A NOTE ON APPROXIMATION BY BLASCHKE-POTAPOV PRODUCTS

Dušan R. Georgijević

Abstract. A theorem on approximation of bounded operator functions by finite Blaschke–Potapov products is proved, where a quantity defined in terms of the Potapov–Ginzburg factorization is simultaneously approximated.

Let H be a fixed separable (non-trivial) Hilbert space and C, S_1 the spaces of all bounded, respectively nuclear operators on H. We will denote by $\|\cdot\|$ the norm in C (the uniform norm) and by $\|\cdot\|_1$ the norm in S_1 (the trace norm). The identity operator on H will be denoted by I. By D we will denote the unit disc |z| < 1 in the complex plane.

According to [1], let G be the class of operator functions $\theta: D \to C$ analytic on D (in the sense of the uniform norm), such that:

(1)
$$\theta(z)^*\theta(z) \leq I$$
, $z \in D$; (2) there exists $\theta(0)^{-1} \in C$; (3) $\theta(0) - I \in S_1$.

The Blaschke–Potapov products and the Potapov multiplicative integrals are important examples of G functions [2], [1]. An operator function $B:D\to C$ is called a Blaschke-Potapov product if

$$B(z) = \prod_{j=1}^{q} b(P_j; a_j, z) := \prod_{j=1}^{q} \left[\frac{|a_j|}{a_j} \frac{a_j - z}{1 - \bar{a}_j z} P_j + (I - P_j) \right], z \in D, \quad (1)$$

where: $q \leq \infty$, $0 < |a_j| < 1$, P_j are orthogonal projections, $\operatorname{Tr} P_j = \dim P_j H = : p_j < \infty$, $\sum \left(1 - |a_j|\right) p_j < \infty$. Thereby, it is understood that the partial products converge to the Blaschke–Potapov product B(z) in the sense of the trace norm, uniformly on compact subsets of D. If $q < \infty$, then B is a finite Blaschke–Potapov product.

AMS Subject Classification (1985): Primary 30 G 35, Secondary 47 B 38.

Key words and phrases: analytic operator function, approximation, Blaschke-Potapov product, Potapov multiplicative integral.

A function $F: D \to C$ is called a *Potapov multiplicative integral* if

$$F(z) = \int_{0}^{c} \exp\{-v(y(x), z)dE(x)\}, \quad z \in D,$$
(2)

where: $v(t,z) = (1+e^{-it}z) (1-e^{-it}z)^{-1}$, y is a nondecreasing scalar function $(0 \le y(x) \le 2\pi)$, $E:[0,c] \to S_1$ is an hermitian-increasing operator function satisfying $\operatorname{Tr} E(x) = x$, $x \in [0,c]$. It is understood here that the integral products converge to the Potapov multiplicative integral F(z) in the sense of the trace norm, uniformly on compact subsets of D. The function y in (2) can be chosen to be left continuous and to take the value 2π only at the point x=c or nowhere on [0,c]. Such function y will be called canonical.

Each product of a Potapov multiplicative integral and a Blaschke-Potapov product is a G function. The converse is also true, in a sense. Namely, if $\theta \in G$, then there exist a Potapov multiplicative integral F, a Blaschke-Potapov product B and a unitary operator U on H, with $U - I \in S_1$, such that

$$\theta(z) = F(z)UB(z), \quad z \in D \tag{3}$$

[1]. If the function y in (2) is canonical, then c, y, a_j and $p_j(j = 1, 2, ..., q)$ are uniquely determined by θ .

Remark 1. The factorization (3) implies that $\theta(z) - I \in S_1$, $z \in D$, whenever $\theta \in G$. It follows that $\det \theta(z)$ exists for every $z \in D$ [3, p. 199–206]. One can easily see that this determinant can be expressed in terms of the factorization (3):

$$\det \theta(z) = \det F(z) \det(UB(z)), \tag{4}$$

$$\det F(z) = \exp\left\{-\int_{0}^{c} v(y(x), z) dx\right\}$$
 (5)

$$\det(UB(z)) = \lambda \prod_{j=1}^q \left[\frac{|a_j| \left(a_j - z\right)}{a_j \left(1 - \bar{a}_j z\right)} \right]^{p_j}, \ \ |\lambda| = |\det U| = 1.$$

Thus, $\det\theta\in H^\infty$ and the zeros of $\det\theta$ are exactly the zeros of the Blaschke product $\det(UB)$ (for $\det F(z)\neq 0, z\in D$). Since a scalar Blaschke product is determined by its zeros (accounting their multiplicities) up to a constant factor of modulus one, it follows that $\det\theta$ is a Blaschke product if and only if $|\det F(z)|=1$, $z\in D$, i.e. if and only if c=0 (for $\det F(0)=e^{-c}$). In other words, $\det\theta$ is a Blaschke product if and only if $\theta=UB$ for some Blaschke–Potapov product B and some unitary operator U on H, with $U-I\in S_1$.

It is convenient to extend the notion of Blaschke–Potapov product. If B is a Blaschke–Potapov product and U a unitary operator on H, with $U-I \in S_1$, then let the product UB also be called a Blaschke–Potapov product.

Thus, a G function θ is a (finite) Blaschke–Potapov product, in the extended sense, if and only if $\det \theta$ is a (finite) Blaschke product.

Remark 2. If B_1 and B_2 are (finite) Blaschke-Potapov products, then the product B_1B_2 is also a (finite) Blaschke-Potapov product.

The factorization (3) and the notation used in (1) and (2) enable us to introduce the following quantity:

$$R_m(\theta; w) := \int_0^c \left| 1 - e^{-iy(x)} w \right|^{-m} dx + \sum_{j=1}^q \left| 1 - \bar{a}_j w \right|^{-m} (1 - |a_j|) p_j, \tag{6}$$

for $\theta \in G$, $|w| \leq 1$, $m \in N$, where the function y is canonical.

The integral in (6) can be replaced by an integral with respect to the representing measure of $\det F$, where $\theta = FUB$ (factorization (3)). Namely, if we set

$$\sigma(t) := \sup \{x : x \in [0, c] \land (y(x) < t \lor x = 0)\}, \ t \in [0, 2\pi],$$

then we have

$$\int_{0}^{c} v(y(x), z) dx = \int_{0}^{2\pi} \frac{1 + e^{-it}z}{1 - e^{-it}z} d\sigma(t), \ \ z \in D,$$

i.e. $d\sigma$ is the representing measure of det F (see (5)), and

$$\int_{0}^{c} \left| 1 - e^{-iy(x)} w \right|^{-m} dx = \int_{0}^{2\pi} \left| 1 - e^{-it} w \right|^{-m} d\sigma(t). \tag{7}$$

Remark 3. The above considerations imply that $R_m(\theta_1\theta_2; w) = R_m(\theta_1; w) + R_m(\theta_2; w)$, for arbitrary G functions θ_1 and θ_2 . Indeed, if $\theta_1\theta_2 = \theta$, $\theta_1 = F_1B_1$, $\theta_2 = F_2B_2$, $\theta = FB$ (F_1 , F_2 , F – Potapov multiplicative integrals, B_1 , B_2 , B – Blaschke–Potapov products) and if $d\sigma_1$, $d\sigma_2$, $d\sigma$ are the representing measures of $\det F_1$, $\det F_2$, $\det F$ respectively, then it must be $\det \theta = \det \theta_1$. $\det \theta_2$ and, consequently, $\det F = \det F_1$. $\det F_2$, $\det B = \det B_1$. $\det B_2$ (see (4)), $d\sigma = d\sigma_1 + d\sigma_2$. Applying the definition (6) in which the integral is replaced by the integral on the right-hand side of (7), we obtain $R_m(\theta; w) = R_m(\theta_1, w) + R_m(\theta_2; w)$.

Remark 4. If a sequence (θ_n) of G functions converges to a G function θ , in the sense of trace norm, uniformly on compact subsets of D, and if we have for each fixed n a sequence $(B_{n\nu})$ of finite Blaschke–Potapov products, tending to θ_n as $\nu \to \infty$, in the same way, then we can find a sequence (B_n) of finite Blaschke–Potapov products wich converges to θ . This is easy to do: one need only choose B_n to be a $B_{n\nu}$ satisfying $\max\left\{\|F_n(z)-B_{n\nu}(Z)\|_{1}\colon |z|\leq 1-n^{-1}\right\}< n^{-1}$, for every fixed n.

We shall consider approximation of G functions by finite Blaschke–Potapov products. We will show that any $\theta \in G$ can be approximated in such a way that $R_m(\theta;w)$ is also approximated, for fixed w and m satisfying $R_m(\theta;w) < \infty$.

THEOREM 1. Let $\theta \in G$, $|w| \leq 1$, $m \in N$, and let $R_m(\theta; w) < \infty$. Then there exists a sequence (B_n) of finite Blaschke-Potapov products such that $B_n(z) \to \theta(z)$,

 $n \to \infty$, in the sense of trace norm, uniformly on compact subsets of D, and that $R_m(B_n; w) \to R_m(\theta; w), n \to \infty$.

Proof. Since $\theta \in G$, the factorization (3) holds. It suffices to consider separately the cases $\theta = F$ and $\theta = UB$, for if (B_{ln}) and (B_{2n}) are sequences of finite Blaschke–Potapov products such that $B_{ln}(z) \to F(z)$, $B_{2n}(z) \to UB(z)$, $R_m(B_{ln};w) \to R_m(F;w)$, $R_m(B_{2n};w) \to R_m(UB;w)$, as $n \to \infty$, then, by Remarks 2 and 3, $(B_{ln}B_{2n})$ is a sequence of finite Blaschke–Potapov products for which $B_{ln}(z)B_{2n}(z) \to F(z)UB(z) = \theta(z)$ and $R_m(B_{ln}B_{2n};w) = R_m(B_{ln};w) + R_m(B_{2n};w) \to R_m(F;w) + R_m(UB;w) = R_m(\theta;w)$ as $n \to \infty$.

Let $\theta=F,\,F$ a Potapov multiplicative integral. Since the integral products of the form

$$\prod_{i=0}^{k-1} \exp \left\{-v\left(y\left(\xi_{j}\right),z\right) \Delta E\left(x_{j}\right)\right\}, \; \xi_{j} \in \left[x_{j},x_{j+1}\right], \; \Delta E\left(x_{j}\right) = E\left(x_{j+1}\right) - E\left(x_{j}\right),$$

converge to F(z) as $\max \Delta x_j \to 0$, in the trace norm, uniformly on compact subsets of D, we can choose a sequence of integral products

$$F_{n}(z) = \prod_{j=0}^{n-1} \exp \left\{-v\left(y\left(\xi_{nj}\right), z\right) \Delta E\left(x_{nj}\right)\right\} =: \prod_{j=0}^{n-1} f_{nj}(z), \ n \in N,$$

such that $F_n(z) \to F(z)$, $n \to \infty$, in the trace norm, uniformly on compact subsets of D, and that

$$R_{m}(F_{n}; w) = \sum_{j=0}^{k_{n}-1} \left| 1 - e^{-iy(\xi_{nj})_{W}} \right|^{-m} \Delta x_{nj} \to$$

$$\int_{0}^{c} \left| 1 - e^{-iy(x)} w \right|^{-m} dx = R_{m}(F; w), \quad n \to \infty,$$
(8)

with $\operatorname{Tr} \Delta E(x_{nj}) = \Delta x_{nj} < 1$ and $e^{iy(\xi_{nj})} \neq w$, $0 \leq j \leq k_n - 1$, $n \in \mathbb{N}$. (The first equality in (8) follows from Remark 3 and from the fact that

$$f_{nj}(z) = \int_{0}^{c_{nj}} \exp \left\{-v\left(y\left(\xi_{nj}\right), z\right) dE_{nj}(x)\right\},\,$$

where c_{nj} := Δx_{nj} and $E_{nj}(x)$:= $xc_{nj}^{-1}\Delta E\left(x_{nj}\right)$, $0 \le x \le c_{nj}$.)

In view of Remark 4, the searching for an appropriate sequence of finite Blaschke–Potapov products for θ can be reduced to the finding of a suitable sequence of finite Blaschke–Potapov products for any F_n , $n \in N$. But according to Remarks 2 and 3, it suffices to find a suitable sequence of finite Blaschke–Potapov products for any f_{nj} , $0 \le j \le k_n - 1$, and then multiply them to obtain an appropriate sequence for F_n .

This allows us to assume $\theta(z) = \exp\{-v(\eta, z)A\}$, where $\eta \in [0, 2\pi]$, $e^{i\eta} \neq w$, and A is a positive operator on H, with $\operatorname{Tr} A < 1$.

As the operator A is nuclear and positive, it is the limit, in the trace norm, of a sequence of finite sums $A_n := \sum_{j=1}^n \lambda_j P_j$, where λ_j , $0 < \lambda_j < 1$, are eigenvalues of A, and P_j (Tr $P_j < \infty$) are the corresponding orthogonal projections. Since the function $v(\eta, \cdot)$ is bounded on compact subsets of D (for $|v(\eta, z)| \le 2(1 - |z|)^{-1}$, $z \in D$), it follows that

$$K_n(z) := \exp\{-v(\eta, z)A_n\} \to \theta(z), \quad n \to \infty,$$
 (9)

in the trace norm, uniformly on compact subsets of D, and that

$$R_m(K_n; w) = |1 - e^{-i\eta}w|^{-m} \operatorname{Tr} A_n \to |1 - e^{-i\eta}w|^{-m} \operatorname{Tr} A = R_m(\theta, w), \quad n \to \infty.$$
(10)

Note that $K_n(z) = \int_0^{\infty} \exp\left\{-v(\eta, z)dE_n(x)\right\}$, where $c_n := \operatorname{Tr} A_n$, and $E_n(x) := xc_n^{-1}A_n$, $0 \le x \le c_n$, $n \in \mathbb{N}$.

Clearly, we have

$$K_n(z) = \prod_{j=1}^n \exp\left\{-v(\eta, z)\lambda_j P_j\right\} =: \prod_{j=1}^n k_j(Z), \ n \in \mathbb{N}.$$
 (11)

Since $K_n \to \theta$ and $R_m(K_n; w) \to R_m(\theta; w)$ as $n \to \infty$ (see (9), (10)), the finding of an appropriate sequence of finite Blaschke-Potapov products for θ reduces to the searching for a suitable sequence for any K_n (by Remark 4) and since each K_n is a finite product of the functions k_j (see (11)), this reduces further to the finding of a sequence for any k_j (by Remarks 2 and 3).

Thus we may assume that θ has the form $\theta(z) = \exp\{-v(\eta, z)\lambda P\}$, $z \in D$, where: $\eta \in [0, 2\pi]$, $e^{i\eta} \neq w$; $0 < \lambda < 1$; $P^* = P$, $P^2 = P$; Tr P := p. Starting with such a θ , set $a_n := \left(1 - \lambda n^{-1}\right) e^{i\eta}$ and $B_n(z) := \left[b\left(P; a_n, z\right)\right]^n$, $n \in N$. Then we have, for $z \in D$ and $n \in N$:

$$\begin{split} & \| \exp \left\{ -v(\eta, z) \lambda n^{-1} P \right\} - b \left(P; a_n, z \right) \|_1 \\ & \leq \left\| \exp \left\{ -v(\eta, z) \lambda n^{-1} P \right\} - I + v(\eta, z) \lambda n^{-1} P \right\|_1 \\ & + \left\| I - v(\eta, z) \lambda n^{-1} P - \left[I + \frac{1 + |a_n| a_n^{-1} z}{1 - \bar{a}_n z} \left(|a_n| - 1 \right) P \right] \right\|_1 \\ & \leq \sum_{j=2}^{\infty} \frac{1}{j!} \left\| \left[v(\eta, z) \lambda n^{-1} P \right]^j \right\|_1 \\ & + \left\| - \frac{1 + e^{-i\eta} z}{1 - e^{-i\eta} z} \lambda n^{-1} P + \frac{1 + e^{-i\eta} z}{1 - \left(1 - \lambda n^{-1} \right) e^{-i\eta} z} \lambda n^{-1} P \right\|_1 \\ & \leq \frac{4}{(1 - |z|)^2} \lambda^2 n^{-2} \exp \left\{ \frac{2}{1 - |z|} \lambda n^{-1} \right\} p + \frac{2}{(1 - |z|)^2} \lambda^2 n^{-2} p. \end{split}$$

Since $||L^n - M^n||_1 \le ||L - M||_1 ||L^{n-1} + L^{n-2}M + \ldots + M^{n-1}|| \le ||L - M||_1 \cdot n$ whenever $L, M \in C, L - I \in S_1, M - I \in S_1, LM = ML, ||L|| \le 1, ||M|| \le 1$, it

follows

$$\begin{split} & \| \exp \left\{ -v(\eta, z) \lambda P \right\} - \left[b(P; a_n, z) \right]^n \|_1 \\ & \leq \left\| \exp \left\{ -v(\eta, z) \lambda n^{-1} P \right\} - b \left(P; a_n, z \right) \right\|_1 \cdot n \\ & \leq \frac{4}{(1 - |z|)^2} \lambda^2 n^{-1} \exp \left\{ \frac{2}{1 - |z|} \lambda n^{-1} \right\} p + \frac{2}{(1 - |z|)^2} \lambda^2 n^{-1} p \to 0, \ n \to \infty, \end{split}$$

uniformly on compact subsets of D. Thus $B_n(z) \to \theta(z)$ as $n \to \infty$, in the trace norm, uniformly on compact subsets of D.

It remains to show $R_m(B_n; w) \to R_m(\theta; w), n \to \infty$. This follows from $R_m(B_n; w) = |1 - \bar{a}_n w|^{-m} n (1 - |a_n|) p$, $R_m(\theta; w) = |1 - e^{-i\eta} w|^{-m} \lambda p$ and $a_n \to e^{i\eta}$ as $n \to \infty$, with $n (1 - |a_n|) = \lambda$, $n \in N$.

In the case $\theta(z) = UB(z), z \in D$, the statement follows easily from the nature of convergence of the partial products.

The proof is finished.

Remark 5. The above theorem remains correct if we allow $R_m(\theta; w)$ to be ∞ , but we can not get then $R_m(B_n; w) - R_m(\theta; w) \to 0$, $n \to \infty$, i.e. $R_m(B_n; w)$ does not approximate $R_m(\theta; w)$.

Our theorem generalizes the result of Ahern and Clark [4] concerning the scalar case dim H=1. Ginzburg [5] also considered approximation of bounded operator functions by the finite Blaschke–Potapov products, but without approximation of the quantity R_m .

REFERENCES

- [1] Ю.П. Гинзбург, О мультипликативных представлениях ограниченных аналитических оператор-функций, ДАН СССР 170 (1966), 23-26.
- [2] В.П. Потапов, Мултипликативная структура J-нерастягивающих матриц-функций, Тр. Моск. матем. о-ва, 4 (1955), 125–236.
- [3] И.Ц. Гохберг, М.Г. Крейн, Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве, Наука, Москва, 1965.
- [4] P.R. Ahern, D.N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342.
- [5] Ю.П. Гинзбург, О почти инвариантных спектральных свойствах сжатий и мультипликативных свойствах аналитических оператор-функций, Функц. анал. и его прил., 5 (3) (1971), 32-41.

Katedra za matematiku Mašinski fakultet 11000 Beograd Yugoslavia (Received 11 05 1992) (Revised 11 04 1994)