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ABSTRACT. We describe a first order temporal logic over the natural numbers
time. It is well known that the corresponding set of all valid formulas is not
recursively enumerable, and that there is no finitistic axiomatization. We
present an infinitary axiomatization which is sound and complete with respect
to the considered logic.

1. Introduction

Temporal logics provide formalisms for describing the way that systems change
over time. Since the Prior’s work [15] temporal logics have been extensively studied.
At their simplest, languages of temporal logics are classical languages extended by
temporal operators G, the strong future operator, and H, the strong past operator.
Then, the future operator F' and the past operator P abbreviate -G— and ~H—,
respectively. In [10] two new binary temporal operators, the since operator S, and
the until operator U were introduced and the resulting logics were shown to be
more expressive than the logics without them. Even in the case of propositional
temporal logics, one’s cosmology has important consequences: one can assume that
time is linear or branching, with or without last moment, discrete or dense etc.
One among many good overviews of the subject can be found in [6].

The interest of theoretical computer scientists in temporal logics has grown
because reasoning about time has been shown to be a useful tool in describing be-
havior of an agent’s knowledge base, for specification and verification of programs,
hardware, protocols in distributed systems etc., [7]. Although the literature con-
tains many versions of temporal logics, the research has been particularly focused
on PLTL, propositional linear temporal logics over discrete time with a first mo-
ment, but without the last one, i.e., over natural numbers, with the future temporal
operators next () and U as the basic ones [12]. A sound and complete axiomatic
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system for PLTL was given in [8], while its first order extension, FOLTL, was pre-
sented in [13]. There are many complete axiomatizations of different first order
temporal logics. For example, some kinds of such logics with F' and P operators
over various classes of time flows were axiomatized in [9], while axiomatic systems
for the first order temporal logics with since and until over linear time and rationals
were given in [16]. In the case of FOLTL (and similarly when the flow of time is iso-
morphic to reals or integers) the set of valid formulas is not recursively enumerable,
and there is no recursive axiomatization of the logic [1, 3, 9, 11, 18]. Neverthe-
less, since it is a very natural logic, it is useful to find any kind of proof systems.
Some results about logics with F' and P over various classes of flows that include
natural numbers were given in [5]. In [1, 2, 4] a translation of FOLTL formulas
into classical formulas with explicit time parameters was considered, and alterna-
tive notions of nonstandard completeness (for example, domains that correspond
to time parameters need not be countable) were proposed.

In this paper we present an infinitary axiomatization for FOLTL and prove
its completeness. The term ’infinitary’ concerns the meta language only, i.e., the
object language is countable, and formulas are finite, while only proofs are allowed
to be infinite. A similar logic is axiomatized in [17], while the corresponding com-
pleteness is showed using an algebraic method. In our paper Deduction theorem
is proved and the approach of Henkin is followed, similarly as in [14]. To the best
of our knowledge such an approach has not been published so far. The presented
ideas can be easily restricted to the propositional case and used in proving the corre-
sponding extended completeness theorem. Since compactness does not hold for the
propositional temporal logic over the natural numbers time, extended completeness
can not be proved using finitary means. In this paper we concern a strong, reflexive
version of the until operator, which means that if aUS holds in a time instant, 3
must eventually hold, and that the future includes the present. All the presented
results can be proved without such assumptions with essentially no change.

2. Syntax and semantics

We consider a first order language L which contains classical connectives - and
A, an unary temporal operator () (next), a binary temporal operator U (until),
quantifier V, and for every integer k > 0, k-ary relation symbols P¥, Pf, ..., and k-
ary function symbols F¥, Ff, ... The function symbols of arity 0 are called constant
symbols. Terms, formulas, and sentences are defined as usual. The other classical
connectives and quantifier 3 can be defined as abbreviations. The temporal opera-
tors F' (sometime) and G (always) are defined as TUa and -F-a. An example of
a formula is QP! (FY) — (Vz)(3z)(P¢(y,z) U P¢(FY,y)). U T ={a1,2,... } isa
set of formulas, then OT denotes {Qa1, Oaa, ... }.

The corresponding models are tuples of the form (W, D, I) where

o W = wg,ws,... is an w-sequence of time instants,

e D is a non empty domain, and

e T associates an interpretation I(w;) with every w; € W such that for all j
and k:
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- I(w,)(F]k) is a function from D* to D,
— for all m, I(w,-)(Ff) = I(wm)(Ff), and
-TI (w,-)(Pf) is a k-ary relation on D.
Note that we use fixed domain models with rigid function symbols.

Let (W, D, I) be a model. A variable valuation v assigns some element of the
domain to every time instant w; and every variable z, i.e., v(w;)(z) € D. lf w; € W,
d € D, and v is a valuation, then v[d/z],,; is a valuation identical to v with the
exception that v[d/z]y,; (w;)(x) = d. The value of a term ¢ in a time instant w; with
respect to v (denoted by I(w;)(t)y) is:

e if ¢ is a variable z, then I(w;)(z), = v(w;)(z), and

® ift:FJk(tl, ‘e ,tk), then I(wz)(t)v = I(w,)(FJk)(I(wz)(tl)v, ey I(wi)(tk)v).
The truth value of a formula « in a time instant w; with respect to v (denoted by
I{w;)(a)y) is (we omit the usual conditions for the propositional connectives):

o ifa = Pf(t1,...,t), then I(w;)(a), = trueif (I(w;)(t1)v, ... , I(wi)(tk)y) €

I(w;)(Pf), otherwise I(w;)(), = false,

e ifa = O, then I(w;)(a), = trueif I(w;y1)(3), = true, otherwise I (w;)(a),
= false,

e if a = pU%, then I(w;)(a), = true if there is an integer j > 0 such that
I(w;4;)(7)y = true, and for every k such that 0 < k < j, I(wiyx)(8)y =
true, otherwise I (w;)(a), = false,

e if a = (Vz)B, then I(w;)(a), = true if for every d € D, I(w;)(8B)v[a/e]u, =
true, otherwise I(w;)(a), = false.

We write (M, w;) | « if for every valuation v, I(w;)(a), = true in the model M.
A sentence « is satisfiable if there is a time instant w; in a model M such that
(M,w;) = a. A set T of sentences is satisfiable if there is a time instant w; in a
model M such that for every a € T, (M, w;) E a.

In the above definition the future includes the present, so that:

e (M,w;) = Fo if there is j > 0 such that (M, w;4;) = a, and

o (M,w;) = Gaif for every j > 0, (M, w;y;) F c.

3. A complete axiomatization

The axiomatic system contains the following axiom schemata:

1. all the axioms of the classical propositional logic

2. (Vz)(a = B) = (a — (Vz)B), where z is not free in «

3. (Vz)a(z) = a(t/z), where a(t/z) is obtained by substituting all free occur-
rences of z in a(z) by the term ¢ which is free for z in a(z)

. Ola = ) » (Oa - OB),

.o Qae Oa

.aUB o BV (anQaUpP))

.aUB — Fp

8. (Vz) O a(z) = OQ(Vx)a(x)

and inference rules:

RN
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1. from {a,a — B} infer g8

2. from « infer (Vi)

3. from « infer Qa

4. from {8 — Q'a} for all i > 0, infer 3 — Ga
The axiom 8 is a variant of well known Barcan formula. The infinitary inference
rule 4 is the only such rule.

A formula « is a theorem (- ) if there is an at most countable sequence of
formulas ag,aq,...,a, such that every a; is an axiom or it is derived from the
preceding formulas by an inference rule. A formula « is deducible from a set T' of
formulas (T F «) if there is an at most countable sequence of formulas ag, a1, ... , a,
such that every «; is an axiom or a formula from T, or it is derived from the
preceding formulas by an inference rule, with the exception that the inference rule
3 can be applied on theorems only. A set T of sentences is consistent if there is
at least one formula which is not deducible from T, otherwise T is inconsistent.
A set T of sentences is said to be maximal if for every sentence a, either a € T
or ma € T. A set T of sentences is saturated if it is consistent and maximal and
satisfies:

o if =(Vz)a(z) € T, then for some term ¢, —a(t) € T.

THEOREM 3.1 (Deduction theorem). If T' is a set of formulas, o is a sentence,
andT,a B, thenT Fa — (.

PROOF. We use the transfinite induction on the length of the inference. The
cases when - 8 or § = «a or 8 is obtained by the inference rules 1 and 2, are
standard. Assume that T, a - 3, where 8 = () is obtained by the inference rule 3.
By definition of the derivability relation -, we have F . Thus,F 8, and T + a — (.
Now assume that g is of the form v — G»', and that T, F 3 is obtained by the
inference rule 4 from T, o - v = )%y’ for every i > 0. By the induction hypothesis,
fori >0, TFa— (y = QW),ie, T+ (aAy) = Q. By the inference rule 4,
we obtain T F (e Ay) > Gy, and T F a — (v = G'). O

LEMMA 3.1. Let o, 8 be formulas.

. FGae anOGa,

.FGOQa+ OGa,

- F(Oa = 0Op) = Ola = B),

- FO@AB) « (OanOB),

. FOlaV 8) & (OavOh),

. Gak Q'a for every i >0,

. if F a, then F Ga,

. fori>0,08,0%,...,0" tak alUB,

. if T is a set of formulas and T F «, then OT F Qa.

© 00O U W

PROOF. The proofs are easy consequences of the temporal part of the axiom-
atization. For example, consider (9) and use the induction on the depth of the
derivation of « from T. Suppose that T F (Vz)a is obtained from T + « by the
inference rule 2. Then we have
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Tra

OT F Qa (by the induction hypothesis)
OT F (Vz) O a (by the inference rule 2)
OT +F O(Vz)a (by Barcan formula).

The other cases follow similarly. O
THEOREM 3.2. Let T be a consistent set of sentences in the language L and C

a countably infinite set of constants such that LN C = {@. Then T can be extended
to a saturated set in the language LU C'.

PrOOF. Let ag, ai, ... be an enumeration of all sentences in L. We define a
sequence of sets T3, ¢ = 0,1,2,... of sentences, and a set 7 such that:
1. To="T.

2. For every ¢ > 0,
(a) If T; U {oy} is consistent, then T;1; = T; U {a;}.
(b) Otherwise, if a; is of the form v — Gf, then T;41 = T; U {~ay,y —
- o B} for some jo > 0 such that T;; is consistent.
(c) Otherwise, if a; is of the form —(Vz) (), then T;11 = T;U{—a;, ~(c)
for some ¢ € C' such that T;41 is consistent.
(d) Otherwise, Tj11 = T; U {—a;}.

3. T=UZ T
The sets obtained by the steps 2a, and 2d are obviously consistent. A standard
proof can be used to show that the same holds for the sets obtained by the step 2c.
Suppose that for some i > 0, T; is consistent, while T; U {y — G} is not. Then,
T; U {=(y = GP)} is consistent. Next, suppose that for every j > 0, T;,~(y —
GB),y — - ()’ B+ L. By Deduction Theorem, for every j > 0, T;,=(y = GB) +
=(y = = (7 B). Thus, for every j > 0, T;,~(y = GB) F v = (O?f, and by the
inference rule 4, T;, =(y — GB) b v — G which leads to a contradiction.

Consider the set 7. It is maximal by the step 2. We show by the induction
that 7 is a deductively closed set which does not contain all formulas, and as a
consequence that 7 is consistent. Suppose that 7 F a. We can show that a € 7.
If @ is an axiom, an element of 7 or obtained by the finitary inference rules the
proof is standard. For example, let a be obtained from 7+ 8 — a and T F 3 by
Modus Ponens. By the induction hypothesis, 8 — «a, 8 € T. By construction of 7T,
there is some ¢ > 0 such that 8 — «, 8 € T; and either a € T; or —a € T; (but not
both by consistency of T;). Actually, a € T; otherwise this leads to a contradiction
by consistency of T;.

Let v — G be obtained from 7 + v — ()73 for every j > 0 by the inference
rule 4. Suppose that v — GB ¢ T, which is equivalent to =(y — GB) € T by
maximality of 7. Then there are i, jo > 0 such that =(y = GB),y = =~ B € T;.
By the induction hypothesis, for every 5 > 0, v = (/8 € T. So there is i’ > i
such that v = = Q% 3, v — (O3, and ~(y = GB) € Ty. So Ty + =(y — GB)
and Ty + y A =GB. Since Ty F v - = (O Band Ty F v = (OB, we get
Ty == (% B A (%3 which is in contradiction with consistency of Ty .

Finally, the step 2c of the construction guarantees that 7 is saturated. O
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Starting from a consistent set T and its saturated extension 7 in a language
L, we define a tuple My = (W, D, I) as follows:

e W =wp,wi,..., wo =T, and for i > 0, w41 = {a: Qa € w;},
e D is the set of all variable-free terms in L,
e for i > 0, I(w;) is an interpretation such that:
— for every function symbol Ff, I(w;)(F}) is a function from D* to
D such that for all variable-free terms ty,... ,t, in L, I(w;)(F}) :
(ti,... te) = FF(t1,... 1), and
— for every relation symbol PF, I(w;)(Pf) = {(t1,... ,tx) : t1,... 1k
are variable-free terms in L, Pf(t1,... ,tx) € w;}.

LEMMA 3.2. For every i > 0, w; s a saturated set.

PRroOF. The proof is by induction on . By hypothesis, wg is saturated. Let
i > 0 and w; be saturated. Suppose that w;y; is not maximal. There is a formula
a such that {a, —a} N w1 = @. Consequently, {Oa,— O a} Nw; = @ which is
a contradiction with the maximality of w;. Suppose that w;41 is not consistent,
ie. wiy1 F a A -a, for any formula a. By theorems 3.1(9), and 3.1(4), we have
w; F Oa A - a which is a contradiction with consistency of w;. Finally, suppose
that there is a sentence —(Vz)a(z) € w;y1 such that for every variable-free term ¢
in L, —a(t) € wit1. Thus, O—(Vz)a(z) € w;, and for every ¢, O—a(t) & w;. Using
Barcan formula and Axiom 5, we obtain —(Vz) O a(z) € w;, and for every term ¢
in L, - O a(t) € w;, a contradiction. O

THEOREM 3.3 (Extended completeness theorem). Every consistent set T of
sentences is satisfiable.

PrOOF. By Theorem 3.2, T' can be extended to a saturated set 7. We can
define a model My = (W, D,I) as above and prove that for every sentence «
and every w; € W, a € w; iff (M,w;) = a. If a is an atomic formula, by the
definition of I(w;), (M,w;) E o iff @ € w;. The cases when formulas are negations
and conjunctions can be proved as usual. If a = (Vx)8 € w;, then, by Axiom
3, B(t) € w; for every t € D. By the induction hypothesis (M, w;) | B(t) for
every t € D, and (M,w;) E (Vz)8. If a ¢ w;, there is some t € D such that
(M,w;) E —B(t), because w; is saturated. It follows that (M,w;) ¥ (Vz)B8. If
a = p, we have w; E a iff w1 E B iff f € wiyr iff @ € w; (by construction
of w;41). Finally, let @ = U~. Suppose that w; = BU~. There is some j > 0
such that w;y; = v and for every k, 0 < k < j, witx = B. By the induction
hypothesis, v € w;4;, and 8 € witg, for j > 0, 0 < k < j. By construction of
Mr, Oy € w;, OB € wy, for j > 0,0 < k < j. Tt follows from Lemma 3.1(8)
that BU~y € w;. For the other direction, assume that Uy € w;. It follows from
Axiom 7 that Fy € w;, i.e. that -Fy = G—y € w;. By construction of the model
My, for some j > 0, Oy € w;, ie., v € wiy;. Let jo = min{j : Oy € w;}. If
jo =0, v € w;, and by the induction hypothesis w; |= 7. It follows that w; = SU~.
Thus, suppose that jo > 0. For every j such that 0 < j < jo, Oy € wy, i.e.
v & wit;. From Axiom 6, Lemma 3.1(4), Lemma 3.1(5), and U~ € w; we have
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YV BAOYV(OBA...AOP Iy V(O IBAOP(BUY)-..) € w;. Tt follows
that for every j < jo, 078 € ws, B € wiyj, wirj =, and w; = BUY.

(1]
2]

(3]
(4]

Thus, T is satisfiable in M. O

References

Martin Abadi, The power of temporal proofs, Theoretical Computer Science, 65, 35-83, 1989.
Martin Abadi, Errata for *the power of temporal proofs’, Theoretical Computer Science, 70,
275, 1990.

Hajnal Andréka, Istvdn Németi, Ildiké Sain, Completeness problems in verification of pro-
grams and program schemes, Lecture Notes in Computer Science, vol. 74, 208-218, 1979.
Hajnal Andréka, Istvin Németi, Ildiké Sain, On the strength of temporal proofs, Theoretical
Computer Science, 80, 125-151, 1991.

Hajnal Andréka, Valentin Goranko, Sz. Mikulds, Istvan Németi, Ildiké Sain, Effestive tem-
poral logics of programs, in: Time and logic: a computational approach, edts. L. Bolc, A.
Szalas, 51-129, UCL Press, 1995.

John P. Burges, Basic tense logic, in Handbook of philosophical logic, vol II: Extensions of
classical logic, edts. D. Gabbay, F. Guenthner, D. Reidel Publishing Company, 1984.

Allen Emerson, Temporal and modal logic, in Handbook of theoretical computer science, edt.
J van Leeuwen, 997-1072, Elsevier, 1990.

Dov M. Gabbay, Amir Pnueli, Saharon Shelah, J. Stavi, On the temporal analysis of fairness,
in Proc. 7th ACM symp. Princ. of Prog. Lang., 163 — 173, 1980.

Dov M. Gabbay, Ian Hodkinson, Mark Reynolds, Temporal logic, Mathematical Foundations
and Computational Aspects, vol. 1, Calderon Press, 1994.

J. A. W. Kamp, Tense logic and the theory of linear order, doctoral dissertation, University
of California at Los Angeles, 1968.

Fred Kroger, On the interpretability of arithmetic in temporal logic, Theoretical Computer
Science, 73, 47-60, 1990.

Orna Lichtenstein, Amir Pnueli, Propositional temporal logics: decidability and complete-
ness, Logic Journal of the IGPL, vol. 8, no. 1, 55-85, 2000.

Zohar Manna, Amir Pnueli, Verification of concurrent programs: The temporal framework,
in The correctness problem in computer science, edts. R. S. Boyer, J. S. Moor, 215-273,
Academic Press, 1981.

Zoran Ognjanovi¢, Miodrag Raskovi¢, Some first-order probability logics, Theoretical Com-
puter Science, Vol. 247, No. 1-2, 191-212, 2000.

Arthur N. Prior, Time and modality, Clarendon Press, Oxford, 1957.

Mark Reynolds, Axiomatising first-order temporal logic: Until and since over linear time,
Studia Logica 57, no. 2-3, 279-302, 1996.

Andrzej Szalas, A complete axiomatic characterization of first-order temporal logic of linear
time, Theoretical Computer Science, 54, 199 — 214, 1987.

Andrzej Szalas, Leszek Holenderski, Incompleteness of first-order temporal logic with until,
Theoretical Computer Science, 57, 317-325, 1988.

Matematicki institut (Received 17 10 2000)
Kneza Mihaila 35 (Revised 24 04 2001)
11001 Beograd, p.p. 367

Yugoslavia

E-mail address: zorano@mi.sanu.ac.yu



