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ON THE AC-CONTACT BOCHNER CURVATURE TENSOR FIELD
ON ALMOST COSYMPLECTIC MANIFOLDS
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Communicated by Mileva Prvanovié

Abstract. On an almost cosymplectic manifold we define a new modified contact Bochner
curvature tensor field which is invariant with respect to D-homothetic deformation. Then we
generalize a theorem of Olszak [5] and describe some manifolds with vanishing its new modified
contact Bochner curvature tensor field.

1. Introduction. Olszak [5, Theorem 6.2] got the necessary and sufficient
condition for a conformally flat almost cosymplectic manifold to be cosymplectic.
On the other hand, Matsumoto and Chuman [4] defined contact Bochner curva-
ture tensor in Sasakian manifolds (see also Yano [8]). This tensor is invariant with
respect to D-homothetic deformations (see Tanno [7] about D-homothetic defor-
mations). In this paper we modify contact Bochner curvature tensor and define a
new modified contact Bochner curvature tensor field which is invariant with respect
to D-homothetic deformations of an almost cosymplectic manifold. We call it AC-
contact Bochner curvature tensor. Then, by using AC-contact Bochner curvature,
we get a generalization of an Olszak’s theorem [5, Theorem 6.2]. Moreover, we
consider an almost cosymplectic manifold with constant ¢-sectional curvature and
another one with vanishing AC-contact Bochner curvature.

2. Preliminaries. Let (M, ,&,n,9) be a (2n + 1)-dimensional almost con-
tact Riemannian manifold, that is, let M be a differentiable manifold and (¢, &, 7, g)
an almost contact Riemannian structure on M, formed by tensor fields ¢, &,n, of
type (1,1), (1,0) and (0,1), respectively, and a Riemannian metric g such that

¢2:_I+n®£7 =0, n-¢=0, 77(5):1;
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On such a manifold we may always define 2-form ® by ®(X,Y) = g(#X,Y). Then
(M, ¢,&,m,9) is said to be an almost cosymplectic manifold if the forms ® and 7 are
closed, i.e., if d® = 0, dn = 0, where d is a exterior differentiation. On an almost
cosymplectic manifold we define an operator h by h = —%ﬁg(ﬁ, where £ denotes
the Lie differentiation. Then we see that h is symmetric, h anti-commutes with ¢
(i-e., oh + he = 0), h§ = 0, Vx& = ¢hX and Trh = 0, where V is the covariant
differentiation with respect to g and Tr h is the trace of h (see [2]). From ¢h{ =0,
we notice

(Vy(ph))€ = —h*Y (2.2)
(Ve(oh))X = R(€, X)€ — h*X, (2:3)

where R is the curvature tensor (R(X,Y) = [Vx, Vy] = V|x,y]). Furthermore, the
following are satisfied [2]:

9(R(Y, )¢, Z) + g(R(#Y, £)€, ¢Z) + 29(hY,hZ) = 0 (2.4)
g(QEJ é-) =-Tr h27 (25)

where () is the Ricci operator. If an almost contact structure of an almost cosym-
plectic manifold is normal, then it is said to be a cosymplectic manifold. As it
is known, an almost contact metric structure is cosymplectic if and only if both
Vn and V¢ vanish ([3]; see also [2] and [5]). However, if we have V¢ = 0, then,
we can easily get Vi = 0 by taking the covariant differentiation of ¢¢ = 0. In a
cosymplectic manifold M with structure tensor (¢,&,7,g), from V& = 0 we have

R(X,Y)¢=0 (2.6)
for any vector fields X and Y on M, wherefrom
QE=0. (2.7)
Using V¢ = 0 and R(X,Y)¢pZ = VxVy(¢Z) — VyVx(¢Z) — V|x,y|¢Z, we find
R(X,Y)$Z = ¢R(X,Y)Z. (2.8)
Thus, using the property of the curvature tensor, we get
R(¢X,9Y)Z = R(X,Y)Z. (2.9)
From (2.9), we find R(¢X,Y)Z = —R(X, ¢Y)Z. Moreover we have
PQ = Q9, (2.10)
where we used
2n41 2041
9(QeY,6Z) = > g(R(E;, ¢Y)$Z, E;) = — > g(R($E;,Y)$Z, E;)
z:21n+1 2zn:+11

=-Y 9(¢R($E;,Y)Z,E) = > g(R($E;,Y)Z, ¢E;) = g(QY, Z),

i=1 i=1
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where {E;, 1 <i <2n+ 1} is a ¢-basis (Epqt = ¢E;, 1 <t <n; Eapy1 =§).

By D we denote the distribution of an almost contact metric manifold M
defined by n = 0. M is said to be of pointwise constant ¢-sectional curvature if at
any point x € M, the sectional curvature K (X, ¢X) is independent of the choice
of non-zero X € D, In this case, the ¢-sectional curvature K is a function on M.

An almost contact metric manifold is said to be n-Einstein if Q = al + by Q§,
where a and b are smooth functions on M. Especially if b = 0, then M is said to
be Einstein.

On a (2n + 1)-dimensional almost cosymplectic manifold M the Weyl confor-
mal curvature tensor of M is the tensor field C of type (1,3) defined by

C(X,Y)Z = R(X,Y)Z
1

+ 5 (0QX, 2)Y —g(QY, )X +4(X, )QY —g(¥, 2)@X)
o — 1 (2.11)
- S T DY (4. 2)X)

for any vector fields X, Y and Z on M (where S is the scalar curvature). Moreover
we put

1
22n-1)
Then it is well-known that a necessary and sufficent condition for M to be confor-

mally flat is that C = 0 for n > 3 and ¢ = 0 for n = 3 (C vanishes identically for
n =3).

¢((X,Y) = (VxQ)Y — (VyQ)X — (VxS - (VyS)X).  (212)

3. D-homothetic deformations. Let M be an (m + 1)-dimensional (m =
2n) almost cosymplectic manifold. Now we define a tensor field B*® on M by

B*(X,Y) = R(X,Y) + ¢hX A ghY

+ m(QY ANX —(¢QY)ANX + %(n(Y)Qf/\X +7(QY)EAX)

SQXAY 4 (9QX) Y — S((X)QEAY +n(@X)EAY) +(Q6Y) A 6X

+(BQY) A 9X — (Q9X) A6 — (6QX) AGY +20(Q9X, V)9

+20(6QX, ¥)6 +29(6X, V)6Q +2(6X,V)Q6 ~ i(X)QY A€

F()(BQEY) A £+ n(VIQX A&~ n(V)($Q9X) A L), -
3.1

where (X AY)Z = g(Y,2)X — g(X,2)Y (c.f. [4]). Using (3.1), B satisfies the
following identities in an almost cosymplectic manifold M.
B*(X,Y)Z = —B*(Y, X)Z,
B*(X,Y)Z + B*(Y,Z)X + B**(Z,X)Y =
g(Bac(Xa Y)Za W) = _g(Za BaC(Xa Y)W)a
g(B*(X,Y)Z,W) = g(B**(Z,W)X,Y).

0 (3.2)



On the AC-contact Bochner curvature tensor field ... 105

If M is a cosymplectic manifold, then B*¢ turns into the following B¢ because of
(2.7), (2.10) and (3.1).

B°(X,Y) = R(X,Y) + ——(QY AX ~ QX AY + Q0¥ A $X ~ QoX AgY

+29(QeX,Y)d +29(dX,Y)Qd + n(Y)QX AE+n(X)EAQY).

B¢ is the main part of the contact Bochner curvature tensor (Matsumoto and
Chuman [4]). Moreover, the following are satisfied in a cosymplectic manifold M.

B(£,Y)Z = B*(€,Y)Z = B*(X,Y)¢ = B*(X,Y)¢ = 0
B ($X,$Y)Z = BE(¢X,4Y)Z = BY(X,Y)Z = B*(X,Y)Z,

where we used (2.4), (2.6), (2.8) and (2.9).

We consider a D-homothetic deformation ¢* = ag + a(a — 1)p ®n, ¢* =
¢, & = o€, n* = an on an almost cosymplectic manifold M, where « is a
positive constant. For a D-homothetic deformation we say that M(¢,&,n,g) is
D-homothetic to M (¢*,&*,n*,g*). It is easy to see that if an almost cosymplectic
manifold M(¢,&,7,g) is D-homothetic to M (¢*,£*,n*, g*), then M (¢*,&*,n*, g*)
is an almost cosymplectic manifold. Moreover if M(¢,&,n,9) is a cosymplectic
manifold, then M (¢*,£*,n*, g*) is also a cosymplectic manifold. Denoting by W;k
the difference F;}C — I‘;k of Christoffel symbols, by Vx& = ¢hX (hence (Vxn)Y =
(Vyn)X) we have in an almost cosymplectic manifold M [6]

(3.3)

a—1

WXY) = S (Vam) (Ve = S g(8hX, V)6
Putting this into
R*(X, Y)Z = R(X7 Y)Z + (VXW)(Z7 Y) - (VYW)(ZaX)
+ W(W(Z, Y)aX) - W(W(Z,X),Y)

and using Vx& = ¢hX, we find

RY(X,¥)Z = R(X, V)2 + S (4(¥, (Vx (6h) 2)¢

X, (T GRNZIE + oY, G2 — 9K, gh2IY).
Here, choosing ¢*-basis with respect to g* and using (2.2) and (2.3), we get
Ric*(Y, Z) = Ric (Y, 2) — 2L (g(R(Z,£)¢,Y) + g (WY, 7)), (3.5)
where Ric is the Ricci curvature of M. From (3.5) we have
QY = Qv - hi@V)e - Y - REYS,  (36)
where we used 7(Q*Y) = a~2n(QY). By virtue of (3.5) we find
§* = és ~ 20‘&_2 LRic (¢,6). (3.7)
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Moreover if we consider the D-homothetic deformation of L¢¢, we find

1
h*=—h 3.8
~, (338)
wherefrom we get
2 1
Trh* = ETr h?. (3.9)

After a clumsy computations we obtain, by means of (2.4), (3.1), (3.4), (3.5), (3.6)
and (3.8), the following

a—1

B*“(X,Y)Z = B*(X,Y)Z + (9, (Vx(¢h)) Z)§ — g(X, (Vv (8h))Z)§)
la—1

+ 5 5 ((X)g(Q€, 9(Y, 2)€ = n(¥V)g(QE,g(X, 2)8)

+ 582 0%, 2@ - 9(X, ZIn(QY e (310)
+n(X)n(2)n(QY)E — n(Y)n(Z)n(QX)E)
+ 2L 0(@6X)g(9Y, 7)€ ~ n(QeY)g(9X, 2)€ ~ 20(Q4Z)g(6X, V)E).
Now we shall introduce the AC-contact Bochner curvature tensor in M by

AC(X,Y)Z = B*(X,Y)Z — n(B*(X,Y)Z)t. (3.11)

In particular, if M is a cosymplectic manifold, by the definition of B¢, (3.2) and
(3.3), we have AC = B°.

THEOREM 3.1. The AC-contact Bochner curvature tensor is invariant with
respect to the D-homothetic deformation M(¢p,£,m,9) — M($*,£5,n*,9%) on an
almost cosymplectic manifold M .

Proof. Using (3.10), we find

*

BY(X,Y)Z - *(B*(X,Y)2)é* = B*(X,Y)Z — n(B*(X,Y)Z)¢
= B*"(X,Y)Z —n(B*(X,Y)Z)¢.

Thus we get AC*(X,Y)Z = AC(X,Y)Z.

4. Some results. We define s = Zi?:i 9(R(E;, E;)¢E;, E;), where {E;}
is an orthonormal frame.

LEMMA 4.1. [5]. For each almost cosymplectic manifold M we have

5~ st~ 9(Q6,6) + S IV4I =0.

Using this lemma, we prove the following.
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THEOREM 4.1. Let M be an almost cosymplectic manifold with vanishing
AC-contact Bochner curvature tensor. Then M is a cosymplectic manifold and the
scalar curvature of M vanishes.

Proof. Since the AC-contact Bochner curvature tensor of M vanishes, we
have
9(B*(X,Y)Z,W) = n(B*(X,Y) Z)n(W). (4.1)
Taking X = E;, Y = E;, Z = ¢E;, W = ¢E; ({E;} is a ¢-basis) into the each
member of (4.1), using (3.1) and summing over ¢ and j, we have

2n+1

S (B8, By, 98 = ot~ e - X0 D gi0e ) =0, (42)
ij=1
On the other hand, using (3.1), (4.1) and (3.2), we find
2n+1 9 2n+1
> 9(B*(Ei, )¢, Ei) = ma(@&i) =Y (B (B, O&n(E:) = 0. (4.3)
i=1 i=1

Moreover, calculating 2332 9(B*(E;, E;)E;, E;) by means of (3.1), and using
(4.1), (3.2) and (4.3), we get

2n+1 e n 9
Mz__jlg(B (Ei, B;)E;, E;) = e i Trh? + mg(@&&)
- (4.4)
2n+1
= 3 0B (BB E)n(E) = osa(Q6.6) =0,
i,j=1

By Lemma 4.1, (2.5), (4.2), (4.3) and (4.4) we obtain our result.

Now, let M be a conformally flat almost cosymplectic manifold of dimension
(2n 4+ 1) > 5. Then the following identities are known (see (3.1) in [2] and (6.4) in
[5]), that is,

(2n — 3)(Ric (X, X) + Ric (¢ X, $X))

4.5
=2 en 1)U + X ) 9

-2, 2m—3, _ o, 1 )
— = 4.
LS+ S| VeI + 51Vl =0, (46)

where X is a vector such that X € D,, ||X| = 1. Here, we get the following
theorem.

THEOREM 4.2. Let M?"*L be a conformally flat almost cosymplectic mani-
fold of dimension (2n + 1) > 5. Then the following conditions are equivalent: (1)
M is locally flat  (2) The AC-contact Bochner curvature of M vanishes (3) M
is cosymplectic  (4) The Ricci curvature of M is flat  (5) The scalar curvature
of M vanishes
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Proof. (1) = (2): From (4.5) we have S = Ric (X, X) = Ric(¢X,¢X) = 0.
Thus M is cosymplectic, wherefrom h = 0, so that B¢ = 0. Therefore AC' = B¢ =
0.

(2) = (3): This follows from Theorem 4.1.

(3) = (4): By (4.6) we find S = 0, so that, from (4.5) we get g(QX,X) =
9(6QdX, X) for X € D,. However, from (2.10) and (2.7) we obtain g(QX,X) =0
for X € D. Using the polarization identity, we have g(QX,Y) = 0 for any
X,Y € D. Moreover, by (2.7) we obtain g(QX,Y) = 0 for any vector field X
and Y, that is, the Ricci curvature of M is flat.

(4) = (5): Trivial.

(5) = (1): Using (4.6), we see that M is cosymplectic. Therefore, from (4.5) we
get g(QX,X) = (¢QoX, X) for X € D, so that the Ricci curvature of M is flat.
By (2.11) we get our result.

Remark 4.1. Theorem 4.2 is a generalization of Theorem 6 in [5].

Next, we consider an almost cosymplectic manifold with constant ¢-sectional
curvature K. Suppose that X is a vector such that X € D,, ||X|| = 1. Then we
have the following (see (2.3) and Remark 2.1 in [2]).

Ric (X, X) + Ric (9%, 9X) = (n + DK = S|(VAX)I = 2Ihx|*  (47)

S =Ric (&) + »_ Ric(ea,ea) + I Ric(¢ea, pea)

= Al + (n+ Dok = 3 S IO El? = 3 3 llheal?

From (4.7) and (4.8) we have the following theorem.

THEOREM 4.3. Let M be an almost cosymplectic manifold with constant
¢-sectional curvature. Then a necessary and sufficent condition for M to be locally
flat is that the AC-contact Bochner curvature of M vanishes.

Proof. Suppose that the AC-contact Bochner curvature of M vanishes. Then,
from Theorem 4.1 M is cosymplectic and S = 0. This result and (4.8) lead to
K = 0. Therefore, by (4.7) it follows that Ric (X,Y) = 0 for any vector fields X
and Y. Considering B% = B¢ = 0, we can see that M is locally flat.

Conversely, suppose that M is locally flat. Then K = Ric(X,Y) = 0, so
that, by (4.7) we see that M is cosymplectic, wherefrom B¢ = B¢ = (. Therefore
AC =0.

Last we consider an almost cosymplectic manifold with vanishing AC-contact
Bochner curvature tensor. Then we obtain the following theorem.

THEOREM 4.4. Let M2"*t1(n # 1) be an almost cosymplectic manifold with
vanishing AC-contact Bochner curvature tensor. Then the following conditions are
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equivalent: (1) M has a constant ¢-sectional curvature 0, (2) M has a constant
¢-sectional curvature, (3) M is Ricci flat, (4) M is n-FEinstein, (5) M is
locally flat  (6) M is conformally flat.

Proof. First of all, since the AC-contact Bochner curvature tensor of M
vanishes, M is cosymplectic and S = 0. Then:

(1) = (2) trivial;
(2) = (3) from (4.8) we have K =0, so that, by (4.7) we get the result;
(3) = (4) trivial;
(4) = (1) since M is n-Einstein, by two definitions of 7-Einstein manifold and
B¢, (2.7) and (2.10), we get
GR(X,Y)Z, W) = =5 (29(X, 2)(V, W) - 29(X, W)g(V, 2)

+29(¢X, Z)g(oY, W) — 29(¢X, W)g(9Y, Z) + 49(6Z, W)g(¢X,Y)
+n(Y)n(Z)g(X, W) = n(Y)n(W)g(X, Z) + n(X)n(W)g(Y, Z) (4.9)

= nX)n(2)gY; W) = 5= (9(X, Z)n(¥ (W) = g(X, W)n(¥ )n(Z)

— 9, Z)n(X)n(W) + g(Y, W)n(X)n(Z2)).
Taking X € T, (M) such that | X|| =1, X L &, and calculating g(R(X, ¢X)¢X, X)
by using (4.9), we get g(R(X,¢X)pX,X) = ni“a. On the other hand, from
Ric (X,Y) = ag(X,Y) + in(X)n(Y) we find S = (2n + 1)a + b. We also have
Ric (§,€) = a+ b. However, by (2.7) we get b = —a. Thus S = 2na, wherefrom we
find g(R(X, X)X, X) = which completes this proof;
(5) = (1): trivial;
(1) = (5): from (4.7) we have Ric(X,Y) = 0 for any vector fields X and Y.
Considering B¢ = 0, we get the result;

(6) = (5): by (4.5) we see that Ric(X,Y) = 0 for any vector fields X and Y.
Moreover S = 0. Therefore, by (2.11) we get that M is locally flat;

(5) = (6): it folows from (2.11).

)
(

2S
n(n+2)°

Remark 4.2. The curvature of a Riemannian manifold is said to be harmonic
if the diveregence of its curvature tensor is zero. It is well known that a Riemannian
manifold has harmonic curvature, if the Ricci operator () satisfies

(VxQ)Y = (VyQ)X

for any vector fields X, Y (e.g., see [1]). Theorem 4.4 is also valid for a 3-
dimensional almost cosymplectic manifold M?®. At first the equivalences (1)—(5)
are also valid for a 3-dimensional almost cosymplectic manifold. Here, put that (7)
M3 has a harmonic curvature. Then, from (4.7) we have Ric(X,Y) = 0 for any
vector fields X, Y. Thus (1) = (7). By (4.8) we get (7) = (1). Moreover, from
(2.12) we obtain (7) <= (6). Therefore for an almost cosymplectic manifold M?3
the equivalences (1)—(7) hold good.
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