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Abstract. Let G be a connected graph on n vertices. The thorn graph G*
of GG is obtained from G by attaching to its i-th vertex p; new vertices of degree one,
pi >0,4i=1,2,...,n. Let d(G) be the sum of distances of all pairs of vertices
of G. We establish relations between d(G) and d(G*) and examine several special
cases of this result. In particular, if p; = v — y;, where -y is a constant and -y; the
degree of the i-th vertex in G, and if G is a tree, then there is a linear relation
between d(G*) and d(G), namely d(G*) = (v — 1)2d(G) + [(v — 1)n + 1]2.

Introduction

In this paper we consider connected finite graphs without loops and multiple
edges. Let G be such a graph, V = V(QG) its vertex set, E = E(G) its edge set,
and let its vertices, whose number is n , be labeled by uy, us,... ,u, . The distance
(= length of a shortest path) between the vertices u; and u; of G is denoted by
d(u;,uj|G). The sum of the distances between all pairs of vertices of G is the
distance of the graph G and is denoted by d(G) .

In the mathematical literature the distance of a graph was first introduced
by Entringer, Jackson and Snyder [2], although the chemical applications of this
quantity are somewhat older [8]. For results concerning the distance of compound
graphs as well as for additional references see [3,6,9].

Let p1,p2, ... ,pn be non-negative integers.
Definition 1. The thorn graph of the graph G , with parameters p1, p2, ... ,Pn ,

is obtained by attaching p; new vertices of degree one to the vertex u; of the graph
G, i=12,...,n.

The thorn graph of the graph G will be denoted by G*, or if the respective
parameters need to be specified, by G*(p1,pa, ... ,Pn) -
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In this work we examine the relation between d(G) and d(G*). The moti-
vation for this study comes from a particular special case, namely G*(y — v1,v —
Yoy .-+ Y —Yn), Where «; is the degree of the i-th vertex of G and + is a constant
(y >~ foralli =1,2,... ,n). Then the vertices of G* are either of degree v or
of degree one. If, in addition, v = 4, then the thorn graph is just what Cayley
[1] calls a “plerogram” and Pdlya [7] a “C-H graph”. (The parent graph G would
then be referred to as a “kenogram” [1] or a “C—graph” [7]. Clearly, these notions
have their origins in the attempts to represent molecular structure by means of
graphs [4].) It is also worth mentioning that the so—called “caterpillars” [5] are
thorn graphs whose parent graph is a path.

Denote the vertex set of G* by V*. Further, the set of degree—one vertices of
G*, attached to the vertex wu; is V;. Its cardinality is p; and, clearly,

V*=VUVUV,U---UV, and VinV;=0 fori#j

The main results

Let {z,y} C V*. In order to compute d(G*) we distinguish between four
types of pairs of vertices of G*:
Typel. z€V ,yeV ;
Type 2. z€V;,y€eV, forsome i, 1<i<n ;
Type 3. z€V;,y€eV;, forsome 4,7, 1<i<j<n ;
Type 4. z€V;,yeV;, forsome i,1<i<mn .

Let the contributions of all such vertex pairs to d(G*) be denoted by
Fy,F,, Fsand Fy, respectively. Then,

d(G*)ZF]_ +F2+F3+F4 (1)
If {z,y} is a vertex pair of Type 1, then d(z,y|G*) = d(z, y|G) and therefore
F =d(G)

There are p; vertex pairs {z,y} of Type 2, and for each of them d(z,y|G*) =
d(u;,y|G) + 1. Therefore

n

=3 S pildunyl@) + 1= Y i+ py) dlus,uslG) 40 Y ps

i=1 yev 1<i<j<n i=1

There are p; - p; vertex pairs {z,y} of Type 3, and for each of them
d(z,y|G*) = d(ui, u;|G) + 2. Therefore

2 n
Fy= > pipjldu,ulG)+2]= > pipjd(ui,ui|G)+ (Zm) ->
i=1

1<i<j<n 1<i<j<n
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There are (’”) vertex pairs {z,y} of Type 4, each of them at distance 2.

2
Therefore
n

3 n . n
=32 (h) =2 -2on

i=1
Substituting the above relations back into Eq. (1) we arrive at the general
expression for the distance of a thorn graph:

THEOREM 1. If G* is the thorn graph of the graph G, with parameters
pi,pi>0,i=1,2,...,n, then

(G =@+ Y it p O+ Y pipydun )

1<i<j<n 1<i<j<n

+ (sz) +(n-1)> pi (2)
=1 =1

i.e.,

d(G*) = z (ps + 1)(pj + 1) d(us, u5|G) + (Zp,) (n—1) Zp,- (3)

1<i<j<n

COROLLARY 1.1. If G* is the thorn graph of the graph G , with parameters
pL=p2=---=Dp, =p, then d(G*) and d(G) are related as:

d(G*) = (p+1)2d(G) + np(np +n — 1)

Theorem 1 has been obtained by a routine combinatorial reasoning and the
form of Egs. (2) and (3) is neither appealing nor unexpected. Also, the existence
of a simple linear connection between d(G*(p,p,... ,p)) and d(G), as specified in
Corollary 1.1, is by no means a surprise. The following two special cases seem,
however, to be somewhat less self-evident and hardly could have been anticipated.

Let T be an n-vertex tree and let -; be the degree of its i-th vertex. Recall
that
Nyt =20 -2

COROLLARY 1.2. If T* is the thorn graph of the tree T , with parameters
pi=%, t=1,2,...,n, then d(T*) and d(T) are related as:

d(T*) = 9d(T) + (n — 1)(3n — 5)

COROLLARY 1.3. Let v be an integer with the property v > ~v; , i =
1,2,...,n. If T* is the thorn graph of the tree T , with parameters p; = vy—"; , t =
1,2,...,n, then d(T*) and d(T) are related as:

d(T*) = (v =1)*d(T) +[(v = Dn + 1*
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Proofs

Theorem 1 has already been verified, and Corollary 1.1 is immediate. What
remains is to demonstrate the validity of Corollaries 1.2 and 1.3. For this we need:

LEMMA 1. If T is a tree on n vertices ui,us, ... ,u, and if the degree of u;
isv; , 1 =1,2,... ,n, then

D (i) dui,u|T) = 4d(T) —n(n - 1) (4)
1<i<j<n
and
Z vi Y5 d(ui, ui|T) = 4d(T) — (n —1)(2n — 1) (5)
1<i<j<n

Proof. Let V(T) and E(T) be the vertex and edge sets, respectively, of
the tree T. Let e € E(T). Then the subgraph whose vertex set is V(T') and
whose edge set is E(T) \ {e} consists of two components, Ty = Ti(e) and T> =
T (e) , possessing n1 = ny(e|T) and ny = na(e|T) vertices, respectively. Recall that
ni(e|T) + na(e|T) = n holds for all e € E(T).

It is long known [8] that the distance d(T') of a tree T' (in which the path
between any two vertices is unique) may be calculated by counting the paths of T'
which contain the edge e, and summing this count over all edges of T'. Now, the
number of paths of T' containing e is ny (e|T) - na(e|T) and therefore,

dT)= Y melT)na(elT) (6)

e€E(T)

which may be rewritten as

ary= > > o1 (7)

e€E(T) u;€V(T1) u;eV(T2)

Associate to each pair of vertices u;,u; € V(G) a weight w;; and define a
generalized distance-sum d,, (G) as

dy(G) = Y wijd(ui,ul|G)
1<i<j<n
Clearly, if w;; =1foralli,j, 1 <i<j <nthend,(G) =d(G).
Now, repeating the reasoning leading to Eq. (7), and bearing in mind that for

T being a tree, in d,, (T') the distance between the vertices u;, u; has to be counted
with weight w;;, we obtain

d,(T) = Z Z Z Wij (8)

e€E(T) w;€V(T1) u; €V (T2)
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If we choose w;; = v; +v; then Eq. (8) yields
Yo i) dunwlTy= D fne > v+m Y v 9)
1<i<j<n e€E(T) u; EV(T1) uj €V (Ts)

Because 77 and 75> have n; — 1 and ny — 1 edges, respectively,

Yoo y=2m—-1)+1 (10)
uiEV(Tl)
and
Yo oy=2ma-1)+1 (11)
u; EV(T2)

Recall that 7v; and «; in Egs. (10) and (11) are the degrees of the vertices of
the tree T'; they coincide with the degrees of the vertices of the trees 77 and T3,
respectively, except for one particular vertex of 77 and for one particular vertex of
T, . These “exceptional” vertices of 77 and T have degrees by one less than in 7.
The terms +1 on the right—hand sides of Eqgs. (10) and (11) occur because of this
difference between the vertex degrees of T and the vertex degrees of 77 and T5.

Substituting (10) and (11) back into Eq. (9) results in

> (i) dws,w|T) = Y [4ning — (01 + no)] (12)

1<i<j<n e€E(T)

Using the fact that T" has n — 1 edges, that n; + n2 = n and that d(T) obeys Eq.
(6), Eq. (4) is directly obtained from Eq. (12).

This proves the first part of Lemma 1.

If, on the other hand, we choose w;; = ; - 7; , then from Eq. (8),

> vivduiu|T) = Yo Yooy

1<i<j<n e€E(T) [uw;eV(Ty) u; €V (Tz)
= > R -1)+1]2(n2— 1) +1]
e€E(T)

Combining the above with Eq. (6) leads to Eq. (5).
This completes the proof of Lemma 1. O

Proof of Corollary 1.2. Set p; = ~; into Eq. (1) and use Eqgs. (4) and (5) of
Lemma l. O

Proof of Corollary 1.3. Set p; = v — y; into Eq. (1) and use Lemma 1. The
calculation is somewhat lengthier than, but fully analogous to the previous case. O
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