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REGULARLY VARYING SEQUENCES
AND ENTIRE FUNCTIONS OF FINITE ORDER
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Communicated by Stevan Pilipovié
ABSTRACT. We present a method for estimating the asymptotic behavior of:

oo
fe(z) := Z n®lpanz™, T —>00, a€R,

n=1

related to a given entire function f(z) := 352 ; anz™ of finite order p, 0 < p < +o00,
an > 0,n € N; where (I,), n € N, are slowly varying sequences in Karamata’s sense.

Preliminaries

A. Slowly varying functions I(z) in Karamata’s sense are defined on a positive
part of real axis, positive, locally bounded and satisfy: mll)rgo ll((’\:;) = 1, for each
A>0.

The class R, of regularly varying functions (r.v.f.) with index « consists of all
functions a(x) which can be represented as: a(z) = z*I(x), for some o € R.

The theory of r.v.f. is very well developed and an excellent survey of results is
given in [1] and [3].

Here we put special attention on a class SR, C R, (smoothly varying functions;
[1, p. 44]) i.e., b(z) € SR, if it is a C* r.v.f. of index a, satisfying

2"b" (@) /b(x) = ala =1)---(@=n+1) = (a)s, 00, neN.

Some important properties of this class are:
If f e SR,, g € SRs, then

f-9€SRarp; fog€SRap; f' €SRs, a€RY.

Also, for a given ¢(z) = z7%I(z), a € R*, we consider its dual c*(z) defined by

w1 © ey, 1 ® ey i _
c*(z) .—m/o e ” dy_F(a)/O e "y (1)y)dy; z,a € RY.

The next proposition is of crucial importance.
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PROPOSITION 1. We have: c¢*(x) € SR_y; ¢*(x) ~ c(z), © — oo.

Proof. That ¢*(z) ~ c(z), x = o0, is a consequence of Karamata’s Tauberian
theorem for Laplace transforms (with 0% and oo reversed) (cf. [1, p. 43]).
By the same argument

(C*(Z'))(n) — % At—wyya+n—1l($) dy ~ %m—(a+n) l($)7 7 — 00.
Hence,

x”(z*g;)(n) ~ (_1)7;12((3 ) (=)n, x— 00;
ie, c*(z) € SR_,.

We could treat regularly varying sequences (r.v.s.) as r.v.f. defined on N (see
[2]) i.e., (a) is a r.v.s. with index « if it has the form

an =n%y; ln=1n), neN, a€R,
for some slowly varying function I(z) defined for z € R*.
Examples of [,, are:

In® 2n, lnb(ln?m), elnn)®, e Talta 5y ,ooo; abER, 0<ce< 1.
B. Denote by G :={g| g: Rt — R*, g € C'}, and define there an operator g,
~ zg'(z)
() ==
9(z)
Some properties of this operator are (g, h € G):
1. ég=3, ce R 5. g -ht = ag+bh, a,beR;

. goh=(Goh) I

2. z°=a, a€ R; 6
3. g+h<max(lgl, [Al); 7. §€G=g1, z€RH
8

1)

4. g-h=g+h; . (g(z) > a, x > 00, « € R) = g € R,.
We also consider a set of entire functions F(z) = ) po, axz¥, with non-negative

coeflicients and of finite order p, 0 < p < co. By definition:
. Inln Mp(z)
p =limsup ————=
T—00 Inz

where Mp(z) denotes the maximum modulus of F(z) on the circle |z| = z.

In our case we have:
oo

Mp(m)—lmlax|F = ma Zakw =F(z), z€R".

T = = =0

Let us deenote: f(z):= Mp(z) = ( ( ), = € R*). Hence:
lim sup ( ) =p, pERT, (2)
T—r00

feC™; f<">eg;feg.
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PROPOSITION 2. We have fe g.

Proof. Taking into account properties (1) and (2), we have:

Fom_ o e o
f=af-F==(55-7)
Since - -
z(af) =) Kaya*; f= 1 > kaga®,
k=0 =
we obtain:
1

and the proof is over.

COROLLARY 1. The function f is monotone increasing on R*.

~

1
PROPOSITION 3. We have: limsup n f(z)
T—00 Inz

Proof. Let

nF
4 := limsup %E:), 5 e Rt

T—0o0
From (2) it follows that, for each positive € and large enough x:

In f(z) < z°*¢, x> mo.

Corollary 1 gives

i fer) i@ = [ L= ["F0- L Fw [T F=Fw,

hence, for z > zy, we get:
f(@) <1Inf(ez) < (ex)”*™,

ie.,

In f(x)

<(p+e)(l+1/Inz), z> .

Since € is arbitrarily small, we conclude § < p.

~

From the other side In f(z) < (§ + €)Inz for z > x4, i.e.,

-~

(z) < 2%, J;I((;E)) <207 >

33
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It follows that

In f(z) = / IO i fo) < 2+ 0(1), o> o

L f@) 0+e
ie.,
M<(5+€+0(1), T — 00;
Inz
ie.,

p <0

Thus, we conclude:

lim sup In /(=) = limsup Inn /(z)

z—oo 1N z—00 Inz

~

COROLLARY 2. The function f(z) is strictly increasing on Rt and lim f(m) =

Tr—00
+00.

We also consider the set of entire functions {f,,} generated from f by the
recurrence relation

fm(@) = 2fp, _1(2), fo(z) =f(z), meN.
They are of the same order p and evidently satisfy:

PROPOSITION 4. f,,(z) = Z Emapz®;  Fo(z) 1 oo; fm(x) >0
k

»

<

m—1-

fmzfmflfm—lzfﬂ.ﬁt—l; fm:fm—l +fxm71=f+z
1 1

Main results

Now we come to our main subject, i.e., the investigation of the asymptotic
behavior concerning functions f%(z) := Y o, crarz®, related to a given entire
function f(z) := Y, arz® considered before and where (cx), (co := 1) is any
regularly varying sequence of index a.

It is not difficult to prove that {f*(z)} are also entire functions of the same
order p as f(z) (using, for example, the relation: p = limsup,,_, ., m(ql/%)

The main idea of our method is to replace sequences (ci) with asymptotically
equivalent (cj) achieving thus an integral representation for f®(x) (see also [5]).
Then, using analytic properties of ¢*(z) and f(x), we establish the required asymp-
totic behavior in an almost elementary way.
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THEOREM A. If f(z) is bounded from above, then:

f*(x)
) " Cf@p T

f(z)
for any regularly varying sequence (c,) of index o, « < 0.

As we already explained, we first prove the theorem for a subclass of r.v.s.
generated by ¢*(z) € SR,, i.e.,

PROPOSITION Al. Theorem A is valid for sequences (c},) defined by

1 o0
G =c*(k), keN; c*(z) = W/ e=te1(1/t) dt, z € R*.
0
Proof. With: u(a,t) := Fit"‘*ll(l/t) we produce an integral representation
for: - (a) -
9 (z) = Z crapz® = Zak/ e tu(a, t)(ze t)rdt =
k=0 k=0 0
=/ e tu(a,t) (Z ak(me_t)k)dt =/ e tu(a,t) f(ze ) dt.
0 —0 0

The interchanging of the sum and the integral is justified since both converge for
z € RT. Now:

T ([ [ e an? ) =1y

/(@) f(=)

where ¢ = £(z) := f(z)1/2.
For estimating 77 we use the following identity:

0 L9 1 7o) = /0 wi@)f(a)dw, a:=vev.

Taking into account Proposition 2 and condition from Theorem A, we have:

~
N

0< f(a) <M < +oo,

where the constant M does not depend on a.

~ ~

Also, since a < z, Corollary 1 gives f(a) < f(z), i.e.,

~
~

0< /Ot wf(a)f(a) dw < Mf(x) /Otwdw = %f(m)t2
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Hence,
flze™)
f(=)

where the constant in O is independent of z or ¢. From here it follows

In = fa)(~t+0(?), ze€R, t>0

‘ f(ze™) ‘ o) O(Fa)e?
Ty = [ e ‘u(e,t)exp(ln dt z/ e tu(a,t)e @) LCF@) gt
=) ¢ tutenen(n FTER) ai= e tutann

Since, for any B € Rt,e? =1+ O(Be®) and, for t € (0,&), f(x)t> = O(1), we
obtain:

~

3 - 14 -
Ty =/ e tu(a, t)e @ dt+/ e tu(a, t)e VD O(f(x)t?) dt =
0

0
=/ e_t(1+f(””))u(a,t) dt —/ e_tu(a,t)e_tf(w) dt
0 3

~

+ O(f(x))/ tz“(a:t)eft(lﬂ?(z)) dt =T + T2 + T1s.
0

Now:
T = (F(@) + 1) ~ Crf(z)]’ T — 00;
Tys| = O(e=$7@) /0 - e~tu(a, t) dt) = O(e~F@'?),
Ty = O(f(x)) - dQ;;gs) ot o]
= 0(F@) - 0Dy oy = O(C*%g”),
since c*(s) € SR,. Hence, we conclude that: T; ~ c?f(m)], T — 00.

For the estimation of the integral T5 the next lemma is necessary.
LEMMA Al. Under the condition of Theorem A, i.e., sup f(a:) < M < +o0, for
each z,t € Rt:
f(ze™)

f(=)

Proof. Write the condition as

< exp(S—F@)).

~

D(ln f(s)) < M D(Ins), s>0. (A1.1)

Integrating (A1.1) over [ze~*,z], u >0, we obtain

~

Flwe™) > f(z)-eMv. (A1.2)
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Integrating (A1.2) for u € [0,¢], we come to the conclusion from the lemma. There-
fore,

T, = /:0 etu(a,t)f(;&_)t) dt < /:0 e tu(a,t) exp(eTf(:c)) dt

—Mf(a)="/?

CT_lf(w)) -/000 e~ tu(a,t) dt;

< exp(

ie.,
T, = O(e_f(‘”)l/g), T — 00;

so, Proposition Al is proved.

The assertion of Theorem A follows using the fact ¢, ~ ¢, n — oo and a
variant of Toeplitz’s Limit Preservation Theorem (cf. [8, p. 36]) which says:

Let {¢r(2)}, K =0,1,2,..., be a set of non-negative functions defined on R™,
satisfying >, ¢r(x) = 1, and let (sz), K = 0,1,2,... be any convergent sequence
of positive reals, lim s, = s.

Then a necessary and sufficient condition for », spdr(z) = 5, = — oo, is
lim,_, o0 ¢r(x) = 0, for each fixed k € N.

We are going to use this proposition by putting:
crapz®

c
o (x) == (a)( ); Sp = C—f, k=0,1,2,....
* T k

Then,

(@) (g
; or(x) = Z Sk (x f(a) El";

and all we have to prove is lim,_, o ¢, () = 0 for fixed n.

For a,, # 0 (otherwise, there is nothing to prove) write
_Chan™ L anz™ N\ f(2/2)\/ f(2)
(i)n(-’ﬂ) = f,sa)(;y) _C"(f(ib'/2))( f(il?) )<f,£a)($))

From Proposition Al:

f(.’E) o2l
fia)(x) /[f(w)] O(f(z) | l)'

Lemma Al, for t =1n2, gives

f(z/2) 1-27M _
o <exp(-———Ff(@), M>0;
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and, evidently: f(z/2) > a,(z/2)". Hence,

~ —

bn(2) = O(F@)!* exp(-———F(@))) = 0(1), == o0, flz)1>,
ie.,
FO ) ~ £ (2) ~ f(2) Crf(z)] ~ f(Z) gy T o0 a<0;
therefore, Theorem A is valid.

Our task now is to extend the validity of Theorem A to non-negative indexes of
r.v.s. (¢g). First of all, we prove

PROPOSITION 5. Under conditions of Theorem A, for any o > 0 we have

Proof. We use a form of Holder’s inequality:

Zukwk > (Zui’)l/p (Z w,‘i)l/q, up,wp, € RT, %+ é =1, ¢<0. (7.1)
& & &

Putting there

kot (lpapa®)Ve, ay, > 0;

, k€N,
0, ak:0

ur = k7 (lpara®)P; wy = {

we obtain:

£ @) > (FP (@) /P (FetD (@) V0.

Theorem A gives

liminf — f(a),gw) >

wree (f@))l(f(2)f(x)

£> Hm( _ {<—P>A(a:) )1/p_ hm( _ fee ) )uqz
7 (f(2) Pl(f(2))f (2) moo X (f(=)) A DI(f(2)) f (2)

An extension of Theorem A is the following
THEOREM A’. For any € > 0, Theorem A is valid for o < 2 — €.
Proof. Put in (7.1):

Kapx®, ar >0

ub = k" “lyapa®; wz:{o =0 , keN.
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Since we could restrict 0 < € < 2, by taking p = €/3, it follows that

SR et < £ (YK at)’, ke
k

k
But . R
f=ITh=fF+H~ 1P z— oo
nd
) Z L Parak ~ FLUF)YPE, 7 - oo
k
Hence,
imsup ——L270@ o G@F@)) @) aF@) i@y
s (F@)2=cl(F@) f(2) ~ == (F@)=<(F@) ()

This together with Proposition 5 proves the theorem.

Therefore we see that the Theorems A and A’ provide the required asymptotic
behavior of f(® (z) for all regularly varying sequences (c) with index less than 2.

Commentaries

The ondition sup f < 400 seems a little ambiguous but is not very restrictive,
as we are going to show.

The explicit representation
F(t

fla) = swep ([ at)s o< fioy <,

means that f belongs to the class ER (Extended Variation, see [1, p. 74]).

Moreover, from f(x) = ]?1(:1:) — f(x), we see that f is of bounded varia-
tion (as a difference between two monotone increasing functions), i.e., bound-
ed on finite intervals. Therefore, condition in Theorem A could be replaced by

=~

limsup,_, ., f(z) < +o0.
Strengthening this a bit, we obtain:

»

PROPOSITION 6. If there exist lim, o f(z) =0, then 6 = p and

lim Inln /(z) = lim (@) = lim ?(m) = p.

z—00 nx z—oo Inx z—00
Moreover, in this case f € R,,.

Proof. This follows from Proposition 2 and

~

?(x) _ D(nf(z)) _ D(zD(In f(z)))
~ D(nz)  D(nf(z))

The second part is Property 8 from (1) (cf. [1, p. 59]).

At this point we could connect asymptotically f with In f; namely:
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PROPOSITION 7. The following are equivalent:

(1) Inf(z) ~ ax’b(x);

(it) f(z) ~apz’b(x), = — oo; b(z) € Ro, a,p€ RT.

Proof. (ii) = (i): Since: In f(z) = [/ 7 - dt/t + O(1), the statement follows
from r.v.f. Integration Theorem [3], i.e.,

In f(z) ~ apb(x) /Iw tPdt/t+ O(1) ~ az’b(z), = — oo.

(1) = (#1): Corollary 2 gives, for z >y > 0:

in ) - = [ 0 dt/t{ ij;g; in””g (5.1)

Putting in (5.1) z = Ay, A\ > 1 and y = Az, A < 1, we get

f(w){

IN

In f(Az)—In f(z
bttt

In f(z)—In f(Az
> @O0 p<a<l.

Therefore,

, 116) 1 /.. InfOz) . Inf(a) 3 —1

1 — < —1 -1 = A>1; (5.2

P azfb(z) — InA (m—wo azrb(x) el aa:f’b(m)) x> 70 (52)
and analogously: R

0\
liminf L&) > 1ZA ) (5.3)

z—oo azPfb(z) — Inl/X\’

Since the right-hand side does not depend on z, putting A | 1 in (5.2) and A 11 in
(5.3), we obtain the statement from Proposition 7.
Further extension needs some smoothnes condition on f, i.e.,

THEOREM B. If In f(x) € SR,, then

f(ﬁ)(w)
7(@) ~ P7Chn f(z)]y T — O0;

for any regularly varying sequence (c,) of arbitrary index 8 € R.

For justification of the condition from this theorem we cite an adapted version
of Valiron’s Proximate Order Theorem i.e., (cf. [1, p. 311]):
If f is an entire function of finite order p, then there always exists a g € SR,,

with: |
lim sup n /(@) =
z—o0  9(T)

We prove first:
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PropoOSITION Bl. If In f(z) € SR, then In f,,(z) € SR, and lim fo (@) =p
for eachm € N. o

Proof. Suppose that In f,,_1 € SR, i.e.,

2™(In fr_y)™
In fmfl(w)
Using properties of the class SR and Proposition 4 (see Preliminaries), we have
D(In fp—1(x)) € SR,—1, ie., fm—1(z) = zD(In fr_1(x)) € SR,. Since Inz €
SRy, we have In f,_1(xz) € SRy. Hence

= (P)n, T — 0.

2" (In frue1(2))™ = o(In fru—1(2)), @ — 0,

and ~
2"(In fn (€)™ 2"(In frno1(2) +1n frna (2))™

= ~

In fm(z) In fr-1(z) + 10 fru1(z)

(@l fn (@) + o0 fin ()
In fm—l (.’L‘) +1In fm—l (JU)

Therefore, In f,,(z) € SR, and, analogously, Fn (z) € SR,. Also

~ (p)na T — 0.

~ N '
Fuley = m@ 0 o
fm(2)
and, since In fo(z) =In f(z) € SR,, the proof is finished by induction.

This proposition and our former considerations show that we could apply The-
orem A to fm(z) for some fixed m € N. We obtain:

(@) = £ (@) ~ fr(2) - (fn(2))U(Fin(2)), @ <0, z—o00.  (B.l)
But (Proposition 4),

k

~
-~ -~ ~ -~

Fe(@) = f@) + > Fi1(@) = f@) + O(kp) ~ f(z), =00, k=1,2,...,m;

1

and

fm(@) = f@) [] fi-1 = 1@ [[(F(@) + 0(1) ~ f@)(F@)™, == oo.

From (B.1) and Proposition 7 it follows that:

~ -~

FOmE (@)~ £ () (F ) ™1 (Fl) ~ p™ 2 0 f @)™ 100 f(@)], a<0, 0.



42 SIMIC
Putting m + a = 3 we see that Theorem B is valid for 8 < m. Since m is an
arbitrary integer, the proof is done.

Finally, for an illustration of our results, we give two characteristic examples.

ExAMPLE 1. Consider an entire function g of integer order p in the form:

g9(z) :=exp Pp(x) = Z apz®,
k

where P,(z) := byz? + ---, b, > 0, is a polynomial with nonnegative coefficients.
Since Ing(z) = P,(z) € SRy, applying Theorem B we obtain:

PROPOSITION 8. e F»(®) 3", crarz® ~ (pby)Peys), © — oo, for any r.v.s. (ck)
of index (€ R.

ExXAMPLE 2. Let h(z) := Y, bpz®, h(0) = 1 be an entire function of order
p, 0 < p <1 with negative zeros only. According to Hadamard’s Factorization
Theorem, we have the representation

T 1
h(a:):lZ[(l%—a), ;E<OO;

where {—r} are zeros of h(z) in decreasing order.
Denoting by n(z) zero-counting function of h, we get

h(z) = 2D h(z)) = 3 —2 :=Am _in(t),

- T+ T+t

and
xt x

xmmm:A GTW“m<A L dn(t) = h(a),

ie., ?L(.Z') < 1. So, we can apply Theorem A’ to h(z).

There is more if we notice that the zeros of h(z) are separated by the zeros of
h'(z); hence, all zeros of hi(x)/z are negative and, by induction, the same is valid
for hn(z)/z, n € N. Therefore,

and, reproducing the proof of Theorem B, we come to:

PROPOSITION 9. If h(x) is defined as before then, without any condition,

chbkmk ~ Clo)] h(z), = — oo,
k

for r.v.s. (¢x) of arbitrary index.

More precisely, supposing the regular distribution of zeros, we get:
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ProposITION 10. If n(z) € R, then:

sinmp

chbkxk ~ ( il )ﬁC[n(z)] h(.’L’), T — 00;
k

for any regularly varying sequence (c;) of index 8 € R.

Proof. As we already showed,

ﬁ(x) =z dn(t)‘
0 T+t

Karamata’s Tauberian Theorem for the Stieltjes transform [1, p. 40] gives:
For 0<p<1; n(z)~zl(z), £ — oo if and only if

/OOO Z"fﬁ ~T(1-p)T(1+p)z’ti(z), = — 0.

. I mp
Hence € R, implies h(z) ~ , T — 0.
nce n(x) , imp (z) Sy n(z), = — oo
The rest is Proposition 9.
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