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Abstract. We consider derivatives of the eigenfunctions and associated func-
tions of the formal Sturm-Liouville operator

L(u)@) = — (p(@)d/(z)" + q(x)u(z)

defined on a finite or infinite interval G C R. We suppose that the complex-valued
potential ¢ = g(z) belongs to the class L°°(G) and that piecewise continuously
differentiable coefficient p = p(z) has a finite number of the discontinuity points in
G.

Order-sharp upper estimates are obtained for the suprema of the moduli of
the first derivative of the eigenfunctions and associated functions of the operator £
in terms of their norms in metric L on compact subsetes of G (on the entire
interval G).

Introduction

1. Definitions. Consider the formal Sturm—Liouville operator

1) LW(@) = - (pl@)u'(@)" + ql@)u(@),

which is defined on an arbitrary interval G = (a,b) of the real axis R. Let z9 € G
be a point of discontinuity of the coefficient p. If we suppose that

o(z) = { pi(z), z€ (a,z9),
p2(x), z € (zo,b),
then the following conditions are imposed on the coefficients :
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1) Y41 (.'L') € C(l)(a,l‘o] ) and p2(.’2§') € C(l) [:L.O; b) .

2) pi(z) > a1 >0 everywhere on (a,zo], and pa(z) > as > 0 everywhere
on [zg,b).

3) q(z) € L*°(G) is a complex-valued function.

Definition 1. A complex-valued function ux(z) # 0 is called an eigenfunction

of the operator (1) corresponding to the (complex) eigenvalue A (A = ReA+i Im\)
if it satisfies the following conditions :

(a) ux(z) is absolutely continuous on any finite closed subinterval of G .

(b) w)(z) is absolutely continuous on any finite closed subinterval of the
half-open intervals (a,zo] and [zo,b).

(¢) ux(z) satisfies the differential equation

(2) — (m(@)uy(@) + ql@)ur(@) = Aur()
almost everywhere on (a,zg), and the differential equation
(3) — (p2(@) s (x) + g(@)ur(z) = Nia()

almost everywhere on (g, b) .

(d) ux(z) satisfies the junction condition
p1(z0) ty(zo — 0) = pa(z0) Uy (zo + 0).

Definition 2. A complex-valued function ﬁ,\(x) Z0 (i =1,2,...) is called an
associated function (of the i—th order) of the operator (1) corresponding to the
eigenfunction ux(z) and the eigenvalue X\ if it satisfies the following conditions :

(a*) Conditions (a), (b) and (d) of Definition 1 hold for 1it>\ (z).

) 4 a(x) satisfies the differential equation

i—1

(4) ~ (@i @)" + d@in@) = Min@) - w()
almost everywhere on (a, o), and the differential equation
(5) — (@ (@) + @) in@) = Mia(@) - wi(2)

almost everywhere on (g, b) .

1.1. Let K be any compact set of positive measure lying strictly within G.
We will use the notation

Krp ¥ {z€G|pK) <R},

where R € (0,p(K,0G)), and K is the intersection of all closed intervals con-
taining K. (By p(A,B) we denote the distance of a set A C R from a set
BCR)

If A=re,then VA & e/, where ¢ € (—7/2,31/2].
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2. Main theorem. We present the following results.

THEOREM 1. (a) If q(z) € L}°(G), then for any compact subset K of the
interval G there exist a number R € (0,p(K,0G)) and constants r(Kgr,Imv/X),
Ci(Kr,p,q,ImvX) (i =0,1,2,...) such that

(6) Su[g |&I)\($)| S Cil(KR7p7 q7Im\/X) ||&/\ ||L2(KR)
k1S

for 0<| Re\/X| <r(Kg,ImvX), and

(7) Slellg |&I)\($)| < Cil(KR7p7 q7Im\/X) |\/X| ”111‘/\ ”L2(KR)

for | Rev/A| > r(Kg,Imv/X).

(b) Let q(z) € Li(G) and (when the interval G is infinite) ux(x) € La(G).
If the functions p1(z) and p2(x) are bounded together wiht their first derivatives,
then there exist constants r(G,Im+v/X) and Ci(G,p,q,Imv/X) (i =0,1,2,...)
such that

®) sup [ i(z) | < C (6,0, VA) [l (6
TE

for 0 <|ReVA|<r(G,Imv)), and

9) sup |4 ()| < Cia(G,py g, Im VX)) [VA] [[4a [| oy

zeG

for | RevA| > r(G,ImVX).
Let us note that by ﬁ’)\(:cg) we mean &ﬁ\(xo —0) or/and 133\(:60 +0).

Remark 1. If G is a finite interval, then condition imposed in the propositon
(b) on the functions p(z) and ph(z) can be replaced by the following condition:
pll(x) € Ll(aam(J)a pIQ(x) € Ll(mﬂab) .

Remark 2. It will be shown in the proof of Theorem 1 that actually ”better”
estimates than the ones formulated above are valid. Namely, it is possible to replace
[| t |lzo(kg) in the estimates (6)—(7) by max | x(z) |, for some Rq € (0,R).

T Ry
Moreover, if G is a finite interval, then there exists a closed interval K C G
such that we can replace ||y || La(@) and Ci(G,-) in the estimates (8)-(9) by

max |ﬂ>\(x)| and Cj; (Kg,,-) respectively.
TE€EKR,
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Remark 3. Let o(L) be some set of eigenvalues of the operator (1) . If there
exists a constant A not depending on the numbers ) € o(£) and such that

(10) [ImVA| < A,  Xeo(L),
then the constants Cpi(-) and r(-) do not depend on the numbers A, which
means that it is possible to define them uniformly with respect to the parameter
Aea(L).

If the numbers X € o(£) satisfy (10) and zero is not a limit point of the set
{|ReVX|| X € 6(L) }, then the constants Cj;(-) (i € N) do not depend on these
numbers, t00.

Remark 4. The constants Cj1(-) (i = 1,2,...) actually do not depend on
the order ¢ of the associated function, which means that they can be the same for
all associated functions corresponding to the specific eigenfunction.

Remark 5. Theorem 1 is an extension of known results for the formal Schro-
dinger operator

(11) Lu)(z) = —u"(z) + q(z)u(z).

Namely, in this case the estimates (6)—(9) were announced in [8] and proved in
[5]. The corresponding estimates for derivatives of eigenfunctions of an arbitrary
nonnegative selfadjoint extension of the operator (13) were first derived in [3]-[4].

If G = (a,b) is a finite interval, then for the operator
L(u)(z) = plz)u"(z) +r(@)u'(z) + q(z) u(z)

with coefficients p(z) € W2(a,z0) N WZ(z0,b), 7(z) € Wi(a,zo) N Wi(zo,b)
and ¢(z) € Li(a,b), the global estimate (9) was announced in [10]. There some
perturbed junction condition (on the first derivatives) at the discontinuity point
zo € G was imposed.

Remark 6. The following example shows that the estimates (6)—(9) are best
possible with respect to the order of the parameter . Let the operator

L(u)(z) = - u"(2)
be defined on the interval G = (0,1), and let the eigenfunctions and associated
functions of L satisfy the boundary conditions wux(0) = 0, u\(0) = u\(1).
Then o(L£) = {\, = (2n7)? |n = 0,1,2,...} is the set of all eigenvalues, the
eigenfunctions have the form uo(z) = z, @, (z) = sin2n7z (n € N); the associated

functions corresponding to the eigenfunction %o do not exist, and the others have

the form 5
1 cos 2nmx
Un(.'L') = — X W y neN
(see [1]). It is not difficult to verify that in this case the order of parameter A in

the corresponding estimates (6)—(9) can not be improved.

Remark 7. For the sake of simplicity we have supposed that the coefficient
p(z) has only one point of discontinuity. But all stated results remain valid when
this function has an arbitrary finite number of such points. In that case definitions
1 and 2 should be formulated in the corresponding way.
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3. Estimates of eigenfunctions and associated functions. In the proof
of Theorem 1 we will essentially use the following estimates for eigenfunctions and
associated functions of the operator (1), which were announced in [7] and proved
in [9].

LEMMA 1. (a) If q(z) € LY(G), then for any compact set K C G
there exist a number R € (0,p(K,0G)) and constants C;(Kgr,p,q,Imv/X) (i =
0,1,2,...) such that

(12) Iznea;{{ |1z1’/\($) | S Cz(KRapanIm\/X) ” &)\ ||L2(KR) :

(b) Suppose that q(z) € Li(G), and that ﬁk(x) € Lo(G) if G is an infinite
interval. If pi(x) and pa(z) are bounded along with their first derivatives, then
there exist constants C;(G,p,q,Imv/X) (i =0,1,2,...) such that

(13) Slelg |’11LA($)| S Ci(GJpa q, Im\/X) ||{")\ ||L2(G) .

LEMMA 2. (a) If q(z) € LY%(G), then for any compact set K C G there
exist a number R € (0,p(K,0G)) and constants A;(Kgr,p,q,ImvX), A;(Kg,p,q)
(1=1,2,...) such that

max | ()| < Ai(Kg,p,q,ImVA) | V|- max |ux(z)| for A#0,
rzeK z€EKp

(14)

1—1 1
< AK - =0.
Iwneaglm(w)l < A{(KRr,p,q) £%§|UA($)| for A=0

(b) Suppose that q(z) € L1(G), and that ﬂx(x) € Ly(G) if G is an infinite
interval. If p1(z) and p2(x) are bounded along with their first derivatives, then
there exist constants A;(G,p,q,Imv/X), A;(G,p,q) (i =1,2,...) such that

sup |ux(z)| < Ai(G,p,q,TmVX) |[VA|-sup |ux(z)| for A#0,
(15) zeG zeG

i—1 i
sup |ux(z)| < Ai(G,p,q) -sup |ua(z)| for A=0.
ze€G z€G

3.1.If G is a finite interval, then condition imposed on the functions pf(z)
and ph(z) in the propositions (b) of the previous lemmas can be replaced by the
following one: p}| € Li(a,xo), py(x) € Li(xo,b).

Also, the global estimate (13) may be sharpened in the following sense: If
G is a finite interval, then for any closed interval K C G there exist constants
Ci(K,p,q,Im/X) such that

sup [ux(2)| < Ci(K,p,q,ImVX) - max | ax(z) ]
zeG zeK
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3.2. Having in mind the specific applications of estimates (12)—(15), we note
that the constants appearing in these estimates have the following properties of
independence of the parameters A and i:

1) If condition (10) is satisfied, then it is possible to make the constants
Co(-) independent of the numbers A € 6(L).

2) If the numbers A € o(L) satisfy (10) and zero is not a limit point of the

set {| RevVA||\ € (L)}, then the constants Ci(-) and A;(-) (i € N) do not
depend on those numbers.

3) The constants C;(-), A;(-) (i € N) are independent of the parameter i.

As will be shown in the proof of Theorems 1, the statements from Remark 3
are actually consequences of 1)-2).

Remark 8. The constants from estimates (12) and (14) have an important
property concerning the dependence on the ”variable” Kpg. Namely, a careful
analysis of proofs of the corresponding theorems in papers [9] may show the fol-
lowing fact: Under assumptions from the proposition (b) of Lemma 1 (or Lemma
2) it is possible to define the mentioned constants in such way, that they contain
only the length of the closed interval K .

4. Methods and applications. The estimates (6)—(9) are obtained by a
method based only on the mean-value formulas for the first derivatives of solutions
of the differential equations (2)—(5) and on the mean-value formulas for these so-
lutions. This method is a subsequent development of the method worked out in
[6].

4.1. The estimates formulated in Theorem 1 are results of independent in-
terest. They also play a basic role in study of the following problems concerning
expansions in eigenfunctions and associated functions of the operators (1) and (11):

1) Uniform convergence on G of the first derivative of partial sum of spec-
tral expansion (for any absolutely continuous function) generated by an arbitrary
complete and minimal system of eigenfunctions and associated functions of the
mentioned operators.

2) Uniform equiconvergence on compact subsets of G of the first derivative
of partial sums of spectral expansions (for any absolutely continuous function)
corresponding to two nonselfadjoint Sturm—Liouville (or Schrédinger) operators.

4.2. The present paper is the first one in a series of three papers devoted
to derivatives and integrals of the eigenfunctions and associated functions of the
operator (1). It contains three sections. In § 1 the necessary mean-value formulas
for the first derivative of the eigenfunctions and associated functions are derived.
In §2 the proof of estimates (6)—(7) is given, and in §3 the estimates (8)—(9) are
proved.

In the second paper we will establish order—sharp upper estimates for integrals
(over arbitrary closed intervals [yi,y2] C G) of the eigenfunctions and associated
functions in terms of their Ls-norms when G is a finite interval.
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Finally, in the third subsequent paper we intend to discuss the problem of
estimates for the higher derivatives and some ”double” integrals of eigenfunctions
and associated functions of the operator (1). There the corresponding theorems
will be formulated and proved.

§1. Mean-value formulas for the first derivative

1. Auxiliary functions. In this section we will establish so—called mean-
value formulas for the first derivative of eigenfunctions and associated functions of
the operator (1).

1.1. Throughout this paper we will constantly use functions h = pi(z,1t)
and h = pa(z,t) defined by

T p z+pa(z,t) p
(16) | ==t [ ==t
p(7) p(T)
z—p1(z,t) z

where z € (a,b), t €[0,t,], and t, is a sufficiently small positive number. These
functions are continuous with respect to the variable z on every closed interval
K C G, and for any x # z¢ they have the first derivative. Moreover, for a fixed
x € G they are continuous and (strictly) increasing with respect to the variable ¢
on the corresponding closed interval [0,t,]. Hence, there exist the inverse functions
t =p,(z,h) and t=py(z,h), which will be used in the following form:

T

dr dr
17 plz,z—=§) = —_—, Pz, & —z) = —.
(17) 21 £) J NG py(z,§ — ) | Vo

The functions (16) and (17) were first introduced by V.A. II’in in [2] (case z = xg ).

1.2. Let z € G and t € (0,t;] be arbitrary fixed numbers. In order to
establish the mentioned mean-value formulas for the first derivative we need the
function

%COS\/X(?I(.’L',:E—g)—t), .’L'—pl(iE,t) <

< b
18 wizg { 1 sesr
75 C8VApa(z,€ —2) = 1),  w<E<THpnt),

where A € C\ {0} is an arbitrary (complex) number. It is not difficult to see that
for &€ # z¢ the following holds:

(&) we(z,6)" = — Aw(z,€) +

(19) O sin VX (20— &)~ 1), - plat) <E<z,

s AL sinVA(Dy(@,6—7) —1), T<E<T+p(at).
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2. Mean-value formulas for the first derivative of an eigenfunction.
Let ux(£) be an eigenfunction of the operator (1) corresponding to the eigenvalue
A#0.Fix 2 € G and t € [0,t;], where t, > 0 is a number such that
[z — p1(z,t), 2 + p2(2,t:)] CG.

2.1. We first suppose that z¢ € (z — p1(x,t),z) and start from the integral

z+p2(z,t) Zo

(20) / (p(€) wh (2, £)) n(€) dE = / (p1(6) wl (2, £))" o (€) d +
z—p1(z,t) z—p1(z,t)
z z+p2(z,t)
+ / (P2(6) wh(, ©))' Bn(6) dE + / (p2(€) (€)' ix (€) d

Using equalities (19), we obtain

z+p2(z,t) o
(21) / (p(€) (2, £)) in(€) dE = — A / (€ w(e, €) dE +
z—p1(z,t) z—p1(z,t)

[ 0O o o
+ / m%\(f) sin VX (5, (z, 7 — £) — t) dé—

z—p1(z,t)

- A/uA w(z, €) de + /zp'?&&x(g) sin VA (py (2, — €) — t) dE —

p2(£)
$+P2(w,t) z+p2(z,t) ,
) / () w(a, &) de - / %&A(@Sin\/x(ﬁz(ﬂf;é“—ﬂﬂ)—t)dﬁ-

On the other hand, applying twice the partial integration to the integrals on
the right-hand side of (20), and using then the junction condition, the continuity of
function (18), the equations (2)—(3) and the differentiability properties of function
(18) , we conclude that

z+pa(z,t)

(22) / (p(©) wh(2,6))' Ba(€) de =

z—p1(z,t)
[ (2 = pr(@, 1) uh (2 — pr(2,1)) — Pa(x + pa(2,1)) Up(x + pa(z, 1)) | —

2/ pa s1n\/Xt+(\/p1(a:0 —/p2(20) )u,\ o) sin VA (5, (2, z—20) —t)+

w—i—pz(w,t) z+pa(z,t)
(o)

+ / 9(©) P (€ w(z, € dE — X / i (©) w(z, €) de

z—p1(z,t) z—p1(z,t)

S\
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Finally, the equalities (21) and (22) yield the following mean-value formula
for the first derivative of the function wuy(£):

pi(@ — pi(@, ) uh(z = p1(,1)) — pa( + pa(, b)) Uy (x + pa(a,t) =
= 2/pa(x) Ux(2) VA sin VAL —
— (Vp1(@0) — V/p2(0) ) tr(z0) VA sin VX (5, (z, @ — m0) — t) +

+ V- / %%(5) sin VX (py (2,2 — &) — ) dE —
(23) z—p1(x,t) b

z+p2(z,t)

_ V. / %M@sinﬁ(m(x,g—w)—t)dg—
z+p2(z,t)
- / 9(€) fin (€) cos VA (i (x, | 2 — £]) — £) de,
z—p1(z,t)

where pk(malw_gb = ﬁl(m,m—E) if 6 <z, and pk(malw_fb = ﬁ2($75_$) if
x<&;also, j=11if £ <xzo,and j =2 if g <&. Denote by 1(23)(ar;pj,p2,q;a,\)
the sum of integrals (with corresponding signs + or —) appearing in (23).

2.2. Suppose now that zg € (x,z+p2(z,t)) . Then analogously to the previous
case one can obtain the following mean-value formula:

pi(a — pi(z,8) Uy (z — p1(z, 1)) — pa(z + pa(@, 1) Uj(z + pa(z,t)) =
(24) = 2/pi(@) ux(z) VA Sin VAt + Loy (501,05, ¢ Un) —
— (Vp2(@0) = vV/P1(20) ) tir(m0) VA sin VX (B, (, 20 — 2) — t) -

2.3. The case when z¢ ¢ (x — p1(z,t),z + p2(2,t)) is much simpler. Then
the corresponding mean-value formulas have the form

pi(x = pr(@, 1) Uy (@ = pi(,1) = pi(@ + pa(e, 1)) Uy (2 + pa(a,t)) =

(25) o o
= 24/pj(@) ur(@) VA sin VXt + sy (z;p5, 05, G0,

where j =1 if z+ pa(z,t) <zo,and j=2 if zg <z — p1(z,t).

3. Mean-value formulas for the first derivative of an associated func-
tion. Let ) (£) be an associated function of the operator (1) corresponding to

the eigenfunction wy(€) and the eigenvalue A #0.Let z € G and t € [0,t,] be
arbitrary fixed numbers.
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3.1.If zo € (x— p1(z,t),z + p2(z,t)) \ {z}, then the following mean-value
formulas for the first derivative of the function U A(€) hold:

(@ — pr (2, ) Wh (@ — pi(,1) — pala + pa(z, 1)) (2 + pa(z, 1)) =
= 24/pj, () ’ZL,\(IL’)\/X sinvVAt —
(26) = (/pi(@0) = /P (20) ) tix(w0) VA sin VX (3, (3,7 — m0) — ) +
z+p2(z,t)

+ Tios) (9,0, G 12) — / ux (€) cos VA (py (w, | @ — £]) — 1) dE,

z—p1(z,t)

where j1 =2,jo =1 if o <z,and j1 =1,j50 =2 if z <zp;also, j=1 if
E<zg,and j=2 if 2o <E.

The proof of these formulas is (almost) the same as the one of the formula
(23) . The only difference is that instead of (2)—(3) we use now the equations (4)—

(3)-

3.2. If zg ¢ (z — p1(z,t),z + pa(z,t)), then the corresponding mean-value
formulas have the form

pi(@ = pr (@, ) Uy (@ — pr(@,1)) = pi(@+ pa(w, 1) W (@ + pa(, 1)) =
=2 Pj(x)&x(a:)\/Xsin\/Xt + I(23)($;pj,pj,q;&)\) 3
w+p2(w,t)b
- / ux(€) cos VA (B (| = — €]) — 1) de,

z—p1(z,t)

where j =1 if z+ pa(z,t) <zo,and j=2 if zg <z — p1(z,1).

§2. Local estimates of the first derivative

1.Local estimate (7). In this section the proof of the propositon (a) of
Theorem 1 will be given. We will consider in detail the case ¢ > 1 only, the case
i =0 being more simple.

1.1. Let K C G be an arbitrary compact set, with zy € K. There are
points ¢,d € K such that ¢ <z <d forevery x € K.Let 6 € (0,1) be a fixed
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number. We introduce the notations

a = min{\/a_h\/a_Q}: RO = 6p(K78G)7
(Ko p) = max{ was @), | m(w)},

z€[c—Ro,z0o] z0,d+Ro]

(Enp) = max{ _max 5@, _max 5]},

z€[c—Ro,z0] z€[zo,d+Ro]
c d d+Rg d
T(KRoap) = min{ / a ) / 77— } )
p1(T) p2(7)
C—Ro d

fix a number 79 € (0,7(Kg,,p)), and for every z € K define numbers p;(z,70)
and po(z,70) by equalities (18). Then (z — p1(z,70),2 + p2(z,70)) C Kg, , and
the following estimate holds:

(28) max{pl(;c,ro) 3 pZ(xaTO) } < W(KRoap) 70 -

We will use the function
(29)
cosppy(z, —y); = —pi1(z,70) <y <
cosppy(z,y —z); = <y<z+p2(,70);
0; y € (a,z — p1(z,70)) U (z + p2(z,70),b);

def
w(z,y;p) =

where z € K, and p >0 is an arbitrary number. Consider the integral

1 def 1
(30) Sosn) & [wloyminw iy =
T z+p2(z,70)
= / ur(y) cos ppy (z,z —y)dy + / ux(y) cos upy(z,y — ) dy
x_pl(waTO) R

where A(€) is an arbitrary associated function corresponding to the eigenfunction
o .
ux(§) and to the eigenvalue A #0.

1.2. At first we suppose that z € K_ {z € K|z <z} is a fizred

point and To < T + p2(x,70) . Putting ¢ = p, (z,x —y) in the first integral on the
right-hand side of (30), and ¢t = py(x,y — ) in the second one, we obtain the
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equality

Pa (z,z0—1x)

6y baw = [ [VaG-p@h) i - po) +

[=}

+ VPi@+ pa(a, 1)) ta(@ + po(e, ) | cosputdt +
70
v [ [VeG-a@) e - pwo) +
P2(z,z0—w)

+ Vp2(z + p2(z,t)) 13,\(.1'+p2(a:,t))] cosutdt.

In order to ”evaluate” the first (the second) integral (31), we will use the
mean-value formula (16) (the mean-value formula (18)) from the first paper [9].
Hence we conclude that the following equality holds:

70
(32) Swsp) = 2/pr(@) a (o) / cos pt cos VA Edt +
0
To

+ (\/pz(:cg) - \/pl(:cg) )&A(;co) . / cosput cosﬁ(ﬁz(x,xo —x)—t)dt —

po(z,mo—x)

T0

- /cosut-( /zC &&A(ﬁ) cosﬁ(ﬁl(x,w—§)—t)d§)dt+
0

o o) 2/p1(§)
70 z+pa(z,t) p'.(§) .
+ 0/cosut-( z/ m&,\(g) cosﬁ(ﬁﬂm,{—m)—t)dﬁ)dt—
L stosat)
- ﬁ-/cosut-( [ a@ine sinﬁ(m(x,m—m)—t)ds)dt—
0 z—p1(z,t)
1 To w+p2(w,t)'
- ﬁ-/cosut-( [ we sinﬁ(m(w,m—fn—t)df)dt.
0 z—p1(z,t)

It follows from (30) and the differentiability properties of functions (16) (with
respect to the variable z) that for x # zo we have

d i
(33) %w(m,u) =
z+p2(z,70) z
a u(y) sinppy(z,y — z) dy — / u(y) sinppy (z,7 —y) dy>+
p1(z)
z z—p1(z,70)
COS 4 To

= [Viala + 2, 70) (oo, )= Vi = 1, 70) dr(o=pr (o, 70) ).
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On the other hand, by applying the well-known rules for differentiation under
the integral sign to equality (32), it is possible to obtain still another expression

for %fj(m; u) . In that way we get from (32)—(33) that for z # z¢ the following
equality holds:

70

(34) ﬁ&(m) /cospt cosVAtdt =

z+p2 (vaU)

= ux(y) sin pipy (z,y — ) dy

z
- / ux(y) sin pp, (2, 2 — y) dy)
z—p1(z,70)
COS 4 Tg
+ - -
2pi(z)

[VD2(@ + pa(@,70)) (@ + pa(@,70)) —

— Vpi@ = pi(, 1)) ur(@ — pr(2,70)) ] —

) VP2(w0) — v/P1(20)
2p1(2)

70

cos it sin VA (B (2, 20 — ) — t) dt —

pa(z,x0—7)

- )\’lit)\(.ivo

(a2 2($;)19:(;)/p1($0) co8 1 (, 70 — ) —
_ 4;@) O/Tocowt. ( w_pl/;t) p;laii)f) in(©) sin VA (By (0 — &) — 1) dE +
+ w+:2(m,t> piiﬁ()g) Ux(€) sin VX (Bs (2, & — 7) — t) dg)dt n
+ 4p11(m) O/Tocosut' [P (z — p1(z, ) tia(z — pa(z,1)) —
— Pi(@ + pa(@, 1)) tn(w + pa(,t)) ] dt +
+ 2p11(x) O/Tocos“t‘ ( :cpl/:a:,t) (&) x(€) cos VA (B, (z, @ — €) — t) dE —

z+pa(z,t)

- [ d9i© VA0 - ) df)dt ;
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T0 T
1 i—1
+ cospt - u cos VA (p, (z,z — £) — t) dE —
s Joosnt ([ B© cosVR @@z -9 -1
0 z—p1(z,t)
z+p2(z,t)

_ /"«Iﬁ(g)cosﬁ@(x,s—x)—t)ds)dt.

z

1.3. The equality (34) will serve as a starting point in our proof of the local
estimate (7). We will also need a lower-bound estimate for the integral

70

T sin7y (1 + V) sint (1 — V)
(35) O/COS,utCOS\/Xtdt = 5( o (it V) + o (=) )

It follows from liII(l) s‘% =1 that there exists a number &§; > 0 such that
z—

for every z € C we have

2

3"

sin z

(36) 12| < &

From now on we will suppose that 79 satisfies the additional condition

(37) 0 < min{l,ﬁ}.

Introduce number g def (2/70) - \/ 1+ sh2(79 Im /). Then for every u > po we
have

SinT(](,LL-i-\/X)‘ - \/1+sh2(7-0 Im+v/X) -
To(,l,ll‘l’-\/x) o To b

On the other-hand, if p satisfies | u—Rev/X| < 1,then |u—vX| < 1+(Im\/X)2.
Therefore, for such numbers g it holds

DN | =

61 2 _
m(l—}-(lmﬁ) ) - 61,

wherefrom we conclude, by (36), that |70 (u —vX)|™'| sinmo (u — VA| > 2/3.
Now, we can state the mentioned estimate for the integral (35) in the form of

the following assertion: There exists a number g = po(70,Im+v/X) such that for
every number u > g, satisfying condition |u—Rev/A| < 1, we have the estimate

|70 (u—vVA)| <

70
(38) ‘/cosutcosx/xtdt > T—g.
0
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1.4. Let we define number r(Kg,,Im+v/X) >1 by
r(Kg,,ImV) = \/(Im\/X)2 + (No(Tg,Im\/X) )2 ,

suppose that | Rev/A| > r(Kg,,Im+v/)), and put p def | Re v/A|. For the number
o equality (34) and estimate (38) hold. Then estimates (28) and equality (34)
imply the following inequality:

ol 8
@) < VAL g 1a(©1- 52 (Kne) +

6 6 6
t 1(KRo,p) + —5 7(KR,,P) \/1+Sh2(T0 Imv)) + po Y(Kry,p) +

37 3
+ a—;’Y(KRoap)'YI(Kpr) \/1+Sh2(7—0 Im\/X) + E’yl(KRmp) +

6
+ 3 lallzixn,) \/1+Sh2(7'0 ImV\) ) +

6 T i—1
+ K p) 14 3020 T VR) - max |1, or
(39) @] < VX Ca(Knrep g, TmVA) - max [ux(©)] +
Ro

6719 5 i—1
+ ?’Y(KRO,I)) \/1+sh (1o ImV/X) -Erenlgfz{o | ux(€)]-

At this place we have to use the ”anti—apriori” estimate (14): According to
the proposition (a) of Lemma 2, there exist a number R; € (0, p(Kg,,0G)) and
a constant A;(Kg,p,q,Im+/X) such that

i—1 1
(40) Zax |ua ()] < Ai(KR:p;Q:Im\/X”\/X"ﬁnel% INGIF

where Kpg g Ro+R; - But we need a more convenient form of this inequality.
Namely, if the compact K (from Lemma 2) is a closed interval, then instead of

max | ux(€)| on the right-hand side of (14) it is possible to write max|1iu(§) [
E€EKRr EeEK

with a constant A;(-) depending on K (see Remark 2 in the introductory part
of the first paper [9]). Hence, instead of (40) we have the stronger estimate

i—1 bt i
(@) max (0] < A(Kr,pgmVA) [VA]- max Jia(©)].

Ro

Using this estimate, we obtain from (39) the following inequality:

(42) |ﬁ'>\(£)| < |\/X|(C~'i1(KRO,p,q,Im\/X)+

6 . i
+ Q—?V(KR(UP) Ai(KRoapa%Im\/X) \/]‘ +Sh2(T0 Im\/X) ) 'grenax |U,\(§) | .

Ro
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According to the proposition (a) of Lemma 1, there exist a number R; in
the interval (0, p(Kg,,dG)) and a constant C;(Kg,p,q,Im+v/X) such that

(43) max |’&)\(€) | < CZ(KR7p7q71m\/X) ” ’&)\ ||L2(KR) ’
§E€EKR,

def
where KR = KR0+R1 .

It follows from (42) and (43) that for the points x € K~ , satisfying condition
z < zg <z + p2(x,70) , the estimate

(44) |'LZI’I)\($)| S CZ{I(KRoapaanm\/X)Ci(KRap7Q5Im\/X)|\/X|||&A||L2(KR)

holds, where C!, (Kg,y,p,q,Im+/X) denotes the constant from estimate (42).
1.5. Suppose now that © € K~ s a fized point and x + p2(x,70) < To. In
that case, instead of (31) we obtain the following equality:

70

bie; ) = / (Vi@ — (@ 0) e — pr( ) +
0

+ Vpr(e + pa(@,8)) (@ + pa(w,1))] cosputdt.

Using here the corresponding mean-value formula (16) from the first paper [9],
instead of (32) we get the equality

7 1 1—1
(45) w(z;p) = Rgoy(w; p;ur; ux),

where R(35)(-) denotes the right-hand side of equality (32), in which p;(-) is
replaced by pi(-) and the term containing zo is omitted.
It follows then from equality (45), by the same ”differentiability procedure”

as in the previous case, that

70
(46) NED! /cosutcosx/xtdt = R(34)(x;u;ﬁ>\;zd,\1),
0

where R34)(-) denotes the right-hand side of equality (34), with p;(-) replaced
by pi(-) and with all three terms containing =z omitted.
If we suppose that | RevX| > r(Kg,,ImvX) and put pu def | Re VA,

then, comparing (34) with (46), we see that for |ﬁi\ (z)| the estimate (42), and
therefore the estimate (44), also holds.

1.6. Finally, it remains to consider the case when = = zy. From our as-

sumptions on the function wy(£) it follows that ) (zo — 0) = z—1>izgl—0 b (z) -



Estimates for derivatives and integrals ... 65

Hence, using the well-known theorems on continuity of the parameter Riemann or
Lebesgue integrals, we obtain from (34) that

70

(47) &;(xO—O) /COS,utCOS\/Xtdt = R(34)(x0;p;13,\;i1f>\1),
0

where R(34)(-) denotes the right-hand side of equality (34), with z replaced by

zg . Comparing (47) with (34), we see that for |’IOL£\ (o — 0)| the estimate (42),
and therefore the estimate (44), also holds.

1.7. By considerations in 1.2-1.6 we may conclude that the estimate

sup |uh(2)| <
(48) zeEK~

S Cz{l(KRoapatblm\/X) Ci(KR7p7 q, Im\/X) | \/X| ” ’&)\ ||L2(KR)

holds if A satisfies | Rev/A| > r(Kg,,Imv/)).

1.8. The procedure of estimation the function &’)\(5) on the compact set

K+ ¥f {z € K|z9 < z} is completely analogous to the derivation of estimate
(48) . Thus, we first consider the points z € Kt\{zo} such that z—p;(z,70) < o .
For these points we obtain, using the corresponding mean-value formulas (16) and
(18) from [9], that equality corresponding to the equality (32) have the form

70
(49) J)(m;u) = 24/p2(x) &A(x) /cosut cosVAtdt +

0
70

+ (Vp1(z0) — V/p2(0) )fu(mo) . / cos pt cos VA (py(z,z — zo) —t) dt —

p1(z,z—20)

T0 T

- O/cosut-( /();”Tf)@&ug) cos VA (7, (2,0 — €) — 1) dé +
z—p1(z,t

z+pa(z,t)

+ %M)cosmm(m,g—w)—t)d&)dt—

z+p2(z,t)

O/COSM-< [ i@ sin VA2 - el - ) de ) e -

z—p1(z,t)

Sl

To z+p2(w,t)

—%-/cospt-( / "u;(g)sin\/X(pk(m,m—gD—t)dg)dt.

0 z—p1(z,t)
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Starting from this equality, one may verify that the estmate (42) holds (with the
same constant C!) (Kg,,p,q,TmvX)).

When z € Kt is a point such that =g < z — p1(%,70), then using the
corresponding mean-value formula (16) from the first paper [9], instead of (45) we
obtain the following equality:

i i i—1
w(w;p) = Rag)(a; 3 ur; ur),

where R49)(-) denotes the right-hand side of equality (49), with p;(-) replaced
by pi(-) and the term containing xzy omitted. By this equality we can get an
equality corresponding to (46), and then prove the estimate (42) .

The estimates (42) and (44) hold true for | ﬁf\ (2o +0) |, too. This fact results
from i (zo +0) = limJr0 ) (z) and from an equality which is analogous to the

T—T0

equality (47).

Finally, by the previous consideration we may conclude that the estimate

sup |i(2)| <
(50) zeKt .
< CZ{I(KRoapaanm\/X)Cz'(KRapa%Im\/X)|\/X|”&/\”LQ(KR)

holds if A is an eigenvalue such that | Rev/X| > r(Kg,,ImvX).
1.9. The estimates (48) and (50) show that the local estimate (7) is valid
if we define

def

(51) Cil(KRapaanm\/X) z{I(KRoapaqa]:m\/X)Ci(KRapaanm\/X)7

and put r(Kg,Imv/X) d:Efr(KRO,Im\/X).

2.Local estimate (6). In the second part of the present section we will
prove the estimate (6). Note that already introduced symbols for constants and
sets keep their meaning.

2.1. Let A # 0 be an eigenvalue such that 0 < | Rev | < r(Kg,Imv/X).
This time we will start from the function

W(JI ) def {1/T7 y€($—p1($,7),$+pz($,7)),
’ a 07 yEG\(x—pl(x,T),x+p2(a},7)),

where z € K, and 7€ (0,7(Kg,,p)) is a fixed number. Introduce the integral

b z z+p2(z,7)
i i 1 i i
b [otmismay = 2 ([ ey + i dy ).

z—p1(z,T) z
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Let first € K~ be a fixed point satisfying xo < = + p2(z,7). (We will
expose in some detail this case only.) Then proceeding as in derivation of equality
(34), we obtain that for z # zo the following equality is valid:

(52) ﬁﬁ\(:c); /COS\/Xtdt =
0
= 5 [VRE T m@En) ine+ pler) -
~ V(@ — (@) s — pi(e,7)] -
—~ \/pz(wi)pl—(;)/m (o) in (o) cos VA (Ba(w, 20 — ) = 7) —
. N VA () I RN N
2”’1()0/( _/(t) 5 (@) S VA (r. — ) ) de +
z+p2(z,t) )
D; i . _
v ;j(g)m(@smﬁ(pz(w,g—x)—t)dg)dt+

/p1 2 — pr(@,8)) e — pr(, 1)) —

27’p1
0
— D@+ pa(z, 1)) ia(z + pa(, ) ] dt +
] ( [ 0@ oA Gaa -6 - 01t -
0 z—pi(z,t)
z+pa(z,t) .
- / 2(6)4x(€) cos VA 7y (a, € — 7) — 1 d&)dt n
p— /( / €) cos VX (P (z,2 — &) —t)dE —

0 z—p1(z,t)
z+pa(z,t)

- [ @ s VAGieg—a) - 01 de )i
2.2. Suppose additionally that the number 7 satisfies the condition
1

(53) T < 5 513
(K Tmv3)? + (1mvA)]
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Then we have the estimate

T

/cosx/Xtdt‘ > %,

R

0
and for every z € K~ the numbers p;(z,7), p2(z,7) satisfy the estimate (28):
ma‘x{pl(xaT) ) ,DQ(IE,T)} < TW(Kpr) .
By virtue of these estimates, we obtain from (52) that

i i 3
@)1 < max 1@ (5o (Knor) +

3
5o (Kngyp) 1+ sh2(r T V) +

3T
+ 1o VKR, p) v (KR, D) \/1 +sh2(7 ImVA) -

-\/(r(KR,Im\/X))2 + (Im\/X)2 +

3 3
+ E’YI(KRO,]?) + W”q”Ll(KRO) \/1+Sh2(7' Im\/X) ) +

3 Y
" 2_a27(KRO,p)\/1+sh2(T Im V) max |uxy(€)], or

§EKR,

(59 |#(@)| < Ch(Krop,g.InVX) - max [43(©)] +

Ro

3 i—1
+ 5o 1(Kng,p) (/1452 I V) - max |50 .

KRO

Applying here the estimate (41) to gmlgx |Z1I>\1 (&) ], and then the estimate (43) to
€KRg

i
max |u e get the estimate
EEKR0| )\(E)';W g

(55) ia(@)] < | VA (ézl(KRo,p,q,Imm t

3 ~ i
+ E’Y(KRoap) Ai(KRoapa%Im\/X) \/1 +Sh2(T Im\/X) ) 'grenax |’U,,\(§) |7

Ro
and then the final estimate

(56) |/&I)\("E) | < Cz{l(KRmpaanm\/X) Ci(KRapa q,Im\/X) ’ ||’&/\ ||L2(KR) ’
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where C},(Kg,,p,q,Im V/X) is the constant from (55). Note again that these
estimates are valid for the points = € K~ such that z < zy < z + pa(z,7) .

2.3. By the corresponding arguments one may verify that the estimates (55)
and (56) are valid in the other cases of points x € K, ie., when z € K~ is
such that = + pa(z,7) < o, or & = xg, or x € K+. Therefore, if X\ # 0 is
an eigenvalue satisfying 0 < | Rev/A| < r(Kg,Im+v/)), then the estimate (6)
holds:

Su}g |&’A(x) | S C'L{I(KRap7q51m\/X) ” /&/\ ||L2(KR) ) where
EAS

(57) Cil(KRLp:(LIm\/X) d:ef Cl{l(KRoap7q71m\/X)Ci(KRLp:CI:Im\/X)'

Note that using max if necessary, we may obtain the same constant in both
estimates (6) and (7), as it is stated in the proposition (a) of Theorem 1.

2.4. Tt remains to consider the case A = 0. The corresponding mean-value
formulas for the associated function () are much simpler then in the case

A#0:
pi(@ — pr(,1)) to( — p1(2,8)) + \/Pi(@ + pa(a,t)) to(x + pa(x, 1)) =

JZ163)
2/p;(€)

68) = (yoi(o =0+ /ps(o+0) )hole) - [ () de +

z—p1(z,t)

stpa(at) apa(z,t)
T L Y R B GLIGIE AP P
J ;i (€) s
z+p2(z,t)
- /"d&(&)(m(x,m—fn—t)ds,
z—p1(z,t)

where it is supposed that zo ¢ (z—pi(z,t),x+p2(z,t)) if z # zo, and p;(-), pp(:)
have the corresponding indices;

p1(z — p1(x,1)) to(z — pr(2,1)) + Vpo( + pa(w,1)) to(x + pa(2,1)) =
i i i i1
= 24/p;, () tio(2) + (\/psa (@0) — /pjs (20) ) tho ) + Tessy (@3 05, s 45tk ),
where j; =2,jo=1 if z9 € (x — p1(2,t),2),and j1 =1, jo =2 if zy belongs
to the interval (z,z + p2(z,t)).

Using these formulas, one can prove that the estimate (6) is valid in the
considered case, too.
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2.5. So far we have been assuming that zo € K. If zo ¢ K, then the
estimates (6) and (7) can be proved by application of the corresponding formulas
(16) from the first paper [9] and (58), and by arguments that are analogous to the
previous ones. Except simplicity, the only difference is that the number Ry should
be defined now by

Ry = 4 mln{p(K7aG) ) p($07K)}

2.6. Proof of estimates (6)—(7) in the case of the eigenfunction uy(£) is based
on the following remark. The necessary mean-value formulas for this function can

be obtained from the mean-value formulas for y(£) by omitting first the integral
. . i—1 . i o
which contains wuy(£) and then using replacement uy —— uy (see formulas

(13)—(15) in the first paper [9]). That is why the content of 1.1-2.5 give us also the
proof of estimates (6)—(7) in the case i =0.

3.0n Remarks 2-4. We end this section by consideration of assertions
from Remarks 2,3 and 4 concerning the estimates (6) and (7).

3.1. The estimates (39) and (55) show that the first part of Remark 2 holds
true.

3.2. Let the set (L) satisfies the conditions descibed in 3.2 of Introduction.
Then the constants C;(Kg,p,q,-) do not depend on the numbers X € (L), i.e.,
they have some upper bound Co(Kg,p,q, A) -

Let us replace Im+v/A by A in (37), in the definition of numbers 7(Kg,,-)
and in the constants from (39) (see 1.3-1.4). Replace also Imv/A by A in (53),
and in the constants from (55) (see 2.2). Then we get, by (51) and (57), that the
estimates (6)—(7) are valid, with the constants (and the number r(Kg,A)) not
depending on the numbers \ € o(L).

3.3. By virtue of statement 3) in 3.2 of Introduction it follows from (51) and
(57) that the constants Cj;(-) (¢ > 1) actually do not depend on parameter .

§3. Global estimates of the first derivative

1. Case of the finite interval. We begin the proof of the proposition (b)
with consideration of the case when G is a finite interval.

1.1. We will first prove the estimate (9) in the case ¢ > 1. Using compactness
of the closed interval G = [a,b] and continuity of functions p; = p1(,t), p2 =
p2(z,t) (with respect to the variable t), it is possible to find points ¢,d € G and
positive numbers ¢!, t2, t}, 3 such that

c—pi(c,tt) <a<c<c+pac,t?) <zo<d—pi(d,th) <d<b<d+ pa(d,t3).

Then there exist numbers 7, € (0,min {t}, ¢?}) and 74 € (0,min{¢}, t3}) for

c? %c

which the following holds: p1(c, [0, 7.]) = [0,¢ — a], p2(d,[0,74]) =[0,b—d].
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Introduce the closed interval K % [c,d], put £ =c and j =1 in the
mean-value formula (27) , and assume that ¢t € [0,7.). Also, put z =d and j =2
in the same mean-value formula, and assume that ¢ € [0, 74]. Therefore we obtain
two equalities from which it results the inequality

i i 1 ~ i
(59) maX{ sup |uj(z)], sup |ul)\($)|} < = (K,p) - sup |uj(z)| +
z€(a,c] z€[d,b) «a zeK
2v(K b—a)v (G
«a o

el ] e s e (772} T V) - sup (o) |+
x

b

+

= V/1+ sh2(max {r., 74} T v/X) - sup | a3 (#) |,
zeG

where (K,p) has the obvious meaning (see 1.1 §2), and

(60) V(G p) & max{ sup |pi(@)], sup |p'2(x)|}-

z€(a,zo] z€[z0,b)

1.2. Let us define the number r(G,Im V) def r(Kgr,,Imv/X), where the
number C(K Ro,Im+/X) s introduced in 1.4 §2 (and generated by our closed
interval K).

Suppose first that | Rev/A| > r(G,Im v/A). Then we may use estimate (7)
and obtain that the following holds:

IN

sup |uA(z)| < Ca(Kr,p, g, Im V) [VA] ltr |y i)

(61) zeK

IN

Cit (K, p, ¢, Im VX) | VX] [ || £4(c) -

Also, by virtue of estimates (15) and (13) it holds

(62) sup ur(z)| < 4i(G,p,0,Im VX) [ VA - sup | ir(z) |
TE €

< Ai(G;paq;Im\/X) Ci(Gapaanm\/X) | \/X| ||&/\ ”Lz(G) .
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By inequalities (61)—(62) we obtain from (59) that

(63) { sup |4h()], sup |é;<w>|} <
z€(a,c] z€[d,b)

< |: E’Y(K )Czl(KR:paanm\/_)

N (27(1?,17) N (b—a)ava’(G,p)

= + o )

\/l—l-sh2 (max {7, 74} Im V) - Ci(G,p,q,ImVX) +

b—a

+ o2 A,() C,() \/1 -+ sh2(max {Tc,Td} Im\/X) ] |\/X| ||QZL/\ ||L2(G)

Now, we can conclude from (61) and (63) that sup |ﬁ’>\ (x)| exists, and that
zeG
the estimate (9) is valid:

sup [d5\(2)] < Ca(G,p, ¢, TmVA) [VA] [ tx [lLo(a) »
TE

where Ci1(G,p,q,Im+/X) is the maximum of the constants appearing in the
inequalities (61) and (63).

1.3. Suppose now that 0 < | Rev/A| < 7(G,Im+vA) and X # 0. This
case can be treated analogously to the previous one. Namely, using the mean-value
formulas (27) , we can get the estimate (59) in which instead of |v/A| the number

\/(T(G,Im\/X))2 + (Im\/X)2

stands. The rest of the proof of estimate (8) is the same; instaed of estimate (7) it
is necessary to apply estimate (6) .

1.4. Finally, if A = 0, then it is possible to verify that the mean-value
formulas

pi(@ — pr (@, 1) up(z — pr(2,8)) — p;(x + pala, 1)) uh(z + pa(a,t)) =

z+pa(z,t) z+pa(z,t)
i i1
- - [ a@ie - o (6) de
z—p1(z,t) z—p1(z,t)

hold if g ¢ (z — p1(x,t),x + pa(z,1)) .
By these formulas and the procedure used in 1.2, one may easily prove the
corresponding estimate (8).

1.5. Proof of estimates (8)—(9) in the case of an eigenfunction is based also
on the remark given in 2.6 §2.
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2. Case of the infinite interval. Our general assumption in this case is
that u(€) € Lo(G) (i > 0).

2.1. Suppose first that G = (—o0, +00), and analyse the dependence of the
constants Cj1(Kg,p,q,Im+/X) on the "variable” Kpr. We want to show that
in this case, under assumptions from the proposition (b) of Theorem 1, constants
Ci1(-,p,q,Imv/X) can be chosen ”almost independently” of the compact Kg.

Let Ro € (0,1) be an arbitrary fixed number, and let

def def Ro
1(G,p) ma.x{ sup V/pi@,  sup p2<x)}, (G,p) & ,
zE€(—00,z0] z€[z0,+00) ’Y(Gup)
(64) Y (G,p) max{ s |p(@)], sup |p;(x)|}-
z€(—00,z0) z€[z0,+00)

Fix a number 79 € (0,7(G,p)) and define functions pi(-,70), p2(-,70) on the
compact K by equalities (16).

Proceed further like in 1.1-1.3 §2. Then define po(79,Im+v/A) as in 1.3
§2, and the number r(G,Imv)\) & \/(Im\/X)z + (po(70,Im \/X))2 There-
fore, if | Rev/A| > r(G,Imv/X), then we get the estimate (39), with a constant

Ci(G,p,q,Imv/X) obtained from the constant Cj; (Kg,p,q,Im+/X) by replace-
ment Kr+— G.

According to Remark 8 , the constant C;(Kg,4g,,p,q,Im+v)) from estimate
(43) can be replaced by a constant C;(K,p,q,Im+/X) depending only on the
length of the closed interval K D K .

Analysing further the content of 1.4-1.9 §2, we obtain the following conclu-
sion: There are constants r(G,ImvX) and Ci1(Gs,p,¢,ImvA) (i > 0) such
that for every closed interval K C G (of the fixed length equal to some s > 0)
the estimate

sup [uh(@)| < Cir(Go, g, ImVA) VA llta [l 1a (i)
zE
holds if | Rev/X| > r(G,Im+v/X), where R > 0 is a fixed number.

Analogous analysis of the proof of estimate (6) (see 2.1-2.4 §2) shows that
there is a constant C!,(Gs,p,q,Im+/A) such that every closed interval K C G
(of the fixed length equal to some s > 0) the estimate

SUII; |'llj’l)\(x) | S Czll (Gsap; q, Im\/X) ” ZZI’A ||L2(KR)
zE
holds if 0 < |RevA|<r(G,ImvX), where R >0 is a fixed number.

2.2. Prove now the estimates (8)—(9). Define constant 7(G,Im+v/X) as in
2.1. Then, for arbitrary fixed number s > 0, define constants Cj; (G, p, ¢, Im+v/X)
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and C!,(Gs,p,q,Im/X) as it was already explained. If = € G is an arbitrary
point and K (z) an arbitrary closed interval of the length s, such that =z € K(z),
then

Cia(Gs,p,q, Im\/X) | \/Xl ”&/\ ||L2(K(w)R)
< Cil(GS7p7 q7Im\/X) | \/Xl ” ’ZL/\ ||L2(G)

S
[ORN
—~

8
~—
IA

for | RevA| > r(G,Im+v/\), and

= Cz{l(GmpJ(LIm\/X) ||’ZL)\||L2(K(J:)R)
C’L{I(Gmpaq:Im\/X) ||&A||L2(G)

S
&
AN

AN

if 0< |\/X| Sr(G,Im\/X).
Therefore, it results that sup |’ZLI)‘(.’L')| exists and the estimates (8)—(9)

T€ER
hold.

2.3. Consider the case when G = (a,+o0), a € R. Define first numbers
v(G,p) and +'(G,p) asin 2.1. Let ¢ € (a,z9) be an arbitrary fixed number
and 7, > 0 such that p;(c,[0,7.)) = [0,c—a). Then ps(c,7.) < v(G,p) Te.
Choose a number d € G such that ¢+ v(G,p)7. < d, c—a < (d—¢)/4, and
denote by K the closed interval [c,d]. Define the number 7(G,Im+/A) by
r(G,Im VX)) = r(Kg,,ImvX), with r(Kg,,Im+v/X) introduced in 1.4 §2.

Return after that to the mean-value formulas (27) . Putting there z = ¢ and
j =1, and assuming that ¢ € [0,7.), we obtain an inequality for sup |&’A ()]

z€(a,c]
having the same forme as inequality (59), with K and max{7.,74} replaced by
K and 7. respectively. By that inequality and Lemma 1 we obtain the estimate

sup |uh(z)| < Cia(G,p,q,Im V) |[VA] [t [l £aco)

z€(a,c] -
if |RevA|>r(G,ImvVX).
On the compact set K the estimate (7) is valid, wherefrom we get
sulg |1ZI’I)\($) | S Cil(KR7p7QJIm\/X) | \/Xl || ’ZL)\ ||L2(G)
T€
if |RevA|>r(G,ImvX).

Finally, it remains to show the existence of  sup | ’ZLI)\(Z') | and the validity
z€(d,+o0)

of estimate (9) for this suprema. This can be done like in 2.1; the only difference is

that we now choose Ry € (0,min{1,c—a}) and cover each point z € (d, +o0)
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by a closed interval K(z), where intervals K(z) have the same fixed length
se(0,d—c).

As far as the estimate (8) concerned, it can be proved by corresponding
arguments; we omitt the details.

2.4. The verification of the estimates (8)—(9) in the case G = (—0,b) (b € R)
is completely analogous to the procedure presented in 2.3.

2.5. If we use the maen—value formulas (25) instaed of (27), then the consid-
erations from 2.3-2.4 are valid in the case of eigenfunction w(€), too.

Proof of Theorem 1 is completed.

3. 0n Remarks 1-4. In order to verify that Remark 1 holds true, we should
change definitions (60), (64) of v'(G,p) replacing sup |pi(z)|, sup |ph(z)]
z€(a,zo) z€[zo,b

o b
by integrals [ |pi(z)|dz and [ |ph(z)|dz respectively. Also, it is necessary to

a o
use the first statement from 3.1 in Introduction.

3.1. Analysing the content of 3.1 in Introduction, 3.1 §2 and 1.1-1.3, we see
that the global estimates (8)—(9) may be sharpened in the following way:

sup |uh(z)| < Ci(Kgo,p,q, Im V) [VA|- max |uy(z)]
z€G z€KR,

if |RevX|>r(G,Imv)), and

sup |'ZLI)\($)| < Cﬂ(KRoapaanm\/X)' max |&/\(H}')|
zeG z€KR,

if 0<| Re\/X| < (G, Im+v/X), where G is a finite interval, and K C G is the
closed interval defined in 1.1.

3.2. The constants Cj; (G, p,q,-) (i >0) and r(G,-) from the proposition
(b) of Theorem 1 have the property of independence of the numbers X € o(£),
satisfying conditions described in Remark 3. This assertion is a consequence of the
definition of numbers 7(G,-) (see 1.2,2.1 and 2.3), and of the structure of constants
Ci(G,p,q,-) in different cases (see 3.2 §2, 1.1-1.4, 2.1 and 2.3). In the proof of
the mentioned property one should also use the content of 3.2 in Introduction.

3.3. Analysing the structure of ”global” constants Cj;(-) (¢ > 1) and having

in mind statement 3) in 3.2 of Introduction, we see that these constants do not
depend on the parameter 7.
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