THERE ARE INFINITELY MANY COUNTABLE MODELS OF STRICTLY STABLE THEORIES WITH NO DENSE FORKING CHAINS

Predrag Tanović

Abstract. We prove that a countable, complete, strictly stable theory with no dense forking chains has infinitely many pairwise nonisomorphic countable models.

Let T denote a complete countable stable theory and $I(T,\aleph_0)$ the number of its countable pairwise nonisomorphic models. In [4] Lachlan proved that if T is superstable then it is either \aleph_0 -categorical or $I(T,\aleph_0) \geq \aleph_0$. In [5] he proved that an \aleph_0 -categorical superstable theory is \aleph_0 -stable, and he conjectured that the same is true for stable theories, namely that there is no strictly stable \aleph_0 -categorical theory. By the time being, it has become clear that the strictly stable theories are much more complicated than superstable ones; Hrushovski has constructed a counterexample to Lachlan's Conjecture.

Some work was done to extract those strictly stable theories that share some of the nice properties of superstables. In [7] Pillay proved that if T is strictly stable and 1-based, then $I(T,\aleph_0) \geq \aleph_0$. In [3] Hrushovski has introduced theories which admit finite coding and proved that such a T is either \aleph_0 -categorical or $I(T,\aleph_0) \geq \aleph_0$ holds.

In [2] Pillay introduced the class of theories with no dense forking chains, which seems to be a reasonable approximation of superstability; for example, every type in such a theory has a regular decomposition. We prove that the class satisfies Lachlan's conjecture, namely that there are no \aleph_0 -categorical theories in it; because of the existence of regular decompositions, or just finiteness of the weight, the argument from the superstable case goes through and we get $I(T, \aleph_0) \geq \aleph_0$.

We assume some basic knowledge of stability theory as can be found in [1] or [6]. Below, we define Pillay's notions of dimension of U_{α} -rank in terms of partial

Supported by Ministry of Sciences and Technology RS AMS Subject Classification (1991): Primary 03C45

orders in order to prove Proposition 7, which is the main technical result used in the proof of Theorem.

Let (P, \leq) be a partial order. For $p, q \in P$ we denote by $[p, q]_P$ the interval $\{x \in P | p \leq x \leq q\}$ ordered by (the restriction of) \leq ; $(\leq, p]_P$ denotes $\{x \in P | x \leq p\}$ ordered by \leq , and similarly we define $(<, p)_P$, $(p, <)_P$ and $[p, \leq)_P$.

Definition. Let (P, \leq) be a nonempty partial order. Inductively, define the dimension $\dim(P)$ which is an ordinal or ∞ :

- $(1) \dim(P) \geq 0$
- (2) $\dim(P) \geq \alpha + 1$ if there is an infinite decreasing chain $p_0 > p_1 > p_2 > \dots$ such that for every $i \in \omega \dim([p_{i+1}, p_i]_P) \geq \alpha$.
- (3) $\dim(P) \geq \lambda$, where λ is a limit ordinal, if $\dim(P) \geq \alpha$ for every $\alpha < \lambda$.
- (4) $\dim(P) = \alpha$ iff α is the greatest ordinal for which $\dim(P) \geq \alpha$ holds; $\dim(P) = \infty$ iff $\dim(P) \geq \alpha$ holds for all ordinals α .

Definition. Let α be an ordinal and let (P, \leq) be a partial order. Inductively we define U_{α} -rank of (P, \leq) :

- (1) $U_{\alpha}(P) \geq 0$ if $P \neq \emptyset$.
- (2) $U_{\alpha}(P) \geq \beta + 1$ iff there exists a $p \in P$ such that $U_{\alpha}((\leq, p]_P) \geq \beta$ and $\dim([p, \leq)_P) \geq \alpha$.
- (3) $U_{\alpha}(P) \geq \lambda$, where λ is a limit ordinal, iff $U_{\alpha}(P) \geq \beta$ for all ordinals $\beta < \lambda$.
- (4) $U_{\alpha}(P) = \xi$, where ξ is an ordinal, if ξ is the greatest ordinal for which $U_{\alpha}(P) \geq \xi$. If no such ordinal exists, let $U_{\alpha}(P) = \infty$

LEMMA 1. Let (P, \leq_P) and (Q, \leq_Q) be partial orders.

- (a) If $f: P \to Q$ is strictly increasing then $\dim(P) \leq \dim(Q)$ and $U_{\alpha}(P) \leq U_{\alpha}(Q)$.
- (b) If $\alpha \geq 1$ then $U_{\alpha}(P) + U_{\alpha}(Q) \leq U_{\alpha}(P \oplus Q)$ where $P \oplus Q$ is the set $P \times \{0\} \cup Q \times \{1\}$ ordered by $\{((p,0),(p',0))|p \leq p'\} \cup \{((q,1),(q',1))|q \leq q'\} \cup \{((p,0),(q,1))|p \in P, q \in Q\}.$

Proof. The part (a) is an easy induction on $\dim(P)$ and $U_{\alpha}(P)$; we prove only (b). Q is embedded in $P \oplus Q$, so if $U_{\alpha}(Q) = \infty$ the conclusion follows by the part (a).

Let $\xi = U_{\alpha}(Q)$. We use induction on ξ . For $\xi = 0$ it is obvious and for $\xi = 1$ it follows from the definition of U_{α} . Suppose that $\xi = \eta + 1$ and let $q \in Q$ be such that $U_{\alpha}((\leq, q)_{Q}) = \eta$ and $U_{\alpha}([q, \leq)_{Q}) = 1$. By the induction hypothesis

$$U_{\alpha}(P) + \xi = U_{\alpha}(P) + U_{\alpha}((\leq, q]_{Q}) \leq U_{\alpha}(P \oplus (\leq, q]_{Q}) = U_{\alpha}((\leq, q]_{P \oplus Q}).$$

On the other hand $1 = U_{\alpha}([q, \leq)_Q) = U_{\alpha}([q, \leq)_{P \oplus Q})$, and from the definition of U_{α} we get $U_{\alpha}(P) + U_{\alpha}(Q) = U_{\alpha}(P) + \xi + 1 \leq U_{\alpha}(P \oplus Q)$.

The case when ξ is a limit ordinal is similar.

LEMMA 2. Let (P, \leq) be a partial order. Then $\dim(P) = \infty$ if and only if there exists an embedding of rationals into (P, \leq) .

Proof. ← is clear, so we prove only →. Assume that dim(P) = ∞. Let α be an ordinal such that for all $p,q \in P$ dim([p,q] $_P$) ≥ α implies dim([p,q] $_P$) = ∞. Since dim(P) ≥ α + 1 there is an infinite decreasing chain $p_0 > p_1 > p_2 > \dots$ such that for all $i \in \omega$ dim([p_{i+1}, p_i] $_P$) ≥ α, thus dim([p_{i+1}, p_i] $_P$) = ∞. Applying the same reasoning to each [p_{i+1}, p_i] $_P$ for $i \in \omega$ in place of P we get infinite descending chains $p_0^i > p_1^i > p_2^i > \dots$ in [p_{i+1}, p_i] $_P$ so that dim([p_{j+1}^i, p_j^i] $_P$) = ∞. Continuing in this way we get a chain in P isomorphic to the rationals.

LEMMA 3. If (P_i, \leq_i) are nonempty partial orders for $i \leq n$, then:

$$\dim(P_1 \times P_2 \times \ldots \times P_n) = \max\{\dim(P_1), \dim(P_2), \ldots, \dim(P_n)\}.$$

(Here $P_1 \times P_2 \times \ldots \times P_n$ is ordered by the product order, i.e.

$$(p_1, p_2, \dots, p_n) \le (p'_1, p'_2, \dots, p'_n)$$
 iff $p_1 \le_1 p'_1 p_2 \le_2 p'_2 \dots p_n \le_n p'_n$.

Proof. Assume n=2. Then $\dim(P_1\times P_2)\geq \max\{\dim(P_1),\dim(P_2)\}$ follows immediately from Lemma 1, so we prove the reverse inequality. Actually, we show by induction on ordinals α that $\dim(P_1\times P_2)\geq \alpha$ implies $\max\{\dim(P_1),\dim(P_2)\}\geq \alpha$. For $\alpha=-1$ or 0 the claim is obvious, so we distinguish the following two cases:

Case 1: $\alpha = \beta + 1$. Assume that $\dim(P_1 \times P_2) \geq \beta + 1$. Then there is an infinite decreasing sequence $(p_0, p'_0) > (p_1, p'_1) > (p_2, p'_2) > \dots$ such that for all $i \in \omega \dim([(p_{i+1}, p_i), (p'_{i+1}, p'_i)]_{P_1 \times P_2}) \geq \beta$. By the induction hypothesis for each $i \in \omega$ either $\dim([p_{i+1}, p_i]_{P_1}) \geq \beta$ or $\dim([p'_{i+1}, p'_i)]_{P_2}) \geq \beta$ holds. Therefore either for infinitely many $i \in \omega \dim([p_{i+1}, p_i]_{P_1}) \geq \beta$ or for infinitely many $i \in \omega \dim([p'_{i+1}, p'_i)]_{P_2}) \geq \beta$. Thus either $\dim(P_1) \geq \beta + 1$ or $\dim(P_2) \geq \beta + 1$ holds.

Case 2: α is a limit ordinal. Let $\alpha = \bigcup \{\alpha_{\xi} | \xi < \varkappa\}$ where $\varkappa = \operatorname{cf}(\alpha)$. By the induction hypothesis for each $\xi < \varkappa$ at least one of $\dim(P_1) \geq \alpha_{\xi}$ and $\dim(P_2) \geq \alpha_{\xi}$ holds. Thus at least one of the sets $\{\xi < \varkappa | \dim(P_1) \geq \alpha_{\xi}\}$ and $\{\xi < \varkappa | \dim(P_2) \geq \alpha_{\xi}\}$ is cofinal in \varkappa and that means that either $\dim(P_1) \geq \alpha$ or $\dim(P_2) \geq \alpha$.

Thus we proved the Lemma for n=2. The general case follows rather easily from this one.

From now on we assume that T is stable, \mathcal{M} is a monster model of T and we operate in \mathcal{M}^{eq} . All the sets and tuples mentioned below are 'small' subsets of \mathcal{M}^{eq} ; models are elementary submodels of \mathcal{M} .

Definition. Let $A \subseteq B$, $p \in S(A)$ and $p \subseteq q \in S(B)$.

- (a) $\dim(p|q) = \dim([\operatorname{bnd}(q), \operatorname{bnd}(p)]_{\rho(T)}).$
- (b) $U_{\alpha}(p|q) = U_{\alpha}([\operatorname{bnd}(q), \operatorname{bnd}(p)]_{\sigma(T)}).$
- (c) $\dim(p) = \dim(p|r)$ where r is any algebraic extension of r, and $U_{\alpha}(p) = U_{\alpha}(p|r)$.

Further in the text, we will write $\dim(\bar{a}/B)$ instead of $\dim(\operatorname{tp}(\bar{a}/B))$ and $\dim(\bar{a})$ instead of $\dim(\bar{a}/\emptyset)$. Similarly we do for U_{α} -rank.

If we allow infinitary types, not just types, in the previous definitions, then we get the notions of dim and U_{α} -rank of infinitary types as well.

Note that U_0 is the usual U-rank and $\dim(p) = 0$ means exactly that p has ordinal U-rank. Also, $U_{\alpha}(p|q) = 0$ implies $\dim(p|q) < \alpha$.

Lemma 4. If $A \subset B$ and $C \subset acl(DA)$, then

$$\dim(C/A|C/B) \leq \dim(D/A|D/B)$$
 and $U_{\alpha}(C/A|C/B) \leq U_{\alpha}(D/A|D/B)$.

Proof. By induction on $\dim(C/A|C/B)$. Suppose that $\beta_1 > \beta_2 > \dots$ is an infinite descending chain between $\operatorname{bnd}(C/B)$ and $\operatorname{bnd}(C/A)$ such that $\dim(C/A|C/B) > \dim([\beta_{i+1},\beta_i]) = \xi_i$. Pick a sequence $A \subseteq M_1 \subseteq M_2 \subseteq \dots$ such that for all i < j $\operatorname{bnd}(C/M_i) = \beta_i$, $C \downarrow_{M_1} A$ and $C \downarrow_{M_i} M_j$. Moreover, assume that $\bigcup M_i \downarrow_{CA} DB$. By the induction hypothesis for all j < i:

$$\dim(C/M_i|C/M_j) \le \dim(D/M_i|D/M_j)$$

Hence $\dim(D/M_i|D/M_j) \geq \xi_i$. From the independence assumptions we derive $D \downarrow_{M_o} A$, $D \downarrow_{M_i} M_j$ and $D \downarrow_B M_i$, for all i < j. Therefore

$$\operatorname{bnd}(D/A) \ge \operatorname{bnd}(D/M_0) > \operatorname{bnd}(D/M_1) > \ldots \ge \operatorname{bnd}(D/B).$$

If $\dim(C/A|C/B) = \xi + 1$ then we could choose $\beta_i's$ so that $\xi_i = \xi$, and if $\dim(C/A|C/B)$ is a limit ordinal then it can be chosen so that ξ_i' s form a cofinal sequence. In both cases the conclusion follows.

A similar argument works for U_{α} .

LEMMA 5. If $p \subseteq q \subseteq r$, then $U_{\alpha}(q|r) + U_{\alpha}(p|q) \leq U_{\alpha}(p|r)$. If r is algebraic, then $U_{\alpha}(q) + U_{\alpha}(p|q) \leq U_{\alpha}(p)$.

Proof. Follows from Lemma 1 (b).

Definition. T has no dense forking chains if the order type of the rationals can not be embedded into O(T).

As an immediate consequence of Lemma 2 we have that if T has no dense forking chains and $p \subseteq q$, then $\dim(p|q) < \infty$.

Theorem 6. Suppose that T has no dense forking chains.

(a) For any a, b and $A \subseteq B$ and $\alpha \ge 0$,

$$\dim(ab/A|ab/B) = \sup \{\dim(b/aA|b/aB), \dim(a/A|a/B)\}.$$

(b) $(U_{\alpha}$ -rank inequalities)

$$U_{\alpha}(b/aA) + U_{\alpha}(a/A) \le U_{\alpha}(ab/A) \le U_{\alpha}(b/aA) \oplus U_{\alpha}(a/A).$$

(c) Every type decomposes into a product of regular types.

Proof. The part (a) is Lemma 10, (b) is Proposition 11 and (c) is Theorem 14 from [2].

We note the following instance of Theorem 6 (a) and Lemma 4 that we will use often: if $B \subseteq \operatorname{acl}(C_1C_2\ldots C_nA)$ and $\dim(C_i/A) \le \alpha$ for $1 \le i \le n$, then $\dim(B/A) \le \alpha$.

Proposition 7. If $A \subseteq B$, $p \in S(A)$ and $p \subseteq q \in S(B)$, then

$$\dim(p|q) \ge \sup \{\dim(\bar{c}/A) | \bar{c} \in Cb(q) \}.$$

Proof. Without loss of generality, assume that $A = \emptyset$ and we operate in \mathcal{M}^{eq} . Let $\bar{c} \in Cb(q)$ and let $I = \bar{a}_1\bar{a}_2\dots\bar{a}_n$ be a Morley sequence in (a stationarization of) q long enough so that $\bar{c} \in \operatorname{dcl}(I)$. Let $C = \operatorname{acl}(\bar{c})$ and we show that $\dim(p|q) \ge \dim(C)$; since $\dim(\bar{c}) \le \dim(C)$ (by Lemma 4) this will imply the conclusion of the Proposition.

Let $I_k = \bar{a}_1 \bar{a}_2 \dots \bar{a}_{k-1}$ for $k \leq n$, let $P = \{\beta \in O(T) | \beta < \operatorname{bnd}(C)\}$ and for $\beta \in P$ let D_β be such that $\operatorname{bnd}(C/D_\beta) = \beta$. For $k \leq n$, $\beta \in P$, define $p_\beta^k = \operatorname{bnd}(\bar{a}_k/I_kE_\beta)$ where E_β satisfies $\operatorname{tp}(E_\beta/C) = \operatorname{tp}(D_\beta/C)$ and $E_\beta \downarrow_C I$. We note that p_β^k does not depend on the particular choice of E_β . Actually, since C is algebraically closed, $\operatorname{tp}(D_\beta/C)$ is stationary so it has a unique nonforking extension over CI, thus $\operatorname{tp}(E_\beta/CI)$ is uniquely determined and hence $\operatorname{tp}(I/CE_\beta)$ is uniquely determined, too.

For natural $k \leq n$ let $P_k = \{p_\beta^k | \beta \in P\}$ with the inherited order from O(T). Now we show that $P_k \subseteq [\operatorname{bnd}(q), \operatorname{bnd}(p)]_{O(T)}$. From the definition of p_β^k we have $p_\beta^k \leq \operatorname{bnd}(p)$, and $\operatorname{bnd}(q) \leq p_\beta^k$ follows from:

$$\operatorname{bnd}(q) \leq \operatorname{bnd}(\bar{a}_k/I_kC) = \operatorname{bnd}(\bar{a}_k/I_kCE_\beta) \leq \operatorname{bnd}(\bar{a}_k/I_kE_\beta) = p_\beta^k$$

The first inequality above is true since I is a Morley sequence in q. From $E_{\beta} \downarrow_C I$ we have $E_{\beta} \downarrow_{I_k C} \bar{a}_k$ and the first equality follows. The second inequality is clear and hence $P_k \subseteq [\operatorname{bnd}(q), \operatorname{bnd}(p)]_{O(T)}$.

Further, order $P_1 \times P_2 \times \ldots \times P_n$ with the product order and define a mapping $f: P \to P_1 \times P_2 \times \ldots \times P_n$ by $f(\beta) = (p_{\beta}^1, p_{\beta}^2, \ldots, p_{\beta}^n)$. We show that f is strictly increasing. Assume that $\beta, \gamma \in P$ and $\gamma \leq \beta$. Choose E_{β} and E_{γ} such that:

$$\operatorname{tp}(E_{\beta}/C) = \operatorname{tp}(D_{\beta}/C), \ \operatorname{tp}(E_{\gamma}/C) = \operatorname{tp}(D_{\gamma}/C), \ E_{\beta} \downarrow_{E_{\gamma}} C \ \text{and} \ E_{\beta}E_{\gamma} \downarrow_{C} I.$$

Then $p_{\beta}^k = \operatorname{bnd}(\bar{a}_k/I_kE_{\beta})$ and $p_{\gamma}^k = \operatorname{bnd}(\bar{a}_k/I_kE_{\gamma})$. From the independence assumptions we derive $I \downarrow_{E_{\gamma}} E_{\beta}$, and thus $\bar{a}_k \downarrow_{I_kE_{\gamma}} E_{\beta}$. We have:

$$(!)_k \qquad p_\beta^k = \operatorname{bnd}(\bar{a}_k/I_k E_\beta) \ge \operatorname{bnd}(\bar{a}_k/I_k E_\beta E_\gamma) = \operatorname{bnd}(\bar{a}_k/I_k E_\gamma) = p_\gamma^k.$$

Thus $p_{\beta}^k \geq p_{\gamma}^k$ and f is increasing. Now, if $\gamma < \beta$ then $C \not\downarrow_{E_{\beta}} E_{\gamma}$ and since $C \subseteq \operatorname{acl}(I)$ we have $I \not\downarrow_{E_{\beta}} E_{\gamma}$ so for some $j \leq n$ we have $\bar{a}_j \not\downarrow_{I_j E_{\beta}} E_{\gamma}$ and $\operatorname{bnd}(\bar{a}_j/I_j E_{\beta} E_{\gamma}) < \operatorname{bnd}(\bar{a}_j/I_j E_{\beta})$. We conclude that in $(!)_j$ the strict inequality holds and $p_{\gamma}^k < p_{\beta}^k$. This proves that f is strictly increasing.

By Lemma 1 we have $\dim(P) \leq \dim(P_1 \times P_2 \times \ldots \times P_n)$ and by Lemma 3 we have $\dim(P_1 \times P_2 \times \ldots \times P_n) = \dim(P_k)$, for some $k \leq n$. Therefore $\dim(P) \leq \dim(P_k)$. But $P_k \subseteq [\operatorname{bnd}(q), \operatorname{bnd}(p)]_{O(T)}$ thus $\dim(P_k) \leq \dim(p|q)$ and we have:

$$\dim(C) = \dim(P) \le \dim(P_k) \le \dim(p|q)$$

completing the proof of the Proposition.

From now on we assume that T is strictly stable and has no dense forking chains. Consider all complete types whose domain is finite. Let $\alpha \geq 1$ be the smallest ordinal such that at least one of the types considered has dimension α and let ξ be the smallest possible U_{α} -rank of such a type. We say that a type is an (α, ξ) -type if its domain is finite, its dimension is α and its U_{α} -rank is ξ .

LEMMA 8. If $p = \operatorname{tp}(\bar{a}/B)$ is an (α, ξ) -type, then there is a \bar{c} such that $\bar{c} \in \operatorname{dcl}(\bar{a}B) \setminus \operatorname{acl}(B)$ and $\operatorname{dim}(\bar{c}/B) = 0$. In particular, every (α, ξ) -type is nonorthogonal to a type of dimension 0.

Proof. Without loss of generality assume that $B = \emptyset$. Since $\alpha > 0$, there exists an infinite sequence $\beta_1 > \beta_2 > \dots$ below $\operatorname{bnd}(p)$ in O(T). Let $r = \operatorname{tp}(\bar{a}/C)$ be such that $\operatorname{bnd}(r) = \beta_2$. Note that $\beta_3 > \beta_4 > \dots$ is an infinite descending sequence below $\operatorname{bnd}(r)$ so that $\operatorname{dim}(r) \geq 1$. If we replace C by a large enough finite subset of Cb(r) we can assume that C is finite, r is a forking extension of p and $\operatorname{dim}(r) \geq 1$.

By the minimality assumptions on α and ξ we have $\dim(r) = \alpha$ and $U_{\alpha}(r) = U_{\alpha}(p) = \xi$. By Lemma 5 $U_{\alpha}(r) + U_{\alpha}(p|r) \leq U_{\alpha}(p)$ and it follows that $U_{\alpha}(p|r) = 0$. Thus, $\dim(p|r) < \alpha$. By Proposition 7 we have

$$\sup \{ \dim(\bar{d}) | \bar{d} \in Cb(r) \} < \dim(p|r).$$

Therefore $\sup\{\dim(\bar{d})|\bar{d}\in Cb(r)\}<\alpha$ and by the minimality assumption on α we have $\dim(\bar{d})=0$ for all $\bar{d}\in Cb(r)$. Let $\bar{d}\in Cb(r)$ be such that $\bar{a}\not\downarrow\bar{d}$ and let $\bar{c}'\in Cb(\bar{d}/\bar{a})\backslash \mathrm{acl}(\emptyset)$. \bar{c}' is definable in a finite Morley sequence $\bar{d}_1\bar{d}_2\ldots\bar{d}_k$ in $\mathrm{stp}(\bar{d}/\bar{a})$. Also $\dim(\bar{d}_i)=0$, so $\dim(\bar{d}_1\bar{d}_2\ldots\bar{d}_k)=0$ and $\dim(\bar{c}')=0$. Let c be the name for the set of all $\{\bar{a}\}$ -conjugates of \bar{c}' . Since $\bar{c}'\in\mathrm{acl}(\bar{a})$ this set is finite, so $c\in\mathrm{dcl}(\bar{a})$; also, every $\{\bar{a}\}$ -conjugate of \bar{c}' has the dimension 0 so that $\dim(c)=0$. Finally, from $\bar{c}'\in\mathrm{acl}(c)\backslash \mathrm{acl}(\emptyset)$ we have $c\not\in\mathrm{acl}(\emptyset)$ completing the proof of the Lemma.

THEOREM. If T is a countable, complete, strictly stable theory with no dense forking chains then $I(T,\aleph_0) \geq \aleph_0$.

Proof. Let B be finite, let $p = \operatorname{tp}(\bar{a}/B)$ be an (α, ξ) -type, let $A = \{\bar{d} \in \operatorname{dcl}(\bar{a}B) | \operatorname{dim}(\bar{d}/B) = 0\}$ and let $q = \operatorname{tp}(\bar{a}/AB)$. We claim that q is nonisolated.

Suppose, on the contrary, that $\varphi(\bar{x}, \bar{b})$ is a formula over AB which isolates q; here $\varphi(\bar{x}, \bar{y})$ is an L-formula $\bar{b} \subseteq AB$ and without any loss of generality we assume that $B \subseteq \bar{b}$. Clearly $\dim(\bar{b}/B) = 0$ holds, so that $\dim(\bar{a}/\bar{b}) > 0$ by Theorem 6 (a). By the minimality assumptions on α and ξ we must have $\dim(\bar{a}/\bar{b}) = \alpha$ and

 $U_{\alpha}(\bar{a}/\bar{b}) = \xi$. By Lemma 8 there exists $\bar{c} \in A \setminus \mathrm{acl}(\bar{b})$. Choose $\bar{a}_1 \vdash \mathrm{stp}(\bar{a}/\bar{b})$ such that $\bar{a}_1 \downarrow_b \bar{c}$. From $\vdash \varphi(\bar{a}_1, \bar{b})$ we get $\mathrm{tp}(\bar{a}_1/AB) = q$, and from the independence assumption on \bar{a}_1 we get $\bar{c} \notin \mathrm{acl}(\bar{a}_1\bar{b})$; on the other hand $\bar{c} \in \mathrm{dcl}(\bar{a}\bar{b})$, so that $\mathrm{tp}(\bar{a}_1/\bar{c}B) \neq \mathrm{tp}(\bar{a}/\bar{c}B)$ and $\mathrm{tp}(\bar{a}_1/AB) \neq \mathrm{tp}(\bar{a}/AB) = q$. This is a contradiction and the claim is proved.

Continuing the proof of the Theorem, let $r \in S(\operatorname{dcl}(\bar{a}B))$ be a nonforking extension of q. Then, by the Open Mapping Theorem r must be nonisolated too, and $r|B\bar{a}$ is nonisolated as well. We have found a nonisolated type over a finite domain, hence there exists a nonisolated type over \emptyset . To complete the proof of the Theorem, we repeat the proof from the superstable case:

Suppose that T is small, otherwise $I(T,\aleph_0)=2^{\aleph_0}$. Let $\operatorname{tp}(\bar{d})$ be nonisolated and let $\bar{d}_1\bar{d}_2\dots$ be an infinite Morley sequence in $\operatorname{tp}(\bar{d})$. For each n let M_n be prime over $\bar{d}_1\bar{d}_2\dots\bar{d}_n$. By Theorem 6 (c) $m=wt(\bar{d})<\omega$. We show that in M_n there is no Morley sequence in $\operatorname{tp}(\bar{d})$ of length $m\cdot n+1$, which clearly implies the conclusion of the Theorem.

If $\bar{e} \vdash \operatorname{tp}(\bar{d})$ and $\bar{e} \in M_n$ then $\operatorname{tp}(\bar{e}/\bar{d}_1\bar{d}_2\dots\bar{d}_n)$ is isolated, hence by the Open Mapping Theorem \bar{e} forks with $\bar{d}_1\bar{d}_2\dots\bar{d}_n$. On the other hand $wt(\bar{d}_1\bar{d}_2\dots\bar{d}_n)=m\cdot n$, hence there is no independent set of realizations of $\operatorname{tp}(\bar{d})$ of size $m\cdot n+1$ in M_n .

REFERENCES

- [1] J. Baldwin, Fundamentals of Stability Theory, Springer-Verlag, Berlin 1988.
- [2] B. Herwig, J.G. Loveys, A. Pillay, P. Tanović, F.O. Wagner, Stable theories without dense forking chains, Arch. for Math. Logic 31 (1992), 297-304.
- [3] E. Hrushovski, Finitely based theories, J. Symbolic Logic 54 (1989), 221-225.
- [4] A.H. Lachlan, The number of countable models of a countable superstable theory, in: Proc. of the International Congress on Logic, Methodology and Philosophy of Science, Roumania 1971, North Holland, Amsterdam 1973, pp. 45-56.
- [5] A.H. Lachlan, Two conjectures on stability of ℵ₀-categorical theories, Fund. Math. 81 (1974), 133-145.
- [6] M. Makkai, A survey of basic stability theory with particular emphasis on orthogonality and regular types, Israel J. Math. 49 (1984),
- [7] A. Pillay, Stable theories pseudoplanes and the number of countable models, Ann. Pure Appl. Logic 43 (1989), 147-160.

Matematički institut Kneza Mihaila 35 11001 Beograd, p.p. 367 Yugoslavia (Received 27 04 1995)