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Abstract. We study curvature properties of semi-Riemannian manifolds
satisfying a new condition of pseudosymmetry type. Basing on obtained results we
construct non-trivial examples of such manifolds.

1. Introduction

Let (M, g) be a connected n-dimensional, n > 3, semi-Riemannian manifold
of class C®. We denote by V, R, R, C, S and & the Levi-Civita connection, the
curvature operator, the Riemann-Christoffel curvature tensor, the Weyl conformal
curvature tensor, the Ricci tensor and the scalar curvature of (M, g), respectively.

A semi-Riemannian manifold (M, g) is said to be semisymmetric [18] if
R-R=0

holds on M. As a proper generalization of locally symmetric spaces (VR = 0)
semisymmetric manifolds were studied by many authors. In the Riemannian case,
Z.1. Szabd obtained in the early eighties a full intrinsic classification of semisymmet-
ric Riemannian manifolds [18]. Very recently theory of Riemannian semisymmetric
manifolds has been presented in the monograph [1]. The profound investigation of
several properties of semisymmetric manifolds, gave rise to their next generaliza-
tion: the pseudosymmetric manifolds.

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric [10] if at
every point of M the following condition is satisfied:
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(*)1 the tensors R - R and (g, R) are linearly dependent.
This condition is equivalent to the relation

R-R=LgQ(g,R)

on the set Ur = {z € M | R— ;"5 G # 0 at }, where Lp, is some function
on Ug. The definitions of the tensors used will be given in Section 2. There exist
various examples of pseudosymmetric manifolds which are non-semisymmetric and

a review of results on pseudosymmetric manifolds is given in [9] (see also [V]).

It is easy to see that if (x); holds on a semi-Riemannian manifold (M, g),
n > 4, then at every point of M the following condition is satisfied:

(%)2 the tensors R - C and Q(g,C) are linearly dependent.
The converse statement is not true [8] (cf. Example 3.1).
A semi-Riemannian manifold (M, g), n > 4, is called Weyl-pseudosymmetric

if at every point of M the condition (x)2 is fulfilled. If a manifold (M, g) is Weyl-
pseudosymmetric then the relation

holds on the set Uc ={x € M | C #0 at z}, where L¢ is some function on Uc.

It is easy to see that at every point of pseudosymmetric Einstein manifold
the following condition is fulfilled:

(%)3 the tensors R- R — Q(S, R) and (g, C) are linearly dependent.

It is known that every hypersurface M,dim M > 4, immersed isometrically in a
semi-Riemannian space of constant curvature realizes ()3 ([13]). More precisely,

the following relation R-R — Q(S,R) = —gg;i){; Q(g,C) holds on M, where &
is the scalar curvature of the ambient space. Recently, pseudosymmetric manifolds
satisfying (*)3 were investigated in [12]. Semi-Riemannian manifolds realizing (x);-
()3 and other conditions of this kind, described in [9] or [V], are called manifolds

of pseudosymmetry type.

The present paper concerns with semi-Riemannian manifolds satisfying the
new condition of pseudosymmetry type:

(%) the tensors R - C' and Q(S, C) are linearly dependent
at every point of M. This condition is equivalent to the relation

(1) R-C=LQ(S,C)

ontheset U ={x e M|Q(S,C)#0 at z}, for some function L on U, called the
associated function of M. It is clear that every semisymmetric manifold satisfies
(). The converse statement is not true (see Example 5.1).

In Section 2 of this paper we fix the notations and present auxiliary lem-
mas. In Section 3 we consider manifolds satisfying the equality Q(S,C) = 0
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and we prove that such manifolds are pseudosymmetric. In Section 4 we investi-
gate manifolds satisfying (1) and admitting a 1-form a such that the cyclic sum

> xv,z (X)C(Y,Z) = 0. We prove that the associated function of such manifold
must be equal to 1/(n — 1) or 1/(n — 2). Applying this result, we find in Section
5 the necessary and sufficient condition for a metric § with harmonic Weyl tensor
C conformal to an essentially conformally symmetric metric g to satisfy (1). As
a consequence of these considerations, we give an example of a manifold realizing
(1) with L = 1/(n — 2) which is not pseudosymmetric. Finally, Section 6 contains
some results on concircular changes of metrics satisfying (1).

2. Preliminaries

Let (M, g) be an n-dimensional, n > 3, semi-Riemannian manifold. A tensor
B of type (1,3) on M is said to be a generalized curvature tensor [16], if

> B(X1,X3)X3 =0,
X1,X2,X3

B(X1,X5) + B(X5,X;) =0,
B(X15X25X37X4) = B(X3’X45X1aX2)a

where B(Xi, X, X3, X4) = g(B(X1, X3) X35, X4). The Ricci tensor Ric(B) of B is

the trace of the linear mapping X; — B(X3,X3)X3. For a generalized curvature
tensor B we define the scalar curvature x(B) by

H(B) = Zei Ric(B)(E,-,Ei), & = 9(Ei, E;) ,

where Ej, ..., E, is an orthonormal basis. Let the tensor G be defined by

G(X17X25 X37X4) = g((Xl A Xz)Xg, X4) )
(Xl A X2)X3 = g(XQ,Xg)Xl — g(Xl,X3)X2.

Further, we define the Weyl curvature tensor C (B) associated with B by

C(B)(Xy, Xa, X3, X4) = B(Xy, Xa, X3, X4) + %G(Xl,XQ,X&X@
- i 2(9((@;(3))(1 A X3) X3, X4) — g((Ric(B) X1 A X5) X4, X3)),

where the tensor field Ric(B) is defined by Ric(B)(X,Y) = g(Ric(B)X,Y). For
an (0, 2)-tensor field A on (M, g) we define the endomorphism X A4 Y of Z(M) by
(XAaY)Z =AY, 2)X — A(X, Z2)Y, where X, Y, Z € E(M). In particular we have
X ANgY =X AY. For an (0, k)-tensor field T', k > 1, an (0, 2)-tensor field A and a
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generalized curvature tensor B on (M, g) we define the tensors B - T and Q(A,T)
by

T(N((Xay)Xl,Xz,... 7Xk) ..

(B T)(Xla 7Xk7X7Y) = -
—T(Xy, ..., Xe_1, B(X,Y)Xs),

QAT X1,..., Xi; X, Y)=-T(XAaV)X1,Xa,... , Xg)— -+~
T(Xla' . 7Xk717(X A4 Y)Xk)7

where XY, Z, X1, X,,... € E(M). Putting in the above formulas
B(X,Y)Z=R(X,Y)Z=VxVyZ-VyVxZ-Vixyv|Z,

T=RorT=C,A=gor A= S, we obtain the tensors R - R, Q(g, R), Q(S, R),
R-C, Q(g,C) and Q(S, C), respectively.

Let (M,g) be a semi-Riemannian manifold covered by a system of charts
{VZ; zk}. We denote by gij, Rhijk, Sijs i’ = ¢7*Sik, Ghijk = gnkgi; — ik
an

1
Chijk = Ruijr — m(ghksij — 9njSik + 9ijShk — 9ikShj)
K
9 " G
( ) + ('I’L—].)(’I’L—2)Gh”k

the local components of the metric tensor g, the Riemann-Christoffel curvature
tensor R, the Ricci tensor S, the Ricci operator S, the tensor G and the Weyl
tensor C, respectively.

At the end of this section we present some results which will be used in the
next sections. Let g be a metric on a manifold M and let g be another metric on
M conformally related to g, i.e., § = exp(2p)g, where p is a nonconstant function
on M. When Q is a quantity formed with respect to g, we denote by (2 the similar
quantity formed with respect to g. We shall use the following general formulas for
conformally related metrics (cf. [20]):

(3) gij = exp(2p)gij, §” = exp(—2p)g”,

(4) Sij = Sij — (n —2)Pyj — (Agp + (n — 2)A1p))gs,
(5) K = exp(—2p)(k — (n — 1)(2A2p + (n — 2)A1p)),
(6) Ruijr, = exp(2p)(Rnije — Uhnijr),

(7) Chik = C"rs Chijre = exp(2p)Chiji,

(8) VieCik = Ve Clijp + (n = 3)pr CTjy,
where

Aip = gYpip; = (dp,dp), Aop=g7V;p;,
Uhijk = 9nkPij — 9njPik + 9ijPuk — 9iePrj + A1p (9nk9ij — 9njGik),
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P;; and p; are local components of the tensors P = Vdp — dp ® dp and dp, respec-
tively. Using (3), (6) and (7) we also have

exp(=2p)(R - Cnijrim = (R - C)nijrim — A1pQ(9, Cnijrim — Q(P, C)nijrim

— P (9 Crijk + 94 Chrjk + 9j1Chirk + 9k Chijr)
+ B, " (ghmCrijk + 9imChrjk + 9imChirk + gkmChijr)-

LEMMA 2.1. [5, Lemma 1] Let a tensor Aimhs,...sn Of type (0,N + 3) be
symmetric in (I, m) and skew-symmetric in (m,h). Then Apnns,..sx = 0.

LEMMA 2.2. [17] We define the metric g in R™ by the formula
(10) ds® = Q(dz")? + kopdz®dz® + 2dz'dz™,
where o, =2,... ,n—1, [kag] is a symmetric and nonsingular matriz consisting

of constants, and @ is independent of ™. The only components of V and C, not
identically zero are those related to:

(o3 1 aw n 1 n 1
(11) It = _Ek Qu, THh= iQ'l’ Fl’y = §Q.'y,
1 1
12 - = _ Bw v
( ) Cl)\u,l 2Q.)\p, 2(n _ 2) k)\u(k Q-,@ )7

where [kM] = [kx,]™! and the dot denotes partial differentiation with respect to
coordinates.

LEMMA 2.3. [11, Theorem 1] Let B be a generalized curvature tensor at
x € M such that the condition ZXX’Zw(X)B(Y, Z) =0 is satisfied for B and a
covector w at z, where X,Y,Z € T,(M), ¥ denotes the cyclic sum. If w # 0 then
BB = Q(Ric(B),B) at z

LEMMA 2.4. [2, Proposition 4.1] Let (M,g), dimM > 3, be a semi-
Riemannian manifold. Let A be a nonzero symmetric (0,2)-tensor and B a gen-
eralized curvature tensor at a point x of M satisfying the condition Q(A, B) = 0.

Moreover, let V be a vector at x such that the scalar p = a(V) is nonzero, where a
is a covector defined by a(X) = A(X,V), X € T,(M).

(i) If the tensor A—(1/p) a®a vanishes, then the relation > a(X)B(Y,Z) =0
holds at x, where XY, Z € Tp(M). XY,z

(#3) If the tensor A — (1/p) a ® a is nonzero, then the relation
PB(X,Y, 2, W) = MACY, W) A(Y, Z) — A(X, Z)A(Y, W)

holds at x, where A € R and X, Y, Z,W € T,(M).
Moreover, in both cases B - B = Q(Ric(B), B) at .
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LEMMA 2.5. [14, Theorems 1 and 2] Let (M,g) be a Weyl-pseudosymmetric
semi-Riemannian manifold satisfying the condition ) x y ,a(X)C(Y,Z) = 0,
where a is a 1-form on M. If a # 0 and C # 0 at a point x € M, then the

following relations are satisfied at x:

_k
n(n —1)

Q@—g%QZQ_RR:h@@ﬂy

Lo = . S(W,C(X,Y)Z) = = C(X,Y,Z,W),

LEMMA 2.6. [12, Theorem 4.2] Let (M, g) be a semi-Riemannian manifold
with the curvature tensor of the form

+ ,LL(S(X, W)g(Y, Z) + S(Y, Z)g(Xa W) - S(X,Z)g(Y, W) - S(Y,W)Q(X, Z))

atx € M, where X, Y, Z,W € Tp(M) and ¢,u,n € R. IfC #0 and S—(k/n) g # 0
at z, then the following equalities hold at x:

R-R=LgrQ(g,R), Lr="((n-2p—1)—n(n-2),

— SI=

R-R=Q(S,R) +

3. Manifolds with vanishing tensor field Q(S,C)

THEOTEM 3.1. Let (M,g), dim M > 4, be a semi-Riemannian manifold
satisfying at o point x of M the equality Q(S,C) = 0. If S # 0 and C # 0 at z,
then the relation

(13) R-R=—"=Q(g,F)

holds at x.
Proof. It is easy to verify that the following identity is satisfied on M

1 K
(C- C)hijklm =(R- C)hz'jklm +—F ( Q(gac)hijklm - Q(S, C)hz’jklm)
n—2\n—1
1

- m(ghlsmrcrijk - gtherTijk - gz'lSerThjk + gimSerThjk

+ 9i1SmrCkni — 9imSir C'ini — 9k1SmrCjni + GhmSir Cji)-

According to Lemma 2.4, we may consider two cases (we will use notations of the
mentioned lemma):
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(i) S = (1/p)a ® a. In this case we have alCMjk + ahC’ﬂjk + aiClhjk =0,
which implies a,C";;, = 0 and consequently S;C",;, = 0. Thus the equation
C - C =0, which follows from Lemma 2.3, and our assumption turns (14) into

R-C= —mQ(gac)-

Applying now Lemma 2.5 we obtain k = 0 and next R- R = 0.

(i) S—(1/p)a®a#0. In this case we have pChijr, = M ShrSij — Sh;Sik)-
This equation, in virtue of (2) leads to

A 1
Rpijr = ;(Shksz'j — ShjSik) + m(ghksij — 9njSik + 9ijShk — gikShj)

K

HCEDCED N

Applying now Lemma 2.6 we obtain (13), which completes the proof.
From the above theorem it follows

COROLLARY 3.1. Let (M,g), dim M > 4, be an analytic semi-Riemannian
manifold with nonzero tensors S and C. If the equality Q(S,C) = 0 is fulfilled on
M, then (M,g) is pseudosymmetric manifold satisfying (13).

On the other hand, manifolds realizing () for which Q(S,C) # 0, i.e., man-
ifolds fulfilling (1), may be pseudosymmetric or not. This fact illustrates the fol-
lowing

Ezample 3.1. Let (M, g) be the 4-dimensional manifold defined in [4, Lemme
1.1] As it was shown in [4] (see Lemme 1.1 and Remarqué 1.5), (M, g) is a non-
conformally flat and non-semisymmetric, Weyl-semisymmetric manifold, i.e., the
tensors C' and R - R are nonzero and the condition R - C' = 0 holds on M. From
these facts it follows that (M, g) is a non-pseudosymmetric manifold.

(i) Let V be a connected subset of the set W = {x € M | u(z) # 0}, where u
is the function defined in [4, Lemme 1.1]. By formula (10) of [4] we have W = Ug.
The scalar curvature k of (M, g) satisfies the equality ([4, Lemme 1.1(iv)] & =u,
which implies that the Ricci tensor S of (M, g) is nonzero at every point of V. Using
now Theorem 3.1 and the fact that the tensors S and C and the scalar curvature
k are nonzero at every point of V we can easily conclude that the tensor Q(S,C)
is nonzero at every point of V. Thus we have on V the following equality:

R-C=LQ(S,C) with L=0.

(i) We consider now on V the conformal deformation g — g = (1/u?) g of
the metric g, where 4 > 0 or u < 0 on V. It is known that the manifold (V,g) is
an Einstein manifold [4, Lemme 1.1(viii)], i.e., S = (k/4) g holds on V. Moreover,
as it was shown in [8] (see Example 3) the relation

(15) R-R=-5( —pg)Q(g, R)
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holds on V, where R is the Riemann-Christoffel curvature tensor of the metric g
and p,q are some constants. Evidently, if the Ricci tensor S vanishes at a point
z € V, then Q(S,C) = 0 holds at = and, of course, the condition (x) is fulfilled at
z. If at a point € M we have S # 0, then (15) turns into

- = ud —pq _ _
R-C= —TQ(S,C).
Thus the manifold (V, g) realizes (x).

Since the equality Q(S,C) = 0 at z leads to the condition (x); at z, we
restrict our considerations in the remaining sections to the set U.

4. Manifolds satisfying some curvature conditions

THEOREM 4.1. Let (M,g), dimM > 4, be a semi-Riemannian manifold
satisfying (x) and the following condition

(16) > a(X)C(Y,2)=0
X,Y,Z

for a I-form a. If a #0 and Q(S,C) # 0 at a point x € M, then L =1/(n—2) or
L=1/(n-1).

Proof. First of all we note that (16), which in local coordinates takes the form

(17) aChijk + a;jChikt + arChij = 0,
leads to

(18) ara” =0, a,Cl =0

and

(19) C.C=0

(cf. Lemma 2.3). In local coordinates the equation R -C = LQ(S,C) takes the
form

R Crijk + Ry Chrjk + B 1, Chirk + Ry Chijir
= L(ShCmijk — SkmClijk + SiuChmjk — SimChijk + SjiChimk
(20) — SimChitk + SkiChijm — SkmChijt)-

Transvecting (20) with a”, in view of (18), we obtain

(21) Cm-ijrslmas = L(dlCmijk — dmCij),
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where d; = a”S,;. Substituting (2) into (18) we have

-Rsﬂmas = TL— dmgrl - dlgrm +amSTl - alSrm) - (amgrl - alng)-

( ___k
-2 (n—1)(n—-2)

The substitution of the above equality into (21) and making use of amCiijr —
alCmijk = aiClmjk y which follows from (17), yields

(22) ((n—2)L—1)(dmClijk — diCmijr) = amSirC" 1, — 1 SmrCjy, + ﬁaicmljk .
Transvection of (22) with a™, in virtue of (18), gives
((n=2)L —1)a"d,Clyjr, = —ad,C";y
which immediately implies d,C";;;, = 0.
Contracting now (22) with g*™ and using the above equality we have

(23) S5 Ciss = 0.

Transvecting (17) with S} we get dpChijr = axChijrS,” —a;ChikrS,"- Substituting
twice the above equality into (22) (taking suitable indices), we obtain

(24) (n - 2)L(alsmrcrijk - amSerTijk)

= a; (ﬁcml]k + ((n - 2)L - 1)) (SmT‘CT’ljk - SIT‘Cijk)'

Hence, by cyclic permutation in m, j, k, we get
(25) (n = 2)LaiTijr = ((n — 2)L — 1)a;Truji,
where Thpijr = SmTCTijk + Sir CTpon, + SerTimj. We assert that T4, = 0, i.e.,

(26) Smrcrz'jk + SjTCT'ikm + SkTCTimj =0.

In fact, if L = 0 then we immediatey have Tp,;;x = 0. Assume now that L # 0 at
z. Using (25) we get

2
' Tmijr = 00 Tije = " aiTgjr,

where a = % If o®> # 1 at x, then we get (26). On the other hand the

equality a? = 1 is equivalent to (n — 2)L = 1/2. In this case (25) takes the form
@ Tmiji + a;Tmijr = 0, which immediately leads to (26). The equalities (1), (14)
and (19) imply

K
(L(n = 2) = DQ(S, C)nijkim + —7 Q9 Cnijkim
= ghlSerTi]‘k - ghmserTijk - gilSerThjk + gimslrcrhjk
(27) + 9j1SmrChni — 9jmSirClini — glemTCTjhi + gkmSerrjhi'
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Contracting (27) with g"', in virtue of (26) and (22), we obtain

(28) L(n — 2)kComiji, + (L(n — 2) — 1)S5,C" - = (1 — 1) 8, C”

mjk — ijk-

Symmetrizing this in m,4, we find (L(n — 2) — n)(SixC",, ;5 + SmrC7j) = 0. If
L(n — 2) # n, then we have

(29) Si’l‘crmjk = _SerTz'jk-
On the other hand contracting (1) with g"* we get the equality
L(Sl’r’crjim + Smrcrjli + Sl’r’crijm + Smrcrilj) = 0,

which, in virtue of (26), takes the form L(S;»C";,,, + S;+C";,,) = 0. Thus in the

jlm ilm

case L(n — 2) = n we also have (29). Substituting (29) into (28) we obtain
(30) Llicm,'jk = (L + ].)SmTCTz-jk.

We shall show that L # —1. Suppose that L = —1. Thus from (30) it follows that
k =0 and (27) and (22) take the forms

(1 =n)Q(S, O)nijrim = griSmrC"jr = ghmSirC"iji — it SmrClhji + 9imSir Chju,

(31) + gleerTkhi - gijerTkh,i - gklsmrcrjh,i + gkmslrcrjh,i
and
(32) (1 = n)(@nClijk — &iCmijk) = amSirC"j1, — a1SmrCjs

respectively. But using (29) we can rewrite the right hand side of the last equation
as

—(amSirCjp — a1SirC"p i) = =S;" (amCrijk, — aiCrmyi)

=—=5;"a,Crjr = —diCrnij-
Thus (32) takes the form
(n — 1)(dmClijk — diCrmijr) = diCpijk: -

Hence, by standard calculation, we can obtain d; = 0. Applying this to (32) we
have a;,S;"Crijk = /S, Crijr and, in virtue of (29),

ameCrljk = —amSlTCTijk .

We put Apnijr = amS;"Criji - We see that the tensor A is symmetric with respect
to m, [ and antisymmetric with respect to i,[, which, in view of Lemma 2.1, implies
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A = 0. Hence S,"Chijr = 0 and (31) implies now Q(S,C) = 0, a contradiction.
Thus we have L # —1 and we can rewrite (30) in the form

Lk
L+1°

(33) SmrC"jr, = $Crmijk, where ¢ =

Substituting (33) into (24) and using (17) we find

L L e

which implies

(n—2)L¢ = (2¢((n—2)L— 1) + nfl)

and next .

n(LLH((n_z)L_z)er) =0.

We consider two cases:

(i) £ = 0. In this case from (33) we have S;,,C";;; = 0 and taking into
account (27), we obtain L = 1/(n — 2).

(if) k # 0. In this case we get the following equation
Lin—1)((n—-2)L-2)+L+1=0,

which has two solutions: L =1/(n—2) or L =1/(n— 1). This completes the
proof.

COROLLARY 4.1. Suppose that (M,g) satisfies the assumptions of the last
theorem. If L =1/(n — 1), then (M,g) is pseudosymmetric.

Proof. For L = 1/(n —1) (33) takes the form Sp,,C";; = (£/n) Criji-
Substituting this into (27) we find

K
Q(8,0) = =Q(g,C).
Now (1) implies
K
R-C=——"— C
which denotes that (M, g) is Weyl-pseudosymmetric at . From Lemma 2.5 we
conclude our assertion.

Remark 4.1. Tt will be shown in the next section that a manifold (M, g) with
the associated fundamental function L = 1/(n — 2) need not be pseudosymmetric.



126 Deszcz and Hotlo$

5. Conformal deformations of e.c.s. manifolds

A semi-Riemannian manifold (M, g) is said to be conformally symmetric if its
Weyl conformal curvature tensor C satisfies the condition VC' = 0. Conformally
symmetric manifolds which are neither conformally flat nor locally symmetric are
called essentially conformally symmetric (e.c.s. in short). It is known that every
e.c.s. manifold is semisymmetric [6, Theorem 9].

THEOREM 5.1. Let (M,g) be an e.c.s. manifold. Assume that M admits
a function p such that § = exp(2p)g is a metric with harmonic Weyl conformal
curvature tensor C. Then:
(1) If (M, g) satisfies the relation (1) and is not pseudosymmetric, then Asp = 0.
(i) If Aop=0, then R-C = (1/(n —2)) Q(S, ).

Proof. We assert that all e.c.s. manifolds satisfy the condition (16). Every
e.c.s. manifold satisfies the condition }_y . , S(W, X)C(Y,Z) =0 [7, Theorem 7).
This implies (16) with a # 0 at any point at which S # 0 and, in virtue of parallelity
of C, everywhere on M. Since C is parallel and C is harmonic (V,C", ik = 0), the

equality (8) leads to p.C";;, =0, whence

(34) Fir Cijr = 0.

Now (9) takes the form

(35) exp(=2p)(R - C) = —=A1p: Q(g,C) — Q(P, C).

Assume now that (M,g) satisfies (1). Since (M,g) also satisfies (16), so using
Theorem 4.1 and Corollary 4.1 we can rewrite (35) in the form

1 .
Q(=—=55.C) = —21p: Q(9,C) - Q(P,C).
Hence, in virtue of (4) and Q(S,C) = 0 [6, Lemma 7], we get Aap: Q(g,C) =0,
which implies Agp = 0 and ends the proof of (i).

Assume now that A,p = 0. Substituting the equality

15_1

P =
n—2 n—2

S - Aipg

1
n—2

into (35) and using Q(S,C) = 0, we easily obtain R-C =
completes the proof.

Q(S,C). This

Ezample 5.1. Let M = {z € R® | 22 + 2® > 0} be endowed with the metric
given by (10), where Q = (A: ky, + ay,)z z#. A is nonconstant function of z!
only and

1 -1 0 1 0 0
[axu] = | -1 L 0f, [ku=1]01 0
0 0 2 0 0 -1
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It is known that (M, g) is essentially conformally symmetric and Ricci-recurrent
manifold [17]. Further, it is easy to see, in view of (11) and (12), that the function
p(z) = 2? + 2 satisfies equations: p"C ,;r = 0, Asp = 0 and A;p = 2. Thus,
according to Theorem 5.1, the metric g = exp(2p)g satisfies the condition (1). We
assert that this metric cannot be pseudosymmetric. Conversely, suppose that g is
pseudosymmetric. Hence g is Weyl-pseudosymmetric. Applying now Theorem 3.1
of [15], we get Q(P — (1/n) tr(P)g,C) = 0. But the only nonzero components of
the tensor P are Py; and Pys = Po3 = P33 = —1. This, in virtue of (11) and (12),
leads to Q(P — (1/n) tr(P)g, C)a21441 # 0, a contradiction. Thus the metric g is
not pseudosymmetric and, consequently, it cannot be semisymmetric.

Remark 5.1. The 5-dimensional metric g, defined in the above example, can
be easily extended on any dimension m > 5. Namely, we can enlarge matrices
[kxu] and [ay,] such that the equality ax,k* = 0 is still satisfied (this equality
guaranties that the metric g is conformally symmetric).

6. Concircular changes of metrics satisfying (1)

Let g be a metric on a manifold M and let g be another metric conformally
related to g, i.e., § = exp(2p)g, where p is a non-constant function on M. If
the tensor P of conformal change of the metric, given by P = V(dp) — dp ® dp,
is proportional to g at every point of M, then this conformal change is called
concircular.

LEMMA 6.1. Let (M,g) be a semi—Riemannian manifold and let on M be given
a concircular change of metric g — g = exp(2p)g. Assume that the condition (1)
18 satisfied at a point x of M. Then:

(@) IfL=1/(n—=1), then R-C = (1/(n — 1)) Q(S,C).
(i) If & = exp(—2p)k, then R-C = LQ(S,C) at =.

1
Proof. For concircular change of metric we have P = — tr(P)g, where tr(P) =
Asp — Ayp. Hence, in virtue of (9), we get n

Q(9,C) = R-C = ~Q(9,C),

where a = (n — 2)A1p + 2A3p = (exp(2p)k — k)/(n — 1) (cf. (5)). Using now our
assumption we obtain

(36) exp(=2p)R-C = Q(Ls - %g, 0).
(n—1Da
n

But, in virtue of (4), we have S = S —
form

g and we can rewrite (36) in the
R-C=1Q(3,0) + % (Lin—1) - )@, ).

Hence we easily get our assertions, which completes the proof.
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PROPOSITION 6.1. Let (M,g) be a semi-Riemannian manifold satisfying the
condition (1) and let on M be given a concircular change of metric g — g =
exp(2p)g. Assume that g also satisfies (1), i.e.,
(37) R-C=LQ(5,0).
IfL=1L atz, then L=1/(n—1) or & = exp(—2p)x at .

Proof. Using (1), (9) and (37) we have

Q(L5- 18 +24,C) =0,
n

where a = (n — 2)A1p + 2A2p = (exp(2p)k — k)/(n — 1). Hence, in virtue of the
relation

(38) S=95— Mg,
n
which follows from (4), we get
(39) Q(A,C) =0, where A=S(L—L)- %(E(n —1)-1)g.

Because L = L, the above equality implies L = 1/(n — 1) or @ = 0 and we have
the situation described in the previous lemma. This completes the proof.

THEOREM 6.1. Let (M,g) be a semi-Riemannian manifold satisfying the con-
dition (1) and let on M be given a concircular change of metric g — § = exp(2p)g.
Assume that § also satisfies (1) with the associated function L. If L # L at x, then
the following equation

(40) k(L +1)(L(n—1) — 1) =exp(2p) R (L + 1)(L(n — 1) — 1)

holds at x. Moreover, metrics g and g are pseudosymmetric at x.

Proof. In the same manner as in the proof of the previous proposition we get
the equality (39). We shall consider two cases:

(I) A=0. In this case we have

_aln-1)-1)

K
wi-n R-C=L-Q(g,0).

So the metric g is Einsteinian and Weyl-pseudosymmetric and consequently, pseu-
dosymmetric. In virtue of (38) g is also Einsteinian. Pseudosymmetry of g follows
immediately from Theorem 5.1 of [3].

(IT) A # 0. According to Lemma 2.4 we have two possibilities:
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(i) A= (1/p) a® a. Since the covector a satisfies the relation (17) we can
apply Theorem 4.1. Thus wehave L =1/(n—1)or L=1/(n-2). If L=1/(n-1),
then, in virtue of Lemma 6.1, we have L = L, a contradiction. If L =1/(n — 2),
then also L = 1/(n — 2) (because L = 1/(n — 1) implies L = 1/(n — 1)), a
contradiction.

(i) A—(1/p)a®a # 0. In this case we have

(41) PChijk = M AnrAij — AnjAir)-

Contracting (41) with g"* we get A; A”; = tr(A)A;j, where tr(4) = k(L — L) —

a(L(n — 1) — 1). Substituting (39) into the above equality we get

—1) .
S AT, = $Ayj, where ¢:m—%( (n—1)—1).

Transvecting (41) with S;” we obtain S;"Cyrijr = ¢Cijr. Substitution of this
equality into (14), in virtue of (19) and (1), leads to

Jow.0) = (=27 - i) aw.o),

K

(Lin—2) = 1)Q(S,0) = (¢ -

n—1

where 8 =a(L(n—1)-1).

On the other hand (39) implies Q(S,C) = _L Q(g,C). Substituting
. . : n(L — L)
this relation into the previous one we get
(42) BL+1) = (L),

which can be rewritten in the form (40).

In the same manner as in the proof of Theorem 3.1 we get that the metric g
is pseudosymmetric. Moreover, Lg = x/(n —1) — 3/n(L — L) = BL/n(L — L) (in
view of (42)). Pseudosymmetry of § we obtain as in the case (I). This completes
the proof.
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