A REMARK ON THE PARTIAL SUMS IN HARDY SPACES

Miroslav Pavlović

Abstract. We prove that a function f, analytic in the unit disc, belongs to the Hardy space H^1 if and only if

$$\sum_{i=0}^{n} \frac{1}{j+1} ||s_j f|| = O(\log n) \quad (n \to \infty),$$

where $s_j f$ are the partial sums of the Taylor series of f. As a corollary we have that, for $f \in H^1$,

$$\sum_{j=0}^{n} \frac{1}{j+1} ||f - s_j f|| = o(\log n),$$

The analogous facts for L^1 do not hold.

For a function f analytic in the unit disc D let

$$P_n f = \frac{1}{A_n} \sum_{i=0}^n \frac{1}{j+1} s_j f$$
 $(n = 0, 1, 2, ...),$

where

$$A_n = \sum_{j=0}^n \frac{1}{j+1}$$

and $s_i f$ are the partial sums of the Taylor series of f,

$$s_j f(z) = \sum_{k=0}^j \hat{f}(k) z^k.$$

As usual, we denote by H^1 the space of those functions f, analytic in D, such that

$$||f|| = \sup_{r < 1} I(f, r) < \infty,$$

AMS Subject Classification (1991): 30 D 55

where

$$I(f,r)=\int\limits_{0}^{2\pi}|f(re^{it})|dt/2\pi.$$

For the properties of H^1 see [1] and [2].

It is well known that $||s_n f|| \leq \text{const.} A_n ||f||$ and that A_n is "best possible". (Note that A_n behaves like $\log n$ as $n \to \infty$.) A direct consequence is that, for $n \geq 2$,

$$\frac{1}{A_n} \sum_{j=0}^n \frac{1}{j+1} ||s_j f|| \le C||f|| \qquad (f \in H^1, \ n \ge 0).$$
 (1)

where C is an absolute constant. In this note we prove, by using an inequality of Hardy and Littlewood, that (1) can be improved to get that

$$\frac{1}{A_n} \sum_{j=0}^n \frac{1}{j+1} ||s_j f|| \le C||f|| \qquad (f \in H^1, \ n \ge 0).$$
 (2)

Moreover, we prove the following characterization of the space H^1 .

Theorem 1. For a function f analytic in D the following assertions are equivalent.

- (i) f belongs to H^1 ;
- (ii) $\sup_{n} \frac{1}{A_n} \sum_{j=0}^{n} \frac{1}{j+1} ||s_j f|| < \infty;$
- (iii) $\sup_n ||P_n f|| < \infty$.

Remark. It follows from the proof that the quantities occuring in (ii) and (iii) are "proportional" to the original norm in H^1 ; in particular there holds (2).

Before proving the theorem we give some immediate consequences and also consider the analogous facts in the Lebesgue space $L^1 = L^1(\partial D)$.

Theorem 2. If $f \in H^1$, then

$$\lim_{n} \frac{1}{A_n} \sum_{j=0}^{n} \frac{1}{j+1} ||f - s_j f|| = 0$$
 (3)

and, consequently,

$$\lim_{n} \frac{1}{A_n} \sum_{i=0}^{n} \frac{1}{j+1} ||s_j f|| = ||f||. \tag{4}$$

Proof. It is easy to verify that (3) holds when f is a polynomial. Then, the result is deduced in a standard way from (2) and the fact that the polynomials are dense in H^1 (cf. [1]). \square

Corollary 1. If $f \in H^1$, then

$$\liminf_{n \to \infty} ||f - s_n f|| = 0.$$
(5)

In fact, one can prove somewhat more: for each $\varepsilon > 1$ there is a sequence $\{k_n\}_{n=0}^{\infty}$ of integers such that $\lim_n \|f - s_{k_n} f\| = 0$ and $n^{\varepsilon} \leq k_n \leq (n+1)^{\varepsilon}$ for sufficiently large n. We omit the easy proof.

The case of L^1 . The space H^1 can be realized, via the Poisson integral, as the subspace of $L^1 = L^1(\partial D)$ cosisting of those $f \in L^1$ for which $\hat{f}(j) = 0$ for j < 0, where \hat{f} is the Fourier transformation of f. However, not one of the relations (2), (3), (4), (5) is valid in L^1 , and this follows from the fact that there is a function $f \in L^1$ such that $\lim_n \|f - s_n f\| = \infty$; such an example is given by

$$f(w) = \sum_{j} (\log j)^{-1/2} \cos jt$$
 $(w = e^{it}).$

Since the sequence $\{(\log j)^{-1/2}\}$ is convex, the function belongs to L^1 ([2], Theorem 4.1). Furthermore, using the standard technique, one shows that $||f - s_n f|| \ge \text{const.}(\log n)^{1/2}$. We omit the details.

It should be noted that inequality (1) is the best possible in L^1 in the sense that $\log n$ cannot be replaced by any $\psi(n)$ (independent of f) such that $\psi(n) = o(\log n)$ $(n \to \infty)$. To see this we take f to be the Poisson kernel,

$$f(w) = \frac{l - r^2}{|w - r|^2} \qquad (|w| = 1, \ 0 < r < 1),$$

then let r tend to l and use the norm estimate for the Dirichlet kernel.

Let h^1 denote the class of harmonic functions satisfying the condition $||f|| = \sup_{r < 1} I(f, r) < \infty$. The Poisson integral provides an isometric isomorphism of L^1 into h^1 (cf. [1]). Using Fejer's theorem one shows, by summation by parts, that if $f \in h^1$, then $\sup_n ||P_n f|| < \infty$, where P_n is extended to harmonic function in the obvious way. Conversely, it follows from the proof of Theorem l that if f is harmonic in D and $\sup_n ||P_n f|| < \infty$, then $f \in h^1$.

Proof of Theorem 1. That (ii) implies (iii) is obvious. To prove that (i) implies (ii) let $f \in H^1$ and for fixed $n \geq 2$ and $w \in D$ define the function $g \in H^1$ by

$$g(z) = (1 - rz)^{-1} f(rwz)$$
 $(|z| \le 1),$

where r = 1 - 1/n. We have $g(z) = \sum_{j=0}^{\infty} s_j f(w) r^j z^j$. Applying Hardy's inequality (cf. [1]) we get

$$\sum_{j=0}^{\infty} \frac{1}{j+1} |s_j f(w)| r^j = \sum_{j=0}^{\infty} \frac{1}{j+1} |\hat{g}(j)| \le \pi ||g||.$$

Since $r^j = (1 - 1/n)^j \ge c$ for $0 \le j \le n$, where c > 0 is an absolute constant, we have

$$\sum_{j=0}^{n} \frac{1}{j+1} |s_j f(w)| \le (\pi/c) ||g|| = (1/2c) \int_{0}^{2\pi} |1 - re^{it}|^{-1} |f(rwe^{it})| dt.$$

Integrating this inequality over the circle |w| = 1 we find

$$\sum_{j=0}^{n} \frac{1}{j+1} \|s_j f\| \le (1/2c) \|f\| \int_{0}^{2\pi} |1 - re^{it}|^{-1} dt,$$

where we have used Fubini's theorem. Finally, using the familiar estimate

$$\int_{0}^{2\pi} |1 - re^{it}|^{-1} dt \le C \log \frac{1}{1 - r} = C \log n,$$

we see that (2) holds and therefore we have proved that (i) implies (ii).

Let f be analytic in D. From the uniform convergence of $s_n f$ on compact sets it follows that $P_n f \to f$ $(n \to \infty)$ uniformly on compact subsets of D. Assuming that $\|P_n f\| \le 1$ for each n we have $I(P_n f, r) \le 1$ for all n and r < 1. This implies, via the uniform convergence of $P_n f$ on the circle |z| = r, that $I(f, r) \le 1$ for every r < 1, which means that $\|f\| < 1$. Thus we have proved that (iii) implies (i), and this completes the proof. \square

REFERENCES

- [1] P.L. Duren, Theory of H^p Spaces, Academic Press, New York 1970.
- [2] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, London, Sidney, Toronto, 1968.

Matematički fakultet Studentski trg 16 11000 Beograd Serbia (Received 28 10 1994)