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EDGE DECOMPOSITIONS OF GRAPHS
WITH NO LARGE INDEPENDENT SETS

F. Galvin, A. Hajnal, P. Komjath

Abstract. If the continuum hypothesis holds then every graph on w; with no uncountable
independent sets can be edge decomposed into the disjoint union of N; subgraphs with the same
property. In the absence of the continuum hypothesis this may or may not be true. Extensions
to other cardinals are given.

0. Introduction

An important result in considering extensions of Ramsey’s theorem to un-
countable sets was given by W. Sierpiriski who proved that there is a graph of
cardinal 8; which has neither an uncountable complete graph nor an uncountable
independent set. This can be regarded as a decomposition of the edges of the
complete graph on N; vertices into two parts such that every uncountable set of
vertices spans edges in both parts. Research initiated by P. Erd8s (see [3]) showed
that under CH a decomposition even into N; parts is also possible. This was the
starting point of an important chapter of combinatorial set theory, the calculus of
square bracket partition relations. We mention that much later S. Todor¢evié ([6])
showed that the above result is true even without CH.

In this paper we consider the question which graphs have similar decompo-
sitions. It turns out that, under CH, if X is a graph on w; with no uncountable
independent set, then it can be decomposed into the union of N; graphs with the
same property. A corollary of this is that there is no universal graph of cardinal ¥;
that omits uncountable cliques and uncountable independent sets. In the absence
of CH, it is consistent that there is a graph with no such decomposition even into
two parts. But the positive statement is also consistent with arbitrary values of 2.
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Slightly generalizing a result of Galvin and Shelah we show that if 2 < w,
and X is a graph of cardinal 2 with no independent set of cardinal 2¢ then it can
be decomposed into the union of w graphs with the same property (Theorem 8).
If the axiom of constructibility holds then every regular uncountable non-weakly
compact cardinal has the property described above for X; (Theorem 9).

We use the standard axiomatic set theory notation. R denotes the set of
real numbers. If S is a set, k a cardinal, then [S]® = {A C S : |4| = &},
[S]<F = {ACS:|A| < K}. A graphis aset X C[V]? for some set V of vertices.
A subset A of vertices is a complete subgraph or a clique if [A]? C X, it is an
independent set or empty subgraph if [A]? N X = 0.

If A > k, p are cardinals then let Q(A, k, u) denote the following statement.
If X is a graph on A which has no independent set of cardinal x then (the edge
set of) X can be written as the disjoint union of p graphs, X = [J{Y, : a@ < u}
none having an independent set of cardinal k. We emphasize that we require the
strong property that every k-subset of A must have an edge in Y, so for example
the trivial idea of decomposing A into g many disjoint subsets does not work.

The negative square bracket partition relation is defined as follows. If k, A,
p are cardinals, then A /4 []? means that there exists an f : [\]* = u such that
for every A € [A\]*® and £ < p there exist < y in A such that f(z,y) =¢&.

Clearly, Q(X, k, u) strengthens X A [k]2.

1. The main result

THEOREM 1. If 2% = kT then Q(k+,xT, k) holds.

Proof. Let X be a graph on k1 with no independent set of cardinal 7.
Enumerate [1]<* as {B, : a < 1} with B, C a. By a simple diagonal argument
one can define the function f(8,a) < a for 8 < a < k™, {B,a} € X such that if
v<aand |{8€B,:{B,a} € X}| =« then {f(B,a): € B,,{B,a} € X} =0
One simply has to disjointize k many sets of cardinal k. From this coloring we get
the decomposition of X the usual way, {8,a} € Y, iff f(B,a) =T.

Assume that H C k™, |[H| = s*. By transfinite recursion on a < k we
select the increasing sequence zo, € H as follows. If zg (for 8 < a) are selected,
and {zs : B < a} = B;(q) then let z, be an arbitrary element of H greater than
7(a). Assume, for a contradiction, that f does not assume a certain value & on
H. Then, by our construction, for a > £, x, can only be joined into < xk many
elements of {3 : B < a}. By Lazar’s set mapping theorem there is an independent
set of cardinal k™, a contradiction to our original hypothesis on X. O

A similar argument gives the following result.

THEOREM 2. Assume that 2F = k. Suppose X, are graphs on k™ (a0 < k1)
so that no X, has an independent set of cardinal kT. Then there exist pairwise
disjoint graphs Y, C X, with the same property. O
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COROLLARY 3. Assume that 2 = kt, Xo C X; C [sF]* are graphs such
that Xy has no complete subgraph of cardinal k* while X, has no independent set
of cardinal k. Then there exists a graph Xo CY C X, with both properties.

Proof. Apply Theorem 2 to the graphs X}, X; where X{ = [7]? — Xo, a
graph on k* with no independent sets of cardinal k*. We get the disjoint graphs
Yo C X{§, Y1 C Xy with no independent sets of cardinal k1. Nowset Y = XoUY;.
As Y DY there is no independent sets of cardinal x* in Y, and as [st]> =Y =
X} — Y1 DY) there is no complete subgraph of cardinal k™ in Y. O

An interesting application can be given of this corollary. A universal element
in a class of graphs is a graph which homomorphically embeds every graph in the
class. (Given the graphs X, X’ on V, V', respectively, a mapping f:V — V'isa
homomorphism, if {z,y} € X implies {f(z), f(y)} € X'.) We notice, that proofs
of the existence of universal elements in various classes usually produce elements
with the stronger property when the embeddings are required to be isomorphisms.
F. Galvin and R. Laver proved that if 2 = kT then there is no universal graph
in the class of graphs of cardinal kT which do not contain complete subgraphs
of cardinal k*. R. Schipperus asked if this is true for those graphs which omit
independent sets of cardinal kT, as well. We show that it is, indeed, the case.

COROLLARY 4. If2® = gt then there is no universal graph among those of
cardinal kT which omit complete as well as empty graphs of cardinal kt.

Proof. Let X be the alleged universal graph. By the above mentioned
theorem of F. Galvin and R. Laver there is a graph Y of cardinal x™ which omits
complete graphs of cardinal k* and Y cannot be homomorphically embedded into
X (see a proof in [5]). By the previous corollary, there is a graph Y C Z C [s+]?
which omits both complete graphs and independent sets of cardinal kT and clearly
Z cannot be embedded into X, either. O

Concluding this part we give some variants of Theorem 1. If F is some class
of subgraphs of [k1]?> we say that X C [kT]? is F-large iff X N F # () whenever
F € F. F C[sT)? is a complete bipartite (k,kT) or (x*,kT) graph iff F = {{b,w} :
be B,we W} for some B{W C k™%, |B|=kor k%, |W|=x". F is a halfgraph iff
F ={{b,w}:be B,we W,b< w} for some B,W C k*, |B| = |W|=k".

THEOREM 5. If 2% =kt and X C [kT)? is F-large then X is the disjoint
union of k¥ F-large graphs, assuming that F is the class of the

(a) complete graphs of cardinal k™ ;
(b) halfgraphs;

(c) complete bipartite (k, k%) graphs;
(d) complete bipartite (kT,k") graphs.

Proof. (a) is a restatement of Theorem 1. We prove (d), the other cases are
simpler. Let X be an F-large graph for the class of complete bipartite (k*, k™)

graphs. Assume that B,W C k™, |B| = |[W| = xt, BNW = (. We show the
following Claim. It easily implies that the coloring of Theorem 1 works for F.
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CLAIM. FEither there is B' € [B]"® such that
HweW:|[{be B':{bw} € X} =x}|=x"
or else there is W' € [W]* such that
HbeB:|{weW': {bw}e X} =«} =xt.

Proof of Claim. Enumerate B, W as B = {b, : a < 1}, W = {w, : a <
kT}. If no B', W' as described can be selected then to every a < ™ there is a
B(a) > a such that if 8 > B(a) then every wg is joined to less than x many b,
(v < @) and likewise for b,. Using Lézér’s theorem we can get a Z C ¥, |Z| = &7
such that if 8 # « are from Z then {bg, w,} ¢ X. Now if Z is split into the disjoint
Z', Z" of cardinal kT, then X has no common edge with the bipartite graph on
bipartition classes {by : @ € Z'}, {w, : @ € Z"}, a contradiction. oo

2. Independence
The easy independence is contained in the following theorem.

THEOREM 6. If more than Xy Cohen reals are added to a model of ZFC then
Q(w1,w1,w1) holds in the reulting model.

Proof. 1t suffices to show that if X € V is a graph on w; and P adds one
Cohen real then X witnesses Q(wy, w1, w1) in V¥ (i.e., either has an uncountable
independent set or has a decomposition as required).

We assume that the elements of P are the functions with Dom(p) < w,
Ran(p) C w. p' < piff p’ D p, ie., p’' extends p. Notice that P is countable.
The generic set G C P gives a function G’ : w — w the following way. G'(n) = k iff
there is a p € G with p(n) = k. For o < wy enumerate o as a = {fBn(a) : n < w}. If
v <a, {7,a} € X, v= Bn(a) color the edge {v,a} as F(y,a) = Bg(n)(a). This,
indeed, is a coloring of the edges of X in V¥,

Assume that some condition ¢ forces that X has no uncountable independent
set yet Z is an uncountable set missing color £. There are an uncountable set
S C w; and conditions p, < ¢ (a € S) such that p, |— « € Z. As P is countable
we can assume that p, = p (o € S). Set k¥ = Dom(p). As X has no uncountable
independent set (in V¥ so even less in V) by Lazar’s set mapping theorem there
is an element { < a € S such that {y < a : v € S,{v,a} € X} is infinite. Set
& = Bm(a). Select v < a, v € S with v = 8,(a), n > k. Extend p to a p' such that
Dom(p') =n+ 1, p'(n) = m, then p' forces that the edge {v,a} in Z gets color &,
a contradiction. O

THEOREM 7. It is consistent that Q(w1,w:,2) fails.

Proof. Let V be a model of CH. Let {A, : & < wa} be a family of almost
disjoint uncountable subsets of w;. We are going to define a finite support iteration
of length ws, P = (P,, Q4 : @ < wy) and in the same time the notion of nice family
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of conditions. We denote the support of a condition p by supp(p) (so it is a finite
subset of wy). As follows, G, is a generic subset of P,.

Let Qo be the poset adding a graph X on w; with finite conditions. That
is, ¢ = (s,9) € Qo iff s € [w1]<¥, g C [s]?, and ¢' = (s',¢') extends if s’ D s and
g=gn[sP.

When p € P, is a condition we use the notation p(0) = (s?, g?). Assume that
a < ws, P, has already been defined, and, in V=, f, : X — 2 is a coloring of the
edges of X with 0 and 1.

We call a family of conditions {p; : i € I'} in P, a nice family if the following
hold. Their supports form a A-system; supp(p;) = a U b;. The vertex sets of
the graphs in p;(0) also form a A-system, s = s U s;, and gP* N [s]> = g holds
fori € I. For B8 € a— {0}, i,j € I, e(p;, B) = e(p;,B). For g € a— {0}, ¢ € I,
pi(B) = p(B)Up'(B), where, if e(p;, B) = 0, then p’(8) C s, if, however, e(p;, f) = 1,
then J{we : £ € p'(8)} C si-

If we set p(0) = (s,g) and the so formed p is a condition then we say that
{p; 11 € I'} is a nice family with kernel p. It is easy to see that in this case p; < p
fori e 1.

We are going to define a maximal antichain 77 (7 < 7*) in P,, and (1) < 2
(t < 7%). This done, if p € P,, 8 < a, then we set £(p, ) = ¢ if p|3 < r™ for some
T with (1) = 4.

Assume that the conditions 7 (7' < 7) have already been selected. If no
condition is incompatible with each of them then we terminate the definition and
set 7® = 7. Otherwise, let r be a condition incompatible with each of them.

Assume first that there do not exist conditions p; < r and disjoint sets { €
we € [Au]<¥ (£ € B) for some uncountable B C A, such that the following
condition holds.

(x) for & # & € B if p < pe,,pe,, and gP contains {£1,&} as the only edge

between wg, and we, then p|— fo(&1,&) = 1.

Then we set r™ =r, (1) = 0.

Assume now that a family {p¢,we : £ € B} as in (%) exists. Fix such a
family. We may as well assume that {p; : £ € B} is a nice family with kernel
7 < r. This will be justifed by Claim 2. Finally set (7) = 1, »™ = 7. Also define
Al ={€:pe € Go}.

The objects just defined usually depend on several variables, e.g., w¢ is in
fact a wq,r¢. To keep the exposition relatively clear, whenever possible, we supress
some indices.

(p,q) € P,y iff either p € P, is arbitrary and ¢ = 0 (and in this case of
course supp(p, q) = supp(p)) or else there is a 7 < 7% such that p < r7. Moreover,
if (1) = 0, we assume that ¢ C sPN A, and p forces that f, on XN[g]? assumes only
the value 0. If, however, £(7) = 1, we assume that ¢ € [A},]<%, for £ € g we C sP
and if £ # &' arein g and {¢, ¢’} € X then no other edge of X goes between we and
wer. Notice that by () in this case fq(€,£') =1 is forced so Q, adds a subset with
edges only in color 1. In this case, of course, we set supp(p, ¢) = supp(p) U {a}.
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The ordering on P, is as follows.
@', q¢) < (p,q) iff p’ < p and either ¢ = ) or ¢’ D ¢ and either e(p,a) = 0 (and
soe(p',a) =0)and ¢'—q C s* —sP or e(p', @) = 1 and U{wg : € € ¢’ —q} C s? —sP.

CLAIM 0. The ordering on Pyy; is transitive.

Proof. Assume that (p",q") < (p,¢') < (p,q)- Clearly,p" <p' <p. Ifg=0,
the statement is obvious. If not, ¢" D ¢’ D g and p < r” for some 7. If e(7) = 0
then ¢ —¢' Cs?' —s?, ¢ —qC s? —sP andso ¢' —qC st —sP. If e(r) =1,
a similar argument works. O

CLamM 1. Assume that {p',p"} C P, form a nice family. Let p be their
coordinatewise union, i.e., s? = s¥' Us?" | g? = g?' Ug?" | and p(3) = p'(B)Up" (B) for
0 < B < a. Then p is a condition, extends p', p”, which are, therefore, compatible.

Proof. By transfinite induction on 8 < « we show that p|8 is a condition.
The cases 3 = 1 or limit are clear. Assume that 8 =~y + 1. If p'(y) or p'"(7y) =0
then the statement is again obvious. If neither p'(y) nor p”"(v) = @ then, as p'|y
and p"|v are compatible, they must extend the same r” (for some 7 < 77).

If (1) = 0 p|y forces that p'(y) and p”(7y) contain only color 0 edges and, as
gP = g UgP", this is true for p(y). If &(r) = 1, a similar argument works. O

CrAamv 2. If pe < p are conditions in P, for £ € B where |B| = Xy, then
there are e < pg, P¢ <D for somep <p (£ € B', |B'| = N1 ) such that {p; : { € B'}
is a nice family with kernel p. Therefore, P, is ccc, and 7% < wy.

Proof. Using the A-system lemma we can assume that the supports form a
A-system, supp(pe) = aUbg, and sP¢ = sU s¢ with gP¢ N[s]*> = g for some g. Using
the pigeon-hole principle we can also assume that for 3 € a — {0}, £ € B’ (for some
uncountable B' C B) &(pg, 3) is independent of {. With the removal of finitely
many further elements of B’ we can also insure that p¢(8) C s¢ resp. [J{w, : 7 €
pe(B)} C s¢ holds. This way we get an uncountable nice subfamily {pe : £ € B'}.
To conclude, set {o = min(B'), p = pg,, and let P, be the coordinatewise union of
pe and pg, (see Claim 1.). Now {p; : { € B — {{o}} is a nice family with kernel p.

O

CraM 3. Assume that r™ € G, e(1)=1. Then A!, is uncountable.

Proof. Let {p¢ : £ € B} be the nice family as in the definition of P,
with kernel 77. If p < r7 is a condition then all but finitely many ps (£ € B) are
compatible with p so if 4 < w; is arbitrary, then we can find a v > u such that p
and p, are compatible, and their common lower bound will establish v € AL,. O

We now define K, = J{q : (p,q) € Got1}, the set added by @, with edges
only in one color.

CLaM 4. 1|— |Kq| = ws.
Proof. Assume that (p,q) € Pyq1-
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First, assume that p < r7 for some 7 with e(7) = 0. Select v > u, v € A,
such that v ¢ s7. Define p/, ¢’ as follows. s? = s? U{v}, g* = g7, p'(8) = p(B) for
0< B <a ¢ =qU{v} Itis easy to see that (p',q') is a condition, extends (p, q)
and forces that K, has points beyond p.

Assume now that p < 77 for some 7 with e(7) = 1. Let p¢, we (€ € B) be the
objects in the definition of Pyy;.

forces that K, has points outside p. s¥ = sP U We. g? = gP U gPe, p'(B)
p(B) Upe(B) (for 0< B < a), ¢' = qU{{}.

CLAIM 5. In VT, X does not contain an uncountable independent set.

Again, if p < w; is given, then for £ € B large enough, the following (p',q')
(|

Proof. Assume that 1|— U is an uncountable independent set. For un-
countably many z, say for z € S, there is a condition p” forcing x € U. We can as
well assume that {p® : € S} is a nice family. Let {a1,...,an,} be the common
part of the A-system {supp(p®) : z € S}. As {Ay : @ < wa} is an almost disjoint
family, we can also assume (by shrinking S if needed) that for 1 < ¢ < m either
SNA, =0orS C A, and that the latter can hold for at most one i. Assume
that there is, indeed, such an 4, as the other case is easier. We can again assume
that

pz(al) = {771:- . -;Utaff;- . Jé-rzz}
form a A-system. By Claim 2, P,, is ccc, so we can assume that p®|a; < r” holds
for the same 7 (z € S).

Assume first that ¢(7) = 0. We can also assume that for some j, 1 < j < n,
z =& holds for z € S.

As ¢(r) = 0 the conditions p”|a; (z € S) and the sets w, = {&f,...,&2}
may not be witnesses for (x) so there exist 1 # z3 in S such that for some
p < p*t|a;, p*2|ay, p(0) contains {z1,z2} as the only edge between w,, and wg,
and p [l fo, (z1,22) = 0.

Let ¢ be the following condition. supp(g) = supp(p**) U supp(p*?), q|a; = p,
q(B) = p*(B) Up*2(B) for B > a;. q really is a condition as for § = «;, ¢(8)
has only color 0 edges, and for 8 > a; the extra edge, {z1,z2} does not appear to
cause problems. g < p™, p”2 can easily be seen and q forces that {z1,z2} € X, a
contradiction.

Assume now that e(7) = 1. Then, there is a collection {w : £ € B} of finite
sets as in the definition of Py, 1. Again, (by shrinking S if needed) we can assume
that z € wee holds for the same j (z € S) and either for every z € S z = & or for

every v € S x # £§. If now z # 2’ are in S, then p < p?, p® is a condition, where
supp(p) = supp(p”) Usupp(p™ ), s? = " Us?” , g7 = " Ug?” U {{z,2'}}, and
p(8) = p*(B) Up® (B) otherwise. (Namely, p forces that if {&3, 5;-”,'} is an edge in X
then it gets color 1 by f,,.) p then forces that {z,2'} € X, a contradiction. O
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3. Other cardinals

We prove a result on graphs of size 2* which extends a result of Galvin and
Shelah [4]. We basically use the idea of that paper but can only prove the result
for 2¢¥ < w,,.

THEOREM 8. If 2¥ < w,, then Q(2¥,2¥,w) holds.

Proof. By Theorem 1 we can assume that 2¢ > w;. Set R = {r(a) : a <
29}, [2¢]%0 = {4, : a < 2¥}, one-to-one enumerations. It suffices to show that
Q(2¥,2%,2) holds so let X be a graph on 2¢ with no independent set of cardinal
2“ . we are going to decompose its edges into two classes. For 8 < « set

ET(B,0) ={y€ Ag:{v,a} € X,r(y) > r(a)};

E-(B,a)={yeAg: {y,a} € X,r(y) <r(a)}.

Let ¢ : R = R be a one-to-one function such that g(r(a)) is neither the
infimum nor the supremum of {g(r(v)) : v € E¥(3,)} (for 8 < a) and likewise for
E~(8,a). We now determine the decomposition of X into two classes, X = YoUY;.
If {8,a} € X then put {8,a} € Y if either r(8) < r(a) and g(r(8)) < g(r(a)) or
r(8) > r(a) and g(r(B)) > g(r(a)). In the other case, set {5, a} € Yi.

Assume, towards a contradiction, that some B C 2¥, |B| = 2 misses the
edges of, say, 1. Set S = {a < 2 : cf(a) = w1}, z(a) = min(B — a) for a € S.

CLAIM 1. For stationary many o € S, for every e > 0 there exists a § € aNB
such that {8, z()} € X and |g(r(8)) — g(r(z(e)))| <€ .

Proof. If not, there is a closed unbounded set C' such that for & € SNC there
isan e > 0 that no 8 € aNB can be found as prescribed. We can assume that z(a) is
one-to-one on SNC'. As cf(2¥) > w for 2 many z(«) the same ¢ applies. By further
shrinking, for a set B’ of cardinal 2“ it is even true that g(r(z(a))) € I (z(a) € B')
with a certain interval I of length €. By our assumption B’ is not independent in X
so there are 8 < z(a) in B', {8,z(a)} € X, such that |g(r(ﬁ)) - g(r(w(a)))| <&,
a contradiction. O

CrLaM 2. There erist A € [B]*, B' C B, |B'| = 2, such that for every
T € B ande > 0 there is a § € A such that {3,7} € X and |g(r(ﬁ)) —g(r(T))| <e.

Proof. By Claim 1 there is a stationary set S’ C S such that for a € S and
t=1,2,... there exist 3;(z(a)) < o with

l9(r(z(@) — g(r(Be(=(e))) | < 1/t.

As cf(a) > w for a € S' by Fodor’s theorem sup{f;(z(a)) : 1 < t < w} is
bounded for a stationary subset S"” C S'.

We get therefore that there is a B’ C B of cardinal 2¥ and an A with set
|A] < 2¢ such that H, C A for a € B' where H, = {fi(a) : 1 <t < w}. Set
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2¥ = wy, notice that 1 < n < w by our assumptions. We show that if 0 <i<n—1
and there is a set A of cardinal w;; as above for a certain B’ then there is one of
cardinal w; (with a different B’). This clearly suffices for the proof of the Claim.
Enumerate A as {J¢ : £ < wit1}. For every o € B’ there is some ((a) < w;y1 that
H, C {6 : £ < ((a)}. For aset B" C B of cardinal 2¢ and some ¢ < 2¥ {(a) =(

holds so {d¢ : £ < (} is as required. O
To conclude the proof of the Theorem let A = A, be as in Claim 2 and
let 7 € B have 7 > a. Fort = 1,2,,... there exist 8; € A with {8;,7} € X

and |g(r(6:)) — g(r(1))| < 1/t. Either for infinitely many t r(8;) < r(r) or for
infinitely many r(r) < r(8;) holds. Assume the former. By our assumption on
Yy in this case g(r(8;)) < g(r(7)) holds for these values. Remember that also

g(r(r)) — 1/t < g(r(B)) holds. So g(r(r)) = sup{g(r(7)) : v € E~(a,7)} a
contradiction. O

THEOREM 9. (V=L) Ifk > w is a non-weakly compact, regular cardinal, then
Q(k, K, k) holds.

We need a lemma which is a special case of Theorem 2 in [2]. For the reader’s
convenience we provide a proof.

LEMMA 10. Assume that a is an ordinal, S C a U {a} is a set of infinite
cardinals, nonstationary in every point < a. Assume that A, C v, |A,| = v for
v € S. Then there exist disjoint A, C A, with |Al| =~ (v € S).

Proof. By induction on a. The cases when « is not a cardinal or « is a
successor cardinal are trivial. Assume that « is a limit cardinal. We can assume
without loss of generality that a isin S.

We first consider the case when cf(a) > w. Let C' C «a be a closed unbounded
set of cardinals, C NS = @ such that |4, N~| =~ holds for every vy € C. If § < ¢’
are successive points in C' then by the inductive hypothesis the sets

{A,—6:6<y<d,7yeS}U{A4.N[56)}

can be disjointized say, by A}, C A, —4d for § < v < &',y € S, and by A C
Ay N[6,8"). We can now take Al as above for v € SNa and 4, = {43 : 6 € C}.

If ¢f(a) = w we modify the argument as follows. Select a sequence of cardinals
dn (n < w) converging to « such that do = 0 and

|Aa n [5n76n+1)| Z (5n

Select B, C Aq N [0n,0n41) of cardinal §,. By our inductive hypothesis we can
disjointize the system

{A'y_Bn_6n:5n<7S6n+1}
by Al, C A,, |A,| =~. We can set A, = J{Bn :n < w}. O

Proof of Theorem 9. Theorem 1 allows us to assume that k is inaccessible.
By Jensen’s fine structure theory [1] there is a stationary set S C k nonstationary
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in every ordinal @ < k. We can assume that S consists of cardinals. By {g
there is a sequence {Z, : @ € S} (Z, C a) such that for every Z C k the set
{a €8 :Z,=27Zna} is stationary.

Assume that X is a graph on k with no independent sets of cardinal k. For
a < k, using Lemma 10, we can define the values f(y,a) < a (y < a, {y,a} € X),
such that for 8 € S, 8 < a it is true that {f(y,a) : v € Zs,{v,a} € X} = j3
whenever [{y € Z3,{v,a} € X}| =p0.

Assume that Z € [k]* and f misses the value £ < K on X N [Z]?. There
is a stationary S’ C S such that for « € S’ then £ < o and Z, = ZNa. Set
z(a) = min(Z — «). By the way f was defined d(a) = |{7 <a:{y,z(a)} € X}| <
a for a € S'. Notice that we can replace “y < a” by “y < z(a)”. By Fodor’s
lemma d(a) < 7 on an S" € [k]® and by Lizar’s set mapping theorem there is an
independent set of cardinal k in X, a contradiction. O
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