PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 69(83) (2001), 78-82
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ABSTRACT. We give an improvement of a well-known theorem on matrix
transforms of slowly varying sequences in the sense of Karamata.

1. Introduction

A sequence of positive numbers (£,,) is said to be slowly varying in the sense
of Karamata if
lim{——] =1, Ve>0.
n\ 0,

The essential properties of these sequences were studied by Karamata [5], [6], Bo-
janic and Seneta [2] and many others.
Some examples of £,, are:

1, log?2n, log’(log3n), exp(log®2n); a,beR; 0<c<1.
The main tool in dealing with matrix transforms of slowly varying sequences

is a theorem of Vuilleumier [4]. Her result specialized to triangular real-valued
matrices (4,x), 1<k <n can be stated as follows:

THEOREM A. In order that

Z Ankfk ~ fn (n — OO),

k<n

for each slowly varying sequence (£,), it is necessary and sufficient that

(1) LY Apg—=1 (noo0); IL Y |[Aglk"=0(n"") (n— o),
k<n k<n
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for some n > 0.

This theorem plays a fundamental role in the theory of R-regular or R-mercer-
ian matrices [3], [10]. But, although it is self-sufficient, there are some inner limi-
tations as we are going to show.

Consider a real-valued sequence (a,), VM € N : 3 ., a, # 0, and let
Ank = ak/ Zign a;.

Then, the condition I of the Theorem A is trivially satisfied and for II, using
an inequality for convex means (Lemma 3, below), we obtain

Z | Anelb = > k<n |0k Dpen lak |k

<n | Zkgn ax| Zkgn |ak|

> k<n lak] (Zkgn kla| ) -7

| Zkgn a| Ekgn |a|

B (| 2 k<n Okl > - ( 2 k<n Kla| >"‘
Ekgn |a| nEkgn |a|

Since both expressions in parenthesis are positive and not greater than one, we see
from (2) that if

—~

N
~
v

o Zkgn ax| . Ekgn klax|
liminf =——=——— =0 or liminf ——— =0,
" Ekgn |ak| non Zkgn |a|

the condition IT is not satisfied so that Theorem A is not applicable.
We will remove such obstacles and thus extend the field of applications.

2. Results

In order to produce a proof of Theorem B below, we need some well-known
properties of slowly varying sequences and some elementary inequalities.

LEMMA 1. For each ¢ > 0, a slowly varying sequence £, satisfies (cf. [1, p. 52])

Cig) ~ Liea) ~ Lpee)) (T — 00).

LEMMA 2. For n > 0, the following relations hold

sup k"l ~ y"py; supk "y ~y "y, (y = 00).
k<y k>y

A variant of the convex means inequality (cf. [7, p. 76]) is
LEMMA 3. For a sequence of non-negative numbers oy and p <0 or pu>1,
Zk“ak > (Zkak)“
Yap ~\ X )’

and the converse inequality holds for 0 < p < 1.

For an application we need the following
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LeEMMA 4. For each a,n € R, we have

n
5 (") o) (0o

1<k<n

where L{" (z) is the Laguerre polynomial [8].

Now, we can prove our main result. For a complex-valued triangular matrix
(ank), 1 < k < n, define

L | EkSn ank| Cf ZkSTL k|ank|
Ekgn lank|” " Ekgn |ank|

We can prove the following

On

THEOREM B. If the matrix (an) satisfies for n — oo

k" a,
(i) tn = 00, tp, = o(n); (i) liminfo, > 0; (iii) Lo K ank] o
n Zkgn |ank|

for some 1 > 0, then
Zkﬁn Lrank
L) Zkgn Ank

for all slowly varying sequences (£;,).

=1 (n— o),

Proof. The condition (ii) guarantees that, for sufficiently large n, we have
Y k<n Ank # 0 and 1/0, = O(1). Therefore, for such n and all fixed ¢, 0 < ¢ < 1,

we obtain
2 k<n Lrank B ‘ 1 k< Onk (e /€, ) — 1))
E[tn] stn Onk ZkSTL |a’nk|

On

m<|k§‘+‘ > ‘JF‘ > D=51+Sz+53. (B1)

ctn <k<tn/c k>tn/c
Applying Lemmas 1 and 2, by (iii), we get

2 p<etn |kl /) = U _ Eicern B "|ankl K"k / ) — K|
Zkgn |lank| Zkgn |ank|

2k<n b ank]
sup (K"l /by 1+ k) ——=—=————
kSCIt)n( e/ [en] ) Ekgn |ank|

S1 <

~ 2(ct,)" - O(t,") < . (Bs2)

Similarly, using Lemmas 1, 2 and 3 with 0 < p < 1, we obtain

k*lan 1
S3 < sup (K™"lg/ly,) + k_")M ~2(=tn)TH - O(tn)" < . (Bs)
k> Lén 2 k<n lank] ¢
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Finally, arguing as before and using (i), one has

ank||lr /1 — 1
et k<t ot [nk 1/ ben) ~ 1] sup |/l —1] =0(1) (tn = 00),

So <
Zkgn |ank| ctn<k<l/ctn

IN

by the uniform convergence (see [1, pp. 6-11]).
Since ¢ can be taken arbitrarily small, from (Bi), (B2), (Bs) we deduce

Zk<n€kank 1
e 1| = —(51+ 5+ 85) = 0(1)o(1) = o(1) (n — 0),
U] Lt O —(51+ 52+ 83) = 0(1)o(1) = o(1)  (n— )

i.e., Theorem B is proved.

Remark. Comparing theorems A and B, two advantages of the second one be-
come clear. Firstly, Theorem A is not applicable when t,, = o(n) (see Introduction),
while in Theorem B it is enough that ¢, = oo (n — 00). Secondly, Theorem B is
valid for complex-valued matrices. Closer connection between theorems A and B
can be established if we replace the condition (i) by: t, — oo and lim, ¢, /n exist.
The proof is carried out as before.

To illustrate the power of the assertion from Theorem B, we give a nontrivial
example.

Consider the class of Laguerre polynomials L (2) defined by

Y
o -5 (122 5

k<n

and take a, := ("F2) <R 4 e B Then

A (1)
Z ank = L (— exp(ibn'/%)) Z lank| = LD (=1); ¢, = "ai
k<n k<n st )(_1)

Perron’s formula for the asymptotic behavior of Laguerre polynomials in the com-
plex plane cut along the positive part of the real axis says that (cf. [9, p. 197])

LI (2) = 1/277 12212 (=) =0/2=1/4p0/2= /% 6xp(2(—n2) Y2 (1 + O(n~1/?))

when n — oo. Using this formula and the properties of Laguerre polynomials we
get t, ~ y/n, (n = o) i.e., Theorem A is not applicable in this case.
On the other hand, taking into account Lemma 4, we see that the condition
(iii) is satisfied and
| exp(Z\/ﬁeib/zn_U4

N )|
on exp(2y/n)

= exp(2y/n(cos(b/2n /4 — 1) = e7P/4 (0 5 0),
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i.e., (ii) is also valid; hence, applying Theorem B, we obtain for n — oo

n + a\ exp(ibkn~1/* a I
> (n i k) exp(ibkn” 1) o ) 0 = L (— exp(ibn Y4)8 (1 + 0(1)).
k<n '

In addition, by separating the real and imaginary parts on the left and applying
Perron’s formula on the right side of the last expression, we obtain the following
two asymptotic relations for n — oo

n + a\ cos(bkn=1/%) 1 _ 2
Or a/2-1/4p _ 2\/A—b2/4 Lo pn1/4y.
kZSn (n _ k) R o e cos(bn"%);

n +a\ sin(bkn_'/*) L a2-1/a 2/n-b2/4 1/4
,;1 (n N k) X by ~ 2\/71'_6” b ymie sin(bn*/*).
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