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NUMERICAL BOUNDS FOR INVERSES
OF LINEAR OPERATORS
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ABSTRACT. An effective way of computing bounds for inverses of linear op-
erators is discussed. It involves computing very fast a bound for the inverse
of linear Volterra and Fredholm integral operators. This approach covers a
wide class of ordinary and partial initial and boundary value problems. It
is demonstrated that this concept is feasible in the framework of computer
algebra systems.

1. Introduction

Considered are equations of the type

(L.1) L(z) =y,

where L is a linear operator acting between two normed spaces X, Y. In the ap-
plication of numerical methods for solving such problems some knowledge of the
properties of the operator involved is of great importance, so existence and bound-
edness of L~! guarantees that (1.1) is solvable and well posed. The knowledge of
bounds for linear operator is also a fundamental concern when dealing with in-
clusion methods (cf. [2,3,5]). Additionally if an approximate solution Z € X is
available then an error estimation is given by

(1.2) lle = &l < IL7HIL@E) - yll.

The application of (1.2) requires both a bound on the defect d = L(Z)—y and on the
inverse L~!. While the computation of the defect is rather simple, the computation
of a bound on ||L~!|| raises some difficult theoretical questions. This is therefore
often ignored in practice, because in traditional numerics main emphasis is put on
theoretical convergence investigations rather than on practical accuracy questions.
But ||L~}|| measures the effect of errors in the solution, since a small value of ||d||
doesn’t mean automatically that Z is close to z.

1991 Mathematics Subject Classification. Primary 45110, 65G10, 65105, 65M15.
Key words and phrases. Numerical bounds, inverse operator, computer algebra system.

85



86 DOBNER

In this article we focus an extremely fast method for estimating ||L~!|| with a
least possible amount of work; consequently the accuracy for estimating ||L7!]| is
low, but if the defect is of small magnitude, then the overestimation of ||L~!]| is of
small influence. We describe our approach for linear second kind Fredholm integral
operators

1

(1.3)  Le(z) = (I + Kr)@) = 2(s) +/ ks, a(t)dt, 0<s<1,
0

and linear second kind Volterra integral operators

(1.4) Ly(z) = (I + Kv)(z) = z(s) +/ k(s,t)z(t)dt, 0<s<1,
0

where the kernel function k is assumed to be continuous and we restrict w.l.o.g. to
the unit square as domain of definition. The integral equations corresponding to
(1.3) and (1.4) have the form

(1.5) 2(s) + /1 k(s, Da(t)dt = y(s), 0<s<1,
0

and

(1.6) z(s) +/0 k(s,t)z(t)dt =y(s), 0<s<1.

It is no severe restriction to deal only with these specific problems, since linear
ordinary and elliptic boundary value problems are related to Fredholm integral
equations and initial value problems for ordinary and hyperbolic differential equa-
tions can be rewritten as second kind Volterra equations. An extension to higher
dimensional problems is also possible with only minor technical changes.

The paper is organized as follows. In section 2 it is illustrated how to determine
a bound for the inverse of Fredholm integral operators. In the following section 3
we describe a method for estimating the inverse of Volterra operators. Finally we
discuss aspects of realization in the framework of the algebra system MAPLE and
give some examples.

2. Bounds for the inverse of Fredholm integral operators

For bounding L;l we use enclosure theory. We sketch first its basic principles.
By IR we denote the set of real closed intervals

(2.1) [a] =[g,a] ={zr € R:a <z <a}.
In IR the arithmetic operations o € 2 = {+, —, -, /} are for [a], [b] € IR defined
as
(2.2)  [a]o[b] = [min{aob,aob,@ob,aob}, max{aob,aob,aob,aob},
o€, O0¢gIb] in the case of division.

For these operations the associative and commutative laws are valid but instead of
distributivity only subdistributivity holds:

(2.3) [a](18] + [¢]) € [al[B] + [alle], [a], [b],[c] € IR.
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In IR set theoretic relations are defined in the usual sense. Consider (C[0, 1], ||-||c0)
with the generating system ¢;(s) = s*~!, i = 1,..., that is span(y1,ps,...) =
C0,1]. Here we deal especially with J,:

24) Jn= {FN(S) : Fo(s) = i[ai]goi(s), [a] € IR, 0<s< 1}.

i=1

An element F,, describes the following subset of C[0, 1]:

Fu(s) = {f € Cl0,1]: f(s) € Y laideils), 0<s<1},
i=1
We confine now to the case n = 1:
Ji={Fi(s) =[a], [a] € IR};

so each interval [a] represents at the same time a subset of R and the following
subset of C0,1]:

(2.5) [a] = {f € C[0,1] :a < f(s) <a}.

Relation (2.5) is of importance, when dealing with Fredholm integral operators,
here we take [k] € J; such that

(2.6) k(s,t) € [k] = [k, k], 0<s,t<1,
then
1
I+ [k] :== z(s) +/ [k]x(t)dt
0

describes a set of Fredholm integral operators in the sense of (2.5).

_THEOREM 2.1. Let k(s,t) in (1.3) be positive and Lr be nonsingular. If [k] =
[k, k] € J1 with k> 0 and k(s,t) € [k], 0 < s <1 then

(2.7) |w;u31+lf%.

P _ Jo[k] dt
roof: For y € C[0,1] we have for I — [K] =1 — 1+Ofl[k] o
0

(I - [KDI + K)(y) =

/ B [ [k]y(t)
+0/k(s,t)y(t)dt /1+f0 a //1+f0 e O s

Some tedious manipulations yield

(I - [KDUI + K)(y) D y(s) + [, 7],
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y l/l (k(s,t) + [y gdtk(s,t)l—ﬁ—fol Ek(s,t)ds> SOt
J 1+ [ kdt

1 17 1
/ (k(s,t) + J5 kdtk(s,t);@— I @k(s,t)ds) y(t)dt].
14 [, kdt

0
From k(s,t) € [k] we derive 0 € [r,7], hence (I — [K])(I + K)(y)) D y(s); by
assumption 1 is not an eigenvalue, therefore Q) € [K] with

(I = Q)T+ K)(y(s)) = y(s)
exists, thus L' € (I — [K]). O

REMARK 2.2. If the kernel is not positive then (1.5) can be steadily reformu-
lated as an equivalent equation with positive kernel.

3. Bounds for the inverse of Volterra integral operators

In this paragraph we treat Volterra operators which have the form (1.4). The
inverse Ly,' of Ly = (I + Ky) is given by the series

o
(3.1) Lyt =) (-K),
=0
where K9, = I and K}, = KyKi ™", j = 1,2,.... If C is a quantity satisfying
|k(s,t)| < C we estimate the sum in (3.1) using the triangle inequality
(3:2) LR EDETED D
=0 =0

and therefore a computable bound on the inverse of L is achieved.
Also initial value problems

x'(s) — a(s)z(s) = y(s),
z(0) = =z,

in which a(s), y(s) are continuous real valued functions defined on [0, 1] are con-
verted into equivalent Volterra equations, yielding

(3.3) z(s) = xo + /05 y(t)dt + /03 a(t)z(t)dt, 0<s<1,

so that (3.2) applies.
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4. Some examples

We provide here some simple results to show that the bounds obtained from
(2.7) and (3.2) are of use in practice. Inequality (1.2) contains two factors

e ||L71|| which controls the global behaviour of the error. A knowledge of
[[IL=1]| that is the condition number is important for inaccuracies from the
initial data. We accept a moderate overestimation of ||L~!|| because we
can verify the results of any algorithm with almost no additional compu-
tational effort, which is a contribution to reliable numerical methods. So
long as the defect is small an overestimation of the first factor in (1.2) is
not critical.

e ||L(Z) — y|| which gives information about the local error-behaviour.

The implementation of the ideas presents no significant problems. A great
advantage of the proposed method is its simplicity and its independency from any
specific numerical method which is used for computing Z. The main objective is to
determine range bounds of kernel-functions. Therefore a programming environment
providing set valued facilities is mandatory. For this purpose we may use the XSC-
extensions (cf. [3], [4]) of PASCAL or C or we can use INTPAK (cf. [2]), a powerful
MAPLESshare library package extending MAPLE’s existing interval capabilities by
providing operators and utility functions for interval arithmetic. With this tool it
is possible to compute even with an algebra system, guaranteed range bounds for
kernels and to establish therefore reliable bounds for the corresponding operators.

1
ExAMPLE 4.1. (Taken from Linz [5].) For Lp(z) = z(s) + )\/ s2t2x(t)dt,
0
, A€ R~ {5}

A € R, we have ||L7'|| =1+

35— A
Table 1 lists the computed estimation for ||L;1|| using (2.7)
A | estimation exact value
0.1 1.1 1.03
1 2 1.27
10 11 2.11
100 101 2.59
Table 1

Table 2 displays the bounds for A = —1 computed by Linz, who uses a degen-
erate kernel approach of degree n to estimate ||L.!|

n estimation from [5]
10 1.49
20 1.45
40 1.43
exact value 1.417

Table 2
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Compared with (2.7), which yields 2 as bound, this degenerate kernel method
needs much more computational effort. Furthermore our estimates are more precise
than bounds given by other authors (cf. [1], [6]). The same is true for the next
example.

1
EXAMPLE 4.2. Let Lp(z) = z(s) + /\/ e*"tz(t)dt, A € R. The norm of L'
0

. _ A
is |[Lp'l=1+(e—1) |1|_|A|.

In Table 3 we list the bounds obtained from (2.7) together with the exact
values.

A estimation exact value
0.1 1.26 1.16
1 2.99 1.86
10 6.81 2.56
100 8.20 2.70
-10 11.15 2.91
Table 3
For A = —10 Linz derives, with a degenerate kernel approach of degree n = 10,

the bound 3.135.
In Table 4 below we display bounds for some Volterra operators.

Ly () bound of ||L;;'|| by (3.2)
o z(t)dt
yof 2% g<cs<s 12.18
2() /0 (s—t+2) =5
u'(2) =2zu(2)+2, 0<s<1 2.72
u(0) =1

s . 9
z(s) + E]/(sm(l.Zs) — st — Ninyare

Ye(t)dt, 0 <s<1 5.11

8§

z(s) + /(25t2 —e”

0

5+ )z (t)dt, 0 < s <1 4.04

Table 4
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