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THERE ARE INFINITELY MANY COUNTABLE MODELS
OF STRICTLY STABLE THEORIES
WITH NO DENSE FORKING CHAINS

Predrag Tanovié

Abstract. We prove that a countable, complete, strictly stable theory with no dense
forking chains has infinitely many pairwise nonisomorphic countable models.

Let T denote a complete countable stable theory and I(T, Xg) the number of
its countable pairwise nonisomorphic models. In [4] Lachlan proved that if T is
superstable then it is either Ng-categorical or I(T,Ng) > Ng. In [5] he proved that
an Ny-categorical superstable theory is Ng-stable, and he conjectured that the same
is true for stable theories, namely that there is no strictly stable Ny-categorical
theory. By the time being, it has become clear that the strictly stable theories
are much more complicated than superstable ones; Hrushovski has constructed a
counterexample to Lachlan’s Conjecture.

Some work was done to extract those strictly stable theories that share some
of the nice properties of superstables. In [7] Pillay proved that if T is strictly
stable and 1-based, then I(T,No) > Ro. In [3] Hrushovski has introduced theories
which admit finite coding and proved that such a T is either Ng-categorical or
I(T,Xg) > N holds.

In [2] Pillay introduced the class of theories with no dense forking chains,
which seems to be a reasonable approximation of superstability; for example, every
type in such a theory has a regular decomposition. We prove that the class satisfies
Lachlan’s conjecture, namely that there are no Ny-categorical theories in it; because
of the existence of regular decompositions, or just finiteness of the weight, the
argument from the superstable case goes through and we get I(T,Ng) > Ng.

We assume some basic knowledge of stability theory as can be found in [1] or
[6]. Below, we define Pillay’s notions of dimension of U,-rank in terms of partial
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orders in order to prove Proposition 7, which is the main technical result used in
the proof of Theorem.

Let (P, <) be a partial order. For p,q € P we denote by [p, ¢]p the interval
{z € P|p < = < ¢} ordered by (the restriction of) <; (<, p]p denotes {z € P|z < p}
ordered by <, and similarly we define (<,p)p, (p,<)p and [p, <)p.

Definition. Let (P, <) be a nonempty partial order. Inductively, define the
dimension dim(P) which is an ordinal or oco:
(1) dim(P) >0
(2) dim(P) > a + 1 if there is an infinite decreasing chain pg > p1 > p2 > ...
such that for every i € w dim([pit1,pilp) > .
(3) dim(P) > A, where X is a limit ordinal, if dim(P) > « for every a < A.
(4) dim(P) = « iff a is the greatest ordinal for which dim(P) > « holds;
dim(P) = oo iff dim(P) > « holds for all ordinals a.
Definition. Let a be an ordinal and let (P, <) be a partial order. Inductively
we define Uy-rank of (P, <):
(1) Ua(P) > 0if P#0.
(2) Un(P) > B+ 1 iff there exists a p € P such that Uy((<,p]lp) > 8 and
dim([p, <)p) > a.
(3) Ua(P) > A, where A is a limit ordinal, iff U, (P) > 8 for all ordinals 8 < A.

(4) Uy(P) = &, where ¢ is an ordinal, if £ is the greatest ordinal for which
Uy (P) > &. If no such ordinal exists, let Uy (P) = o0

LEMMA 1. Let (P,<p) and (Q,<q) be partial orders.

(a) If f:P — Q is strictly increasing then dim(P) < dim(Q) and U,(P) <

Ua(Q).

(b) If @« > 1 then Uy (P) + Un(Q) < Us(P @ Q) where P® Q is the set P x {0}U
Q x {1} ordered by {((p,0), (¢, 0))|p < p'}U{((¢, 1) (¢, 1))|a < ¢'}U{((p,0), (¢, 1))]
p€ Pg € Q}.

Proof. The part (a) is an easy induction on dim(P) and U, (P); we prove
only (b). @ is embedded in P & @Q, so if U,(Q) = oo the conclusion follows by the
part (a).

Let £ = U,(Q). We use induction on £. For £ = 0 it is obvious and for £ = 1
it follows from the definition of U,. Suppose that £ =7+ 1 and let ¢ € @ be such
that Uy ((<,4q]o) =1 and Uy ([g, <)@) = 1. By the induction hypothesis

Ua(P) + & = Ua(P) + Ua((<, @) < Ua(P & (<,4lQ) = Ual((<; dlPaq)-
On the other hand 1 = U,([g, <)) = Ua([g, <) pPaq), and from the definition of
Uq we get Up(P) + Un(Q) =Ua(P)+ £+ 1 < Un(P D Q).

The case when £ is a limit ordinal is similar.

LEMMA 2. Let (P, <) be a partial order. Then dim(P) = oo if and only if
there exists an embedding of rationals into (P, <).
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Proof. <« is clear, so we prove only —. Assume that dim(P) = oo. Let a
be an ordinal such that for all p,q € P dim([p, ¢]p) > « implies dim([p, ¢]p) = 0.
Since dim(P) > a + 1 there is an infinite decreasing chain py > p; > p2 > ... such
that for all i € w dim([p;t1,pi]lp) > @, thus dim([pi+1,pi]p) = oco. Applying the
same reasoning to each [p;4+1,p;]p for i € w in place of P we get infinite descending
chains p§ > pi > p} > ... in [piy1,pi]p so that dim([pi, ,,pi]p) = cc. Continuing
in this way we get a chain in P isomorphic to the rationals.

LeEmMMA 3. If (P, <;) are nonempty partial orders for i < n, then:
dim(P; X P2 X ... X P,;) = max{dim(P,), dim(P),... ,dim(P,)}.
(Here Py x Py X ... X Py, is ordered by the product order, i.e.

(P1,p2,- - ,pn) < (D1, P, ---0,) iff p1 <o p) P2 <2 Py Pn <npp,)-

Proof. Assume n = 2. Then dim(P; x P») > max{dim(P;), dim(P,)} follows
immediately from Lemma 1, so we prove the reverse inequality. Actually, we show
by induction on ordinals « that dim(P; x Py) > « implies max{dim(P;), dim(Py)} >
a. For a = —1 or 0 the claim is obvious, so we distinguish the following two cases:

Case 1: «a = + 1. Assume that dim(P; x P,) > 8+ 1. Then there is
an infinite decreasing sequence (pg,py) > (p1,0)) > (p2,ph) > ... such that for
all i € w dim([(piy1,pi), Piy1,Pi)]Pixp,) > B. By the induction hypothesis for
each i € w either dim([pi1,pi]lp,) > B or dim([p;,,,p;)]p,) > B holds. Therefore
either for infinitely many i € w dim([p;y1,p:i]p,) > B or for infinitely many i € w
dim([p},1,P}))]p,) > B. Thus either dim(P;1) > 8+ 1 or dim(P,) > 3 + 1 holds.

Case 2: « is a limit ordinal. Let a = U{a¢|{ < 3} where 2 = cf(a).
By the induction hypothesis for each { < s at least one of dim(P;) > «¢ and
dim(P,) > a¢ holds. Thus at least one of the sets {{ < »|dim(P;) > a¢} and
{€ < x| dim(P,) > a¢} is cofinal in 3 and that means that either dim(P;) > « or
dim(P) > a.

Thus we proved the Lemma for n = 2. The general case follows rather easily
from this one.

From now on we assume that 7' is stable, M is a monster model of T' and
we operate in M®?. All the sets and tuples mentioned below are ‘small’ subsets of
MEe%; models are elementary submodels of M.

Definition. Let A C B, p € S(A) and p C q € S(B).

(a) dim(plg) = dim([bnd(g), bnd(p)]o(r))-

(b) Ua(plg) = Ua([bnd(g), bnd(p)]o(r))-

(¢) dim(p) = dim(p|r) where r is any algebraic extension of r, and Uy(p) =
Ua(plr)-

Further in the text, we will write dim(a/B) instead of dim(tp(a/B)) and
dim(a) instead of dim(a/@). Similarly we do for U,-rank.
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If we allow infinitary types, not just types, in the previous definitions, then
we get the notions of dim and U,-rank of infinitary types as well.

Note that Up is the usual U-rank and dim(p) = 0 means exactly that p has
ordinal U-rank. Also, U, (p|g) = 0 implies dim(p|q) < .

LEMMA 4. If AC B and C C acl(DA), then
dim(C/A|C/B) < dim(D/A|D/B) and U,(C/A|C/B)<U,(D/A|D/B).

Proof. By induction on dim(C/A|C/B). Suppose that 81 > (2 > ...
is an infinite descending chain between bnd(C/B) and bnd(C/A) such that
dim(C/A|C/B) > dim([Bit1,08i]) = &. Pick a sequence A C My C My C ...
such that for all ¢+ < j bnd(C/M;) = B;, C Im, A and C |y, M;. Moreover,
assume that UM; |ca DB. By the induction hypothesis for all j < i:

dim(C/M;|C/M;) < dim(D/M;|D /M;)

Hence dim(D/M;|D/M;) > &. From the independence assumptions we derive
D lm, A, D |y Mj and D | M;, for all 4 < j. Therefore

bnd(D/A) > bnd(D/Mp) > bnd(D/M;) > ... > bnd(D/B).

If dim(C/A|C/B) = £ + 1 then we could choose f}s so that & = &, and if
dim(C/A|C/B) is a limit ordinal then it can be chosen so that & s form a co-
final sequence. In both cases the conclusion follows.

A similar argument works for U,.

LEMMA 5. Ifp Cq Cr, then Uy(gq|r) + Ua(plg) < Ua(plr). If r is algebraic,
then Ua(q) + Ua(plg) < Ua(p)-

Proof. Follows from Lemma 1 (b).

Definition. T has no dense forking chains if the order type of the rationals
can not be embedded into O(T).

As an immediate consequence of Lemma 2 we have that if 7' has no dense
forking chains and p C ¢, then dim(p|q) < oo.

THEOREM 6. Suppose that T has no dense forking chains.
(a) For any a, b and A C B and a > 0,

dim(ab/Alab/B) = sup{dim(b/aA|b/aB),dim(a/A|a/B)}.
(b) (Uy-rank inequalities)
Uys(bjaA) + Uy(afA) < Uy(ab/A) < Uy(b/aA) & Uy(a/A).

(c) Every type decomposes into a product of regular types.



There are infinitely many countable models of strictly ... 193

Proof. The part (a) is Lemma 10, (b) is Proposition 11 and (c) is Theorem
14 from [2].

We note the following instance of Theorem 6 (a) and Lemma 4 that we will
use often: if B C acl(C1C>...CrA) and dim(C;/A) < a for 1 < i < n, then
dim(B/A) < a.

PROPOSITION 7. IfAC B, pe S(A) and p C q € S(B), then
dim(plq) > sup{dim(c/A)|c € Cb(q)}.

Proof. Without loss of generality, assume that A = () and we operate in M.
Let ¢ € Cb(q) and let I = @@ ...a, be a Morley sequence in (a stationarization
of) g long enough so that ¢ € dcl(I). Let C = acl(¢) and we show that dim(p|q) >
dim(C); since dim(¢) < dim(C) (by Lemma 4) this will imply the conclusion of the
Proposition.

Let Iy = ajas...ap_1 for k < n,let P = {8 € O(T)|B < bnd(C)} and
for 8 € P let Dg be such that bnd(C/Dg) = 3. For k < n, 8 € P, define
pf = bnd(ax/IxEg) where Ejp satisfies tp(Ep/C) = tp(D/C) and Eg ¢ I. We
note that pf, does not depend on the particular choice of Eg. Actually, since C is
algebraically closed, tp(Dg/C) is stationary so it has a unique nonforking extension
over C1, thus tp(Eg/CI) is uniquely determined and hence tp(I/CEg) is uniquely
determined, too.

For natural k < n let P, = {p§|3 € P} with the inherited order from O(T).
Now we show that P C [bnd(g),bnd(p)|o(r). From the definition of pg we have
Py < bnd(p), and bnd(q) < pf follows from:

bnd(q) < bnd(dk/IkC) = bnd(c_lk/IkCEg) < bnd(ﬁk/IkEg) = pg.

The first inequality above is true since I is a Morley sequence in ¢q. From Eg |¢ I
we have Eg |r,c ar and the first equality follows. The second inequality is clear
and hence P, C [bnd(g), bnd(p)]o(r)-

Further, order P, x P, x ... x P, with the product order and define a mapping
fiP = Py x Py x ... x Py by f(B) = (pp, 1%, --- ,}). We show that f is strictly
increasing. Assume that 3,7 € P and v < 8. Choose Eg and E,, such that:

tp(Ep/C) = tp(Ds/C), tp(E,/C) = tp(Dy/C), Eglp, C and EgE, |c I.

Then pf = bnd(ax/IxEp) and p¥ = bnd(a/IxE,). From the independence as-
sumptions we derive I |g, Eg, and thus ay |1, E, Eg. We have:

(D pjg =bnd(ax/IxEg) > bnd(ar/IxEgE,) = bnd(a/ I+ E,) = pk.

Thus pf; > pfr and f is increasing. Now, if v < 3 then C Jp, E, and since
C C acl(I) we have I Jp, E, so for some j < n we have a; Yz, E, and
bnd(a;/I;EgE,) < bnd(a;/I;Ez). We conclude that in (!); the strict inequali-
ty holds and pf“y < pg. This proves that f is strictly increasing.
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By Lemma 1 we have dim(P) < dim(P; X Py X ... X P,) and by Lemma 3
we have dim(P, x P, x ... x P,) = dim(P), for some k < n. Therefore dim(P) <
dim(Py). But P C [bnd(g), bnd(p)]o(r) thus dim(FPy) < dim(p|g) and we have:

dim(C) = dim(P) < dim(Py) < dim(p|q)

completing the proof of the Proposition.

From now on we assume that T is strictly stable and has no dense forking
chains. Consider all complete types whose domain is finite. Let a > 1 be the
smallest ordinal such that at least one of the types considered has dimension « and
let £ be the smallest possible U,-rank of such a type. We say that a type is an
(o, &)-type if its domain is finite, its dimension is « and its U,-rank is &.

LeEmMA 8. Ifp=tp(a/B) is an (a,&)-type, then there is a ¢ such that € €
dcl(aB)\acl(B) and dim(¢/B) = 0. In particular, every (o, &)-type is nonorthogonal
to a type of dimension 0.

Proof. Without loss of generality assume that B = (. Since a > 0, there
exists an infinite sequence 3y > B2 > ... below bnd(p) in O(T). Let r = tp(a/C)
be such that bnd(r) = 2. Note that 83 > 4 > ... is an infinite descending
sequence below bnd(r) so that dim(r) > 1. If we replace C by a large enough finite
subset of Cb(r) we can assume that C is finite, r is a forking extension of p and
dim(r) > 1.

By the minimality assumptions on « and £ we have dim(r) = a and U,(r) =
Uas(p) =& By Lemma 5 Uy (1) + Uy (p|r) < Uy(p) and it follows that U, (p|r) = 0.
Thus, dim(p|r) < a. By Proposition 7 we have

sup{dim(d)|d € Cb(r)} < dim(p|r).

Therefore sup{dim(d)|d € Cb(r)} < a and by the minimality assumption on «
we have dim(d) = 0 for all d € Cb(r). Let d € Cb(r) be such that @ J d and
let ¢ € Cb(d/a)\acl(§). & is definable in a finite Morley sequence dyds . ..d in
stp(d/a). Also dim(d;) = 0, so dim(dyds - ..d;) = 0 and dim(¢') = 0. Let ¢ be the
name for the set of all {a}-conjugates of &'. Since & € acl(a) this set is finite, so
¢ € dcl(a); also, every {@}-conjugate of & has the dimension 0 so that dim(c) = 0.
Finally, from & € acl(c)\acl(@) we have ¢ ¢ acl(f)) completing the proof of the
Lemma.

THEOREM. IfT is a countable, complete, strictly stable theory with no dense
forking chains then I(T,Ng) > No.

Proof. Let B be finite, let p = tp(a/B) be an (a,&)-type, let A = {d €
dcl(@B)|dim(d/B) = 0} and let ¢ = tp(a/AB). We claim that q is nonisolated.

Suppose, on the contrary, that ¢(Z,b) is a formula over AB which isolates ¢;
here (z,7) is an L-formula b C AB and without any loss of generality we assume
that B C b. Clearly dim(b/B) = 0 holds, so that dim(a/b) > 0 by Theorem 6
(a). By the minimality assumptions on « and ¢ we must have dim(a/b) = a and



There are infinitely many countable models of strictly ... 195

U,(a/b) = £&. By Lemma 8 there exists ¢ € A\acl(b). Choose a; + stp(a/b) such
that @, |y ¢ From F ¢(a1,b) we get tp(a;/AB) = ¢, and from the independence
assumption on @ we get ¢ ¢ acl(@,b); on the other hand ¢ € dcl(ab), so that
tp(a1/eB) # tp(a/éB) and tp(a1/AB) # tp(a/AB) = g. This is a contradiction
and the claim is proved.

Continuing the proof of the Theorem, let » € S(dcl(@B)) be a nonforking
extension of q. Then, by the Open Mapping Theorem r must be nonisolated too,
and r|Ba is nonisolated as well. We have found a nonisolated type over a finite
domain, hence there exists a nonisolated type over (). To complete the proof of the
Theorem, we repeat the proof from the superstable case:

Suppose that T is small, otherwise I(T,Rq) = 2%°. Let tp(d) be nonisolated
and let didy ... be an infinite Morley sequence in tp(J). For each n let M, be
prime over dids . ..d,. By Theorem 6 (c) m = wt(d) < w. We show that in M,
there is no Morley sequence in tp(d) of lenght m - n + 1, which clearly implies the

conclusion of the Theorem.
If e+ tp(d) and € € M, then t_p(é/d:lcfg ...dy) is isolated, hence by the Open
Mapping Theorem € forks with didz...d,. On the other hand wit(didz...d,) =

m - n, hence there is no independent set of realizations of tp(d) of size m -n + 1 in
M,,.
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