y)m(y) dy

[zo]

Since m € SD it follows that

I o0
lim sup — <K/m(y)dy. (3.3.9)

m(z) ~
[zo]

Combining the estimates (3.3.7)—(3.3.9) we obtain

1 (e - ) dG ()

lim sup 0 -1
m(x)

< (1 —G([zo])) + 26m(zo) + K / m(y) dy.

[zo]

This shows that

limsup |I/m(z) — ah| < Kie + K2(1 — G([z0]) + Kzm(zo) + Ka / m(y) dy.
[zo]

Now combine this last estimate with (3.3.6). Let z¢ 1 oo and ¢ | 0 to obtain the
desired result. O
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Specializing the previous result, we obtain the following

COROLLARY 3.3.2. Suppose that F,G € D(m,a). Then

(i) If m(x) € BDNL or m(z) € SD, then F *xG € D(m,2a) and F*" €
D(m,na).

(ii)) If m(x) = 1 — H(xz) € SD and H(z) € S, then F x G € D"(m) with
v =1+2a [;° m(y)dy and F*" € DP(m) with f =1+ na [;° m(y) dy.

Proof. (i) Follows immediately from Proposition 3.3.1.

(ii) Combine (i) with Proposition 2.6(iv). O

The proof of Proposition 3.3.1 can also be used to obtain the following closure
properties for OD(m).

COROLLARY 3.3.3. (i) If F € OD(m) with m € BD, then F*2 € OD(m) and
F*™ € OD(m).

(ii) If F € D(m,0) with m € BD, then F*? € D(m,0) and F*™ € D(m,0).

Remarks. (1) Comparing with Proposition 2.1 we see that the condition

m € BD replaces the condition F' € D(m). (2) A result similar to Proposition
3.3.1(i) has been proved by Frenk [4, Lemma 4.1.20].

4. Asymptotic behavior of convolution products:
the classes OD(m) and D(m,0).

4.1. The asymptotic behavior of F x G(z). In the sequel we shall
estimate the asymptotic behavior of F(z)G(z) — F * G(x) under various conditions
on F' and G. A partial result has been obtained already in Proposition 2.6. There
we proved

PROPOSITION 4.1. Suppose F € D(m,a) with m(z) =1 — H(z). Then

(i) If H € S and m € SD, then lim ﬂiﬂl—%‘#ﬂ =a [;°(1 - H(z))dz.

(ii) fa=0and me OSDNL, thenlim%_(f)*mw)zo. O

In the following discussion we shall frequently use the following identity: for
two d.f. F(z) and G(z) we have
F(z)G(x) - FxG(z) =
z/2 z/2
[ #@) - Fa-p)d6u) + [ (6@ - Ga-p)irw) @D
0 0
+ (F(z) — F(2/2))(G(z) — G(z/2)) = I+ 1T + III.
In Propositions 4.2 and 4.3, we consider the classes OD(m) and D(m,0).

PROPOSITION 4.2. (a) Suppose F' € OD(m), G € OD(n) with m,n € ORV.
(i) There holds: F(z)G(z) — F x G(z) = O(1)m(z)G1(z) + O(1)n(z)Fi(z).
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) If EX) 4+ E®Y) < 00, then F(z)G(z) -

F+«G(z) = 01)m(z) + O(1)n(x).

(iii) If B(m) > —2 and B(n) > —2, then E(X) = E(Y) = 0o and F(z)G(z) — F x

G(z) = O(V)z*m(z)n(z).

(b) If F € D(m,0), G € D(n,0) with m,n € ORV, then the results of (a) hold with
the O(1)-terms replaced by o(1)-terms.

Proof of Proposition 4.2 (a). (i) Consider the first term I in (4.1); using
Proposition 3.1.1 (iii) we obtain 0 < I < Km(z) [7/* max(1,y)dG(y) (z > o).
Hence I = O(1)m(x)Gy1(z). Similarly we have IT = O(1)n(z)Fi(z). Using
Proposition 3.1.1(iii) again, we have IT] = O(1)zm(z)(G(z) — G(z/2)). Since
G(z) — G(z/2) < (2/x)G1(z) we obtain ITI = O(1)m(z)G1(z). This proves (i).

(ii) This follows from (i).

(iii) This follows from (i) and Propositon 3.2.2 (ii, b).

Proof of Proposition 4.2 (b). Similar. O

Proposition 4.2 is useful to estimate the difference between F"(x) and F*"(x).

COROLLARY 4.3. Suppose m € ORV. Then
(i) If F € OD(m), then for all n > 2, F™(z) — F*"(z) = O(1)m(z)F ().
(ii) If F € D(m,0), then for alln > 2, F"(z) — F**(x) = o(1)m(z)Fi(x).

Proof. (i) Let G(z):= F*"~1(z); from Corollary 3.3.3 we see that G €
OD(m). Applying Proposition 4.2 we obtain F"(z) — F*"*(z) = O(1)m(x)G1(z) +
O(1)m(z)Fy (). Since G1(z) = (n—1)F*"~2x Fy(z) < (n—1)F;(z) we obtain the
desired result.

(ii) Similar. O

Proposition 4.2 will not be useful if m(z)G1(z) — oo or n(z)Fi(x) — oo.
The terms F; (z) and G1(x) were obtained by applying Proposition 3.1.1. If, as in
Proposition 2.6, we strengthen the conditions on F,G then we obtain an estimate
which is independent of Fi(z) and G1(z). The result is similar to [6, Theorem 1]
and [7, Lemma 3.1].

PROPOSITION 4.4. (i) Suppose F(z) — F(z/2) = O(m(z)) and G(z) —
G(z/2) = O(n(z)). Then F(2)G(z) — F * G(z) = O(1)m(z) + O(1)n(=).

(ii) If also F € D(m,0) and G € D(n,0), then F(z)G(z) — F x G(z) =
o(1)m(z) + o(1)n(z).

Proof. (i) Use (4.1).

(i) Use (4.1) and Lebesgue’s theorem on dominated convergence. [

Remark. The class of d.f. considered in Proposition 4.4 (i) is connected with
the class OII(m) (cf. [2, Chapter 3]). If for example F' € II,(m) and G € Hg(n),
then Proposition 4.4 (ii) applies.

If in Proposition 4.4 we also assume m € ORV, then Propositions 2.1 and 2.6
can be used to obtain the following result (cf. [6, Theorem 4] and [7, Corollary
3.2)).
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COROLLARY 4.5. Suppose F(x) — F(z/2) = O(m(z)) and m € ORV.
(i) For all n > 2 we have F™(z) — F*"(z) = O(1)m(z).
(ii)) If also F' € D(m,0), then F™(z) — F*™(z) = o(1)m(z). O

As to Ry, (z) (cf. Introduction), using Corollary 4.3 (i) we obtain

Ro(z) = 1 — F*(2) — n(1 — F(z)) = O(1)m(z)Fi (z) + (— (Z) + 0(1)> F2(z).
(4.2)

In terms of the class S with remainder term, (4.2) is only useful if m(z)Fi(z) =
o(1)F(z). In general it is not clear which term (m(z)F;(x) or F2?(z)) is dominant.
If E(X) < oo, then (4.2) reduces to

Ru(z) = O(L)ym(z) + (— (Z) + 0(1)> F2(z). (4.3)

If E(X) = o and B(m) > —2, Proposition 3.2.2 (ii) shows that Fi(z) =
O(1)z?m(z). The estimate (4.2) then reduces to

R, (z) = O()z*m?(x) + (— <;L> + 0(1)) F2(z). (4.4)
If also a(m) < —1, then Proposition 3.2.1 (iv) and (4.4) yield the estimate
Ry(z) = 0(1)a*m® (z). (4.5)
A very useful situation appears when m(z) = F(z)/z.

COROLLARY 4.6. Suppose m(xz) = F(z)/x.

(i) If F € OD(m), then F € ORV and:

(a) if E(X) < oo, then R,(z) = O(1)F(z)/z.

(b) if B(F) > —1, then R,(z) = O(1)F?*(z).

(ii) If F € D(m,0) then F € RVy and R, (z) = (—(3) + o(1)) F?(z).

Proof. (i) From Proposition 3.1.1 (vi) it follows that F' € ORV. Hence also

m € ORV and if E(X) < oo, (4.3) yields the result a). If 3(F) > —1, (4.5) gives
the second result.

(ii) From Proposition 3.1.2 (ii) it follows that F' € RV, and hence that S(F) >
—1. In this case we have Fj(z) = o(1)zF(x) and using (4.2) we obtain the result
(ii).0

Remarks. (1) The second result should be compared with Corollary 2.4.

(2) The slow variation of 1 — F'(z) alone is not sufficient to obtain the conclu-
sion of Corollary 4.6 (ii). The example 1 — F(z) = 1/[log(z)] (z > e) is an example
for which the conclusion is false, cf. [6, p.83].

(3) For a refinement of Corollary 4.6 we refer to Section 5 below.

(4) Let R(z) = —log(l — F(z)) and assume that R(z) has a derivate
R!(x) which is eventually nonincreasing and R'(z) — 0. Then F € D(m(z) =
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(1-F(z))/z,0) holds iff zR'(z) — 0. Geluk and Pakes [6] prove that the condition
zR'(z) — 0 is fully equivalent with the conclusion of Corollary 4.6 (ii). This remark
shows that the conditions on F' are almost necessary and sufficient.

4.2. Stability. If the d.f. F is not in OD(m) or D(m,0), then Corollary
4.3 will not be applicable. The following two propositions may be used to transfer
properties from F' to G if the d.f. G is a suitable approximation of F. A related
result was proved in [6, Theorem 3].

PropoOSITION 4.7. (i) If F(x) satisfies F%(x) — F*?(z) = O(1)W (z) and
if G(x) is a d.f. such that G(z) — F(z) = O(1)F%(x), then G?*(z) — G*%(z) =
O(H)W(z) + O(1)F*(z).

(ii) Suppose 1 — F(x) € L and F?(x) — F**(z) = o(1)W(z). If G(z) is
d.f such that G(z) — F(z) = (¢ + o(1))F?(z) (¢ € R), then G*(x) — G**(z)
o)W (z) + o(1)F?(x).

Proof. (i) Define U(x):= G(x) — F(z) so that by assumption U(z) =
O(1)F?(z). Without loss of generality we shall assume that |U(z)| < KF?(z)
for all z > 0. First consider F2 « F(x); we have

e

0
<2 [ (P -y - Fa)aFw) (16)
0
< 2(F*(z) — F**(x)).
Hence
F?x F(z) = O)W () + F*(2)F(z). (4.7)
Next consider £2 x G(z); as in (4.6) we have
0< F?%G(z) — F?(2)G(2) < 2(F(z)G(x) — F x G(x)). (4.8)

Now use (4.7) and the assumptions about F and U to see that
FxG(z)=UxF(z)+ F x F(z)
< KF?xF + F % F(z) (4.9)
=0()W(z) + OQ)F?*(z) + F*(z)

and similarly

F(2)G(z) = O(1)F?(z) + F*(x). (4.10)
Using (4.9) and (4.10) in (4.8) we obtain
F?xG(z) = O()W(z) + O(1)F?(x). (4.11)

Now we consider U * U(x) = U * G(z) — U x F(z). Using |U(z)| < KF?(z), (4.7)
and (4.11) we obtain

UxU(z) = O()W(x) + O(1)F?(x). (4.12)
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On the other hand we have G x G(z) = UxU (z) + 2UF () + FxF(z). Using (4.7),
(4.12) and the assumptions about U and F', we obtain

G+ G(z) — Fx Fz) = O()W(z) + O(1) F2(). (4.13)
Since also G?(z) — F2(z) = U(z)(G(x)
obtain G%(z) — G * G(z) = O(1)W (x

)
(ii) By assumption we have U(z) =
deduce

+
=
&

O(1)F?(x), using (4.13) we finally

c+ 0(1))F2( ). From (4.6) now we

F? x F(2) = o)W (2) + F?(z)F(x). (4.14)

Now we consider U * F(z) and UxG(z). Choose ¢ > 0 and zg so that ¢ —¢ <
U(z)/F?(z) < c+e, Vo > z0. We have

T—T0Q

UxF(z) = / Uz —y)dF(y) + / U(z —y) dF(y)

0

r—IQ

<(c+e) / F?(z — y)dF(y) + O(1)(F(z) — F(z — o))

0
<(c+e)F*x F(z)+ O(1)(F(x) — F(z — x0)).

(
Since for each A > 0, F?*(z) — F**(x) > (F(z) — F(z — A))(F(z) — F(A4)), b
assumption we have F(z) — F(z — A) = (I)W z). Hence U * F(z) < (c +¢)F?
F(z) 4+ o(1)W(z). Similarly we obtain U x F(z) > (¢ — &)F? x F(z) + o(1)W (x )
Using (4.14) we arrive at

U % F(z) = o(1)W(z) + cF%(z) + o(1) F?(z). (4.15)

Next consider F? x G(z); using (4.8), (4.15) and FxG(x) = UxF(z) + FxF(x) we
obtain F? xG(z) = o(1)W(z) + o(1) F? + F2G. To estimate UG (z) we proceed as
in the proof of (4.15) now using 1 — F(z) € L and

Gz)—Glx—A) =U(x) —U(x— A) + F(x) — F(x — A) = o(1) F?(z) + o(1)W ().

We obtain
U * G(z) = o(1)W (z) + cF?(z) + o(1) F?(z). (4.16)

Results (4.15) and (4.16) imply that U * U(z) = o(1)W (z) + o(1)F%(z). On the
other hand we have GxG(x) = UxU () +2UF (z) + FxF(x). Usmg (4.15) and the
estimate for UxU, we obtain GxG(z)—FxF(z) = o(1)W (2) +0(1) F?(z) +2cF?(2).
Since also G?(z) — F?(z) = U(2)(G(z) + F(z)) = 2¢F?(z) +

obtain

0(1)F?(zx) we finally

G*(z) — G+ G(z) = o(1)W(z) + o(1)F?(z). O

_ Remark. If G(z) is such that G(z) — aF(z) = O(1)F?(z) (a # 0) (or
G(z) — aF(z) = (c+ o(1))F?(x)), the conclusions of Proposition 4.7 remain valid.
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A result similar to Proposition 4.7 is obtained in the next proposition. In the
proposition we analyse stability if G(z) is a d.f. such that (1 — G(z))/(1 — F(z))
converges to 1 with a certain rate.

PROPOSITION 4.8. (i) Suppose 1 — F(z) € ORV and that F(x) satisfies

F%(z) — F**(z) = O(1)W (). (4.17)
Suppose G(z) is a d.f. such that
1-G(z)=1+rx)Q1 - F(z)) (4.18)
where r(x) satisfies |r(z)| < s(x) and s(z) € ORV with s(z) — 0. Then
G?(z) — G**(z) = O()W (z) + O(1)s(z)F (z) + O(1) F?(x). (4.19)

(ii) Suppose 1 — F(z) € ORV and that F(z) satisfies F?(z) — F**(z) =
o(1)W (z). Suppose G(z) is a d.f. such that (4.18) holds with r(z)/s(z) = ¢ € R
where s(x) € ORVN L and s(x) — 0. Then

G*(z) — G**(z) = o()W (z) + o(1)s(2) F(z) + o(1) F (z) /W (). (4.20)

Moreover, if also |r(z)| < KF(x) andr(z)/F(z) — ¢ € R with 1-F(z) € ORVNL,
then (4.20) can be replaced by

G*(z) — G**(z) = o(1)W (z) + o(1) F?(x). (4.21)
Remarks. (1) Proposition 4.8 and its proof remain valid if we start from the
assumption G(z) = aF(z) + r(z)F(x) where a > 0.

(2) If r(z) = O(1)(1 — F(x)), Proposition 4.7 shows that the assumption
1 — F(z) € ORV is superfluous.

Proof. Before proving the results we rewrite G?(x)—G*2(z) in a more suitable
form. We have

z/2
G*(2) -G (z) = 2 / (Gla—y)-
0

Using (4.18) we have

(2))dG(y) +(G(x)—G(z/2))* = I+T. (4.22)

z/2 z/2
I=2 / (1+r(z — ))(F(z — y) — F(2))dG(y) + 2F(z) / r(z - 4)dG(y)
0 0

—2F(z)r(z)G(z/2) =11 + T — Ts.
Since by assumption, r(x) = o(1), II can be replaced by
z/2
IT =2(1+o0(1)) /(F’(a: —y) — F(2))dG(y) =:2(1 + o(1))III.
0
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Using partial integration and then (4.18) we obtain
117 = / (G(z/2) — Gl — 2))dF(2)

z/2
z

_ / (F(z/2) - F(z — 2)) dF(2)

z/2
+ / r(x — 2)F(z — 2)dF (2) — r(z/2)F(z/2) / 1dF(z).
z/2 z/2

Using partial integration in the first term and then using the analogue of (4.22) for
F(z), this term can be replaced by 1/2(F?(z) — F*?(z)) — 1/2(F(z) — F(x/2)).
Hence I1 can be replaced by Il =T, — T5 + T — T7, where
Ty = (1+ o) (F2(z) - F*(x)), Ts = 2(1+ o(1)) / r(a — 2)F(z - 2) dF(2)

z/2
Ts = (1 +0o(1))(F(z) — F(z/2))*, Ty = 2(1+ o(1))r(«/2) F(2/2)(F (z) — F(x/2)).
Combining the different terms we have G?(z) — G*?(z) = T1 + To — T3 + Ty — T5 +
Ts — T7.

Proof. (i) By assumption we have Ty = O(1)W (z) and |Ts| < 2s(z)F(z).
Since |r(z)| < s(z) € ORV, we also obtain |T>| = O(1)F(z)s(z). By using the O-
regular variation of s(x) and 1—F(z) we obviously also have |T7| = O(1)s(z)F?(x).
Using (4.18) we obtain 77 = O(1)F?(z). To analyse Ts we use the inequality

F?(z) — F**(z) > (F(z) - F(z/2))* (4.23)

and (4.17) to obtain T5 = O(1)W(z). Finally consider Ts; using the boundedness
of r(x) we have

ITy| < K / Pz — 2) dF(2)
z/2
<K | [(F@=2) - F@)F@) + F@)(F@) - F@/2)
/2
< K(F2(z) - F*2(x)) + KF(2)(F(x) - F(a/2)).
Hence T = O(1)W (z)+O(1)F?(z). Combining these 7 estimates we obtain (4.19).

(ii) By assumption Ty = o(1)W(z) and as in part (i) we have T5 =
o(1)W (z). By the conditions on s(z) and r(z) we have T5/(s(z)F(z)) — 2c¢ and
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Ts/(s(z)F(x)) — 2c. Also, since F' € ORV we have T; = o(1)F(x)s(z). Now con-
sider Tg; as in part (i) we have |Ts| < K(F?(x) — F**(z)) + KF (z)(F (z) — F(z/2)).
Using (4.23) and Ts = o(1)W(z) we obtain Tg = o(1)W (z) + o(1)F(z)/W ().

Finally consider T7; using (4.18) we obtain

Ty = (1 +7r(@)(F(x) - F(z/2) + ((r(2) —r(2/2))F(z/2))*
=0T + O()(r(x) — r(2/2))(F(2) — F(2/2))F(x/2)
+ (r(z) —r(z/2)) F2($/2)
= o()W (@) + o(1)F*(2) + o(1)s* (z) F* ().
Combining these 7 estimates we obtain (4.20).

In order to prove (4.21) we reconsider Tg; in the case where |r(z)| < KF(x),
we have

(z — 2)dF(2)

o\\

1X/Fﬁm—ddF@)=Oa)

z/2

First consider F2 x F(x); we have

F? % F(x) — F?(z)F(x) (F*(x — 2z) — F?(x)) dF ()

I
D\a

mn/@@_@—ﬂmmm@
0

— O(1)(F*(a) — F*(z)) = o(1)W (x)

As to the second term, since 1 — F(x) € ORV N L, an application of Lebesque’s
theorem yields z/ F?(z — 2)dF(z)/F*(z) — 1. Combining these estimates we
obtain T = o(l)W( )+ o(1)F%(z). Now (4.21) follows as before. [

Using a similar method of proof we also obtain

COROLLARY 4.9. Under the conditions of Proposition 4.8 we have
F(2)G(z) — F % G(z) = O)W (z) + O(1)s(z)F (z) + O(1)F?*(x).

resp.

F(2)G(z) — F xG(x) = o(1)W(z) + o(1)s(z)F(x) + o(1)F/W (z).

resp.

F(2)G(z) — F % G(z) = o)W (z) + o(1)F?(z). O
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5. Asymptotic behavior of convolution products: the class D(m,a)

In our next results we discuss the case where F' € D(m,a) and G € D(n, 3)
where « > 0 and 8 > 0. If a is p0s1t1ve then automatically m € L. If we define
U(z) = F(z) — aM (z ) where M(z) = [; m(y) dy, it follows that U(z) € D(m,0).

Now consider I = [; z/ 2 F( y)) dG( ). Obviously we have
z/2 z/2
1= [W&) - V=) d6w) +a [ (M)~ M- 9)iGE) =1 +ak.
0 0

Using the approach of Proposition 4.2 we obtain |I;| < em(z)G1(x) for z > zo.
Similarly we can write

z/2 z/2
7= / (V(@) - V(z - ) dF(y) + B / (N(z) = N(z — ) dF(y) = IT, + BIT,.
0 0

where V(z) = G(z) — BN (z) and N(z) = [, n(y) dy. Obviously V € D(n,0) and
we obtain |II;| < en(z)Fi(z) for = 2 xo It remains to analyse I, Il and III. If
E(X) and E(Y), the means corresponding to the distribution functions F(z) and
G(z), are finite, the analysis is easy.

Part 1: Finite-means case. THEOREM 5.1. Suppose F(z) € D(m,a),
G(z) € D(n,B), E(X)+ E(Y) < 00 and m,n € LN ORV. Then F(z)G(z) —
FxG(z) = aE(Y)m(z) + BE(X)n(z) + o(m(z)) + o(n(z)).

Proof. Let us consider I»; using partial integration we have

z/2 z z/2

//m dz dG(y / / dG(y)ym(z) dz

z/2 z/2 T
= / (G(2) = G(w/2))m(z — 2)dz = / Gle)m(z — 2) dz — C(z/2) / m(z) dz
2=0 0 o/2

Since m € L N ORV we obtain

m(zz

i L —oo_z 2z —limzG(z im )z
11mW—O/G()d lim oG(z/2) 1 /m(w)d

1/2

= E(Y)-0-0(1) = E(Y).

Similarly we have lim I'l /n(z) = E(X).

Next consider III = (F(z) — F(x/2))(G(z) — G(z/2)). Using Proposition
3.1.1(iii) and the finiteness of E(X) and E(Y) we have
(

IIT = O(1)am(z)(G(z) — G(/2)) = o(1)m(z);
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also I1T = O(1)zn(z)(F(z) — F(z/2)) = o(1)n(z) holds. Combining these esti-
mates, we obtain the desired result. [

COROLLARY 5.2. Suppose F € D(m,a), E(X) < oo and m € LN ORV.
Then for all n > 2,

lim

W — % (g) B(X). (5.1)

Moreover, if a(m) < —1, then for all n > 2,

R(x) im 1—F*"(z) —n(l — F(z)) _ n
n(z) =1 (@) 2a<2> E(X). (5.2)

Proof. The result for n = 2 follows from Theorem 5.1. For n > 2, we use
Corollary 3.3.2 to obtain F*" € D(m,na). Since [;*(1 — F**(z))dz = nE(X),
Theorem 5.1 applies again and we obtain
F*"(x)F(z) — F*"+(z)

m(x)

lim

lim =naE(X) +naE(X) = 2naE(X).
Finally note that
FrHi(z) = F*"(z) = F(2)(F"(z) = F*"(z)) + F(2)F*" () = F*""(2),
so that
Fn+1(.’1:) _ F*n+1($) 1 Fn(SL') _ F*n(x)
m(x) - m(x)

The result (5.1) now follows by induction on n.

lim

+ 2naE(X).

To prove (5.2) we write

1—F"(z) —n(l — F(x))
(1-F(z))

Rn(z) = F"(z) — F™"(z) + (1 - F(z))*.

Using (5.1) we obtain

R, (z) = 2a <2>E(X)m(a:) - (2) F%(z) + o(1)m(z) + o(1) F%(x). (5.3)

To prove (5.2) we use Proposition 3.2.1 (iv) to obtain 1—F(z) = O(1)zm(z). Using
E(X) < oo this gives F2(z) = O()m(z)zF(z) = o(1)m(x). Relation (5.2) now
follows from (5.3). O

Remarks. (1) Since Rn+1( ) = nRa2(x)+ R, * F(z) the previous result implies
that lim(R,, x F(z))/m(z) = 2a(})E(X). If @ > 0, this implies that F € D(m)
and Proposition 2.3 apphes

(2) If & > 0 and m(z) = o(F*(x)) or a = 0 and m(z) = O(F?(z)), it follows
from (5.1) with n = 2 that lim(F?(z) — F*?*(z))/F?(z) = 0. Using the inequality
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F2(z) — F**(z) > (F(x) — F(x/2))? we obtain lim F(z/2)/F(x) = 1. This implies
1— F(x) € RVg and hence E(X) = oo which we excluded here. This remark shows
that in many cases m(z) will be the dominant term in (5.3).

(3) Under the conditions of Corollary 5.2, the special choice G(z) = 1—F?(z)
yields G(z) € D(m,0). An application of Theorem 5.1 yields

lim F2 (SL’) * F(CL’) — FZ(.'L')F(m) =« 7F2($) ds.

m(z)
0

This result should be compared with Corollary 2.4, Proposition 4.1 and the proof
of Proposition 4.7.

The special choice m(z) = (1 — F(z))/z in Corollary 5.2 yields
COROLLARY 5.3. Suppose F € D(m,a) with m(z) = (1 — F(z))/z, and
assume E(X) < oo. Then for all m > 2, (5.1) and (5.2) hold.

Proof. From Proposition 3.1.2 it follows that 1 — F(z) € RV_4, a > 1 and
consequently that Corollary 5.2 is applicable. O

Part 2: Infinite-means case. If E(X) = E(Y) = oo we shall assume F €
D(m,«a) and G € D(n, ) where the auxiliary functions m(x), n(z) are regularly
varying. Recall the following results of Proposition 3.1.2.

PROPOSITION 5.4 Suppose F € D(m,a), G € D(n,B) with m € RVs and
n € RV,.

() If6+1 < 0, (resp. =0, resp. > 0), then F(z)/zm(z) = —a/(1 +9)
(resp. F € I, (zm(x)), resp. a =0).

(ii) If p+1 <0, (resp. =0, resp > 0), then G(z)/zn(x) — —B/(1+ p) (resp.
G € llg(zn(x)), resp. =0). O

Using the decompositions (4.1) and I = I; + al, of the beginning of Section
5, we proceed with estimating I>. Using partial integration we have

z/2 z z z/2

I, = / / m(s)dsdG(y) = / / dG(y) ds
y=0z=2—y s=z/2 y=T—5
z/2

= /(G(s) - G(z/2))m(z — s)ds

z/2

= w//zé(s)m(w—s)ds—(_?(x/Z)/m(m—s) ds=:A— B.

0

We consider the cases p+1 < 0 and p + 1 = 0 separately.
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Case 1: p+1<0. For € > 0 we write

e 1/2
/ z(l—3s))ds==z / / z(1 —s))ds =: A; + As.

Using the regular variation of m and n and uniform convergence, we have

1/2
4H B
2n(z)m(z) ~ 14+p

lim s'TP(1 — s5)%ds. (5.4)

Next consider A;; using uniform convergence we have m(z(1—t))/m(z) — (1 —1)°

uniformly in 0 < ¢t < ¢. For z sufficiently large, this implies

(1 —¢&)zm(x) /G(ws) ds < A1 < (1 +¢)zm(z) /G(ws)ds.
0

Now we estimate = [; G(zs)ds = [;* G(s)ds. Since E(Y) = oo we have

/wyn(y)dy =00
0

and lim [;° G(t)dt/ [ yn(y)dy = —B/(1 + p). If p+ 1 > —1, this shows that
o G(t)dt ~ —ﬁx2n(x) 2+p and hence that 4; = O(1)e?>*®. Now combine the
estimates for A1 and A, and let € — 0 to obtain

1/2

. A g 1
1 =— *P(1 - 5)°ds. :
im Pm)n(@) T+, / s 1P (1 —s)’ds (5.5)
If p+1 = —1, we have ;" G( ~ B [ 7 yn(y) dy. Since in this case [, yn(y)dy €
(z?n(x)) we have an(m) fo yn(y dy and we obtain
A
(1-¢)B < lim ,“p - <(1+e)B.
mf
z) [ yn(y
0

Moreover, from (5.4) we have Ay = o(m(x) foz yn(y) dy). Combining the two esti-
mates and then letting ¢ — 0, we obtain

A= (B+ o(1))(m(z) / yn(y) dy). (5.6)
0

Next we consider B; using Proposition 5.4 and the regular variation of m and n we
obtain

B~ _ﬂmen(m)m(m) (%) o ://2(1 _ t)dt. (5.7)
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If p+ 1= —1, this yields

B = o(m(z) [ yn(y) dy) (58)
0
Combining (5.5) and (5.7) or (5.6) and (5.8) we obtain
if p+1>-1: limbL/(z?m(z)n(z)) =4 lf/2 1fzzp(l — t)0dzdt
(5.9.q) =02=t

if p+1=-1: limIQ/(m(m)bfyn(y) dy) = B.

Note that p +1 < —1 is not possible here since we assumed E(Y) = co.
Case 2: p+ 1 =0. In this case for € > 0 we have

1/2

0

c 1/2
=z + (G(zs) — G(z/2))m(z(1 — s))ds =: A + B.
[+]

Using uniform convergence, we obtain
1/2

lim B/ (z2m(z)n(z)) = — / log(2s)(1 — 5)°ds.

As to A, we have m(z(1 — s))/m(z) — (1 — 5)° uniformly in 0 < s < ¢. Hence
< KZL'/(G(JES) — G(z/2))ds =: KC(z).
0
Now C(z) = exG(z/2) — Om G(t)dt and C(z)/ze = G(z/2) — G(xe) + G(xe) —
0” G(t)dt. Since G € Ilg(zn(z)) we obtain (cf. [5,8]) lim G(z)/(ze)?n(ze) =

B — Blog(2e) and hence 0 < limsup A/z’n(z)m(z) < Ke(B — Blog(2¢)). Now
combine the estimates for A and B and let € — 0 to obtain

A
m(x)

1/2 1/21/2

. I B
hmm = —ﬁo/log(2s)(1 —5)0ds = 50/ t/z ldz(1 —t)%dt.  (5.9.b)

As a second step, we estimate I;. At the beginning of Section 5 we obtained
|I;| < em(z)G1(z). The classical properties of regularly varying functions show
that for —1 < p+ 1 < 0, Gy(z)/2*n(z) — B/(2+ p) and for p+ 1 = —1, that
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Gi(z)/ (fy yn(y)dy) — B. Since £ was arbitrary, using (5.9.a) and (5.9.b) we
obtain

1/21/2
if —1<p+1<0: limI/2’m(z)n(z)=af [ [ 2/(1—t)0dzdt
(5.10) N =0t==
if p+1=-1: lim I'/(m(z) [ yn(y)dy) = ap.
0

For the second term II in (4.1), we obtain in a similar way that

1/21/2
if —1<6+1<0: limII/2®>m(z)n(z) =aB [ [ 2°(1—t)Pdzdt
(5.11) . =0 z=¢
if 0+1=-1: lim IT/(n(z) [ ym(y) dy) = ap.
0

As to the third term III in (4.1), using Proposition 5.4 we have

lim o lim (F(z) — F(2/2))(G(z) — G(z/2))
2m(z)n(z) em(z) zn(z)

(5.12)
:aﬂ//sét"dsdt, 0+1<0,p+1<0.

1/21/2

Combining (5.10) up to (5.12) we summarize our findings in the following

THEOREM 5.5. Suppose F € D(m,a), G € D(n,(), E(X)=E(Y) = 00 and
m € RVs, n € RV, withd+1 <0 and p+1<0. Let R(zx) = F(x)G(z) — F «G(z).

) If-1<d+1, p+1<0, then

1/21/2

__B@=) - af //(z”l—t) +2°(1 = t)") dzdt+// 2°tF dz dt

0 1/21/2

(i) Ifo+1=p+1= -1, then

R(z) = (af + o(1))m(z) / yn(y) dy + (B + o(1))n(z) / ym(y) dy.

0 0

(i) If6+1=-1, -1<p+1<0 (resp. p+1=-1,-1<6+1<0), then

R(z) = (af + o(1))n(z) / ym(y) dy <p m(z) / yn(y)dy) O

0 0
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Remarks. (1) In Theorem 5.5(i), the limit can be rewritten as

1

afBC(p,d) = af / / (1 — 2)°t0 dz dt.

=0 2=0
Using the hypergeometric function (cf. [1]) we have

(p+1DE+1)C(p,0) =1—F(+1;—p—1;6+2;2=1)

T+ 2)T(p+2) (5.12)
_ 61743 (-1<p+1,6+1<0).

For p = § = —1, we have C(—1,-1) = 72/6 and for p = —1; —1 < §+1 < 0, we
have C(—1,9) = v+ TI"(6 + 2)/T'(d + 2) where ~y is Eulers’ constant.

(2) If m(z) = n(z) € RVs, =1 < §+ 1 < 0 we have z2m(z) ~ (6 +2)x
Js ym(y) dy and Theorem 5.5 yields

R(z) = (aK(5) + o(1)) (m<z> / ym(y)dy) (5.13)
0
where K (5) = 2if § = —2 and K (8) = (2 + 8)C(6,0) if —1 < 6 +1 < 0.
In the case where F(z) = G(x) we obtain:

COROLLARY 5.6. Suppose F' € D(m,a), E(X) = oo and m(z) € RVy,
—2<§ < —1. Then for alln > 2,

. FMx) - F*™(z) n
lim — Aw a”K(0) <2> (5.14)
where A(xz) = m(x) fow ym(y) dy, and
im Ru(z) _ 5 (n 642 ;
lim — 5 = a <2> (K(d) 7(6+1)2> ., ifs+1<0  (5.15a)
. Ry(z)  (n . _
lim ) <2> if 60+1=0. (5.15b)

Proof. If n = 2, (5.12) is the content of Theorem 5.5, ¢f. (5.13). For n > 2,
we can use Corollary 3.3.2 to see that F**(x) € D(m,na). Another application of
(5.13) yields

F*(z)F(z) — F*""(z) = (na’K () + o(1))A(z).

Since.} Frtl(g) — F*tl(g) = F(2)(F™(z) — F*(z)) + F*"(2)F(z) — F*"*(z), we
obtain Frti(e) - FHi(a) . FA(r) — F(a)

A(z) A(z) + na”K(9).

lim
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By induction on n, we obtain (5.14). To prove (5.15), we rewrite R,(z) as follows:
1-F"(z) —n(l— F(x))
F2(z)

If §+1 < 0, Proposition 5.4 gives lim F?(z)/z*m?(z) = o® /(146)? and this implies
F?(x)/A(z) = a®(6+2)/(146)*. Combining this with (5.16) and (5.14) we obtain
(5.15a). If § + 1 = 0, Proposition 5.4 implies lim z?m?(z)/F?(z) = 0 and now

(5.15b) follows again from (5.14) and (5.16). O
Remark. Using (5.12) and the definition of K (), the relation (5.15a) can be

rewritten as R
lim ;(S;) = a2 (Z)L(d) (5.17)

where L(§) = 2 if § = —2 and L(4) = %)M%giéi% if -1 <§&+1<0. Note that
the limit in (6.17) is zero only if @ = 0 and/or if 6 = —3/2.

A combination of Corollary 5.2 and Corollary 5.6 yields the following corol-
lary, which unifies the results of this section.

R, (z) = F™(z) — F*"(x) + F%(z). (5.16)

COROLLARY 5.7. Suppose F € D(m,a), a # 0 and suppose that:
(i) E(X)<oo andm € LNORV  or (ii) E(X) =00 and m € RVy, § # —3/2.
Then for all n > 2, lim R, (z)/Ra(x) = (5). O

In the next corollary we complete Corollary 5.3.

COROLLARY 5.8. Suppose F' € D(m,a) with m(z) = (1 — F(x))/z and
E(X) = co. Then 1 — F(z) € RV_,, and the results of Corollary 5.6 hold with
d=—-a-1.0

Part 3: mixed case. If E(X) = oo and E(Y) < oo we can combine the
efforts of part 1 and part 2 to estimate F'(z)G(z) — FxG(x). We shall prove

THEOREM 5.9. Suppose F' € D(m,a), G € D(n,3), E(X) =00, E(Y) < 0.
Also assume m € RVs, -1 <d+1<0andn € RV,, p< —2. Then

lim(F(z)G(z) — F * G(m))/m(a:) =aE(Y).
If p=6 = -2 and m(z) = (c + o(1)) fo ym(y)dy (0 < c < o), then
o F@)G(E ) F*G(ﬂf))

=af +caE(Y).
nta) fym(v) dy

Proof. Using the methods and notations of Parts 1 and 2, we readily obtain
the following estimates:

(1) imI'/m(z) = aE(Y);
(2) im IT/(z*m(z)n(x)) = aB Const, if —1<d§+1<0, and

n
limII/( Ofym(y ):aﬂ if 8=-2;
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(3) im ITI/z*m(x)n(z) = af Const.
If p = = =2, the desired result follows; if p < —2 and -1 < d+1 <0 we
have 2?m(z)n(x)/m(z) = z?n(z) — 0 and the desired result follows. O

6. Examples and applications

6.1. Examples. 6.1.1. Assume that F(z) has a density f(x) = O(1)m(x)
(resp. o(1)m(z)) where m(z) € ORV. In this case F' € OD(m) and Corollary 4.3
applies. Now assume G(z) is the d.f. defined by G = [1/F(x)]~!, where as usual [z]
denotes the integer part of z. It is readily seen that G(z) = F(z)+ (1+0(1))F?(z)
and if 1 — F(x) € L, Proposition 4.7 yields G%(z) — G**(z) = O(1)m(z)F(z) +
O(1)F?(z) (resp. o(1)m(x)F; (x) + o(1)F?(z)).

6.1.2. If § = —3/2, then (5.17) shows that R, (z) = o(1)A(z) and it seems to
be necessary to consider a third-order approximation here. A partial answer to this
has been given in [12, Lemma 2.5] where we considered stable distributions on R .
If F is stable with index 8 = 1/2, then F € D(m(z) = z=3/2,a) and (5.17) shows
that R, (z) = o(1)F?(z). In [12, Lemma 2.5] we proved that lim R, (z)/Rz(z) =
("F"). If F is stable with index 3, 0 < 8 < 1, B # 1/2 we also showed [12, p. 349
that for some constant k(3),

Bala) ~ (3)Bate) _ (), o
F3(x) 3 ’
which gives a rate of convergence result in Corollary 5.7.

lim

6.1.3. Theorem 5.9 is applicable in the following situation. Suppose that
F(z) € D(F?(z),a) (p > 1). In this case it is easily verified that the d.f. G(x) where
G(x): = 1—FP(z), belongs to the class D(F?*P~1(z),pa). If a # 0, Proposition 3.2.1
implies that F(z)/ [° F?(y) dy — a and it easily follows that F(z) ~ Cz~1/(>=1)
where C' denotes some positive constant. If p > 2, we can apply Theorem 5.9 to
obtain

. (F(z)G(x) — FxG(x)) Ji P
lim m(@) = Oéo/F (y)dy
and hence I
im F;:;(ng) =1+ a/FP(y) dy

6.2. Subordinate probability distributions. Suppose F' is a d.f.on R
and {pn}n the probability distribution of an integer-valued r.v. N. The d.f. H(z)
defined by H(z) = Y..° poF*"(z) is called subordinated to F' with subordinator
{pn}N. Such type of d.f. arise in many stochastic models, see e.g. [18] and the
references given there. In studying the asymptotic behavior of 1 — H(x) it is
wellknown that subexponential d.f. play an essential role. Here we focus on the
second-order behavior of 1 — H(z). Clearly we have

R(z):=1—H(z) - B(N)(1 - F(2)) = ) paRa() (6.1)
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and Proposition 2.3 will allow us to use Lebesgue’s theorem. Under appropriate
conditions on the sequence {p,}n it follows from Proposition 2.3 and (6.1) that

R(z) = O()m(x). (6.2)
Using Corollary 5.7 we obtain an asymptotic equality instead of the O-estimate
(6.2).
THEOREM 6.1. Suppose F(z) satisfies the conditions of Corollary 5.7 and
assume Y o ppx™ is analytic at x = 1. Then lim R(z)/Ry(z) = E(g) O
This result unifies the results of [12, 13, 6].
Classical examples are the Compound Poisson and Compound Geometric d.f.

6.3. Infinitely divisible d.f. Our next application is devoted to the
relation between the tail of an infinitely divisible d.f. (i.d.) and its Levy measure v.
If Fisi.d. with Levy measure v we set A = v([1,00)) and define the d.f. Q(z) as
Q(z) = X 'y([1,2]) (z > 1). It is known (see e.g. [3]) that F can be written as

F(z) =U+V(x) (6.3)
where V(z) = e* Z Q*" ) and where U (z) is a d.f. satisfying for all £ > 0,

1-U(z) =o(l)e *". (6.4)
The d.f. V(z) being compound Poisson, Theorem 6.1 applies and we obtain

_1-V(2) - A1-Q)) _ X

li = — 6.5

% Ra,o() 2 (65)
where Ry o(z) = 1 — Q*?(z) — 2(1 — Q(z)). To obtain an asymptotic result for F,
we first estimate U(z)V (z) — UxV (x). Using (4.1) we have

z/2
U@)V(@)-U+V( / (& — ) dV (y)
0
z/2
+ [ (V(z —y))dU (y)
!
+ (U(x) =U(z/2))(V(z) =V (z/2)) =T+ II +III.

Using (6.4), for each ¢ > 0 we have I = o(1)e=**/? and ITI = o(1)e==%/2.
To estimate II we shall apply Lebesgue’s theorem. Under the conditons of
Corollary 5.7 (for Q(z)) we have Q(x) € D(Ra,q(x);1/2E(Z)), where E(Z) =

y)dy and E(Z) < oo. Also Ryg(x) € L. Using (6.5) we also have
V( ) € D(R2,0(z);A\/(2E(Z))). Now we apply Lebesgue’s theorem and obtain

o;ﬁ

oo

11

. A
lim Foo(@) = SE(Z) b/ydU(y).
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Hence

A o0
U@V (@)~ Ue) + V(o) = | g5z [ 1400 +001) | Raglo).
0
Using this estimate and (6.5) we obtain

1-F(z) - A1-Q(z)) X L7
Ry,q(z) 2\ wEm 0/ ydU@y)|.  (6.6)

lim

If E(Z) < oo we have Ry g(z) ~ 2mg(x)aE(Z). In this case (6.6) can be replaced
by

i L= F@ =AM =Q@) _ (AE(Z) + /ydU(y)) = /\a/de(y).

mq(z) ) )

Summarizing our results, we have proved:

THEOREM 6.3. (i) Suppose F is i.d. with Levy measure v. Suppose that
Q(z) € D(mg,a) where Q(z):= A"'v([1,z]) and where mg(z) € LN ORV. If the
mean of F is finite, then lim(1 — F(z) — v([z,0)))/mq(x) = A [~ y dF (y).

(ii) If the mean of F is infinite and if Q(x) satisfies the conditions of Corollary
5.7(ii), then lim(1 — F(z) — v([z,00)))/Ra,q(z) = A?/2. O

6.4. Concluding remarks. 6.4.1. To obtain third order results we can
analyse Qn(z) defined by Q,(z) = R,(z) — (3)R2(z) (n > 3). It is not hard to
show that Qni1(z) = (5)Qn(z) + Qn * F(z) so that depending on Qs(z) several
parts of Section 2 can be applied here. If F(z) € D(m) and Q3(z) = O(1)m(=),
then Proposition 2.3 gives Q,(z) = O(1)m(z) for all n > 3. The exact asymptotic
behaviour of @3 (and @) has been analysed in [9,18] in the case where F' has a
finite mean and a differentiable density. The infinite mean case will be treated in
a forthcoming paper.

6.4.2. Several results of Sections 4 and 5 also hold for the convolution of
densities. In [14] the behaviour of f ® g(z) — f(z)g(z) has been analysed for
L'[0, 00)-functions. The infinite mean case is treated in [19].

6.4.3. It seems to be of interest to study the class of d.f. F(z) for which
R, (z)/R2(z) exists for all n > 3.
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