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KARAMATA’S CHARACTERIZATION THEOREM,
FELLER, AND REGULAR VARIATION
IN PROBABILITY THEORY

E. Seneta

ABSTRACT. Karamata’s Characterization Theorem provided the impetus for
Feller’s (1966) exposition of the theory of regularly varying functions within
a probability theory context. We investigate the conditions under which this
theorem holds, and indicate manifestations in the identification of the spec-
tral functions of the stable laws. Regular variation of a distribution function
occurred implicitly as a necessary and sufficient condition for convergence in
the 1930’s, in the probabilistic work of P. Lévy, Khinchin, and Feller; and
more transparently in that of Gnedenko and of Doeblin. Explicit recogni-
tion of the relevance of the concept in probability was interrupted by World
War 2. A final section of this paper traces the evolution of Feller’s name and
early mathematical career from his Balkan origins, with a view to illuminating
his recognition of the relevance of regular variation and his connection with
Karamata.

1. Introduction

This paper has as its focus the following version of Karamata’s Characterization
Theorem, which is stated without proof in Karamata [1933, p. 58]:

THEOREM K. If f is monotone on some interval [A, 00) and
Tim (f(z +6) = £@)) = ¥(0) 1)

for t1,t2 € R = (—00,00) such that t1/ty is irrational and (t1),¥(t2) are finite,
then (1) holds for all t € R, and ¥ (t) = ~t for some real constant .

A great impetus to the revival of interest in the theory of regularly varying
functions came within a probabilistic context from the expectedly influential book of
Feller (1966) in which Sections VIII.8 and VIIL.9 (pp. 268-276), entitled respectively
“Regular Variation” and “Asymptotic Properties of Regularly Varying Functions”
begin with the statement:
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The notion of regular variation (introduced by J. Karamata in
1930) ... finds an ever increasing number of applications in prob-
ability theory. The reason for this is partly explained in the next
lemma, which is basic in spite of its simplicity.

The “next lemma” and its following Theorem 1 in Feller (1966) is in fact (essen-
tially) Theorem K above. Feller’s proof is a standard one using the multiplicative
(Hamel) form of Cauchy’s functional equation.

The only specific reference to Karamata’s papers occurs at the beginning of
VIIL.9 (p. 272), enroute to the integral characterization (Representation Theorem)
of a regularly varying function, where two successive footnotes state:

21 J. Karamata, Sur un mode de croissance réguliére, Mathemat-
ica (Cluj), Vol. 4 (1930), pp. 38-53. Despite frequent references
to this paper, no newer exposition seems to exist.

22 Although new, our proof of theorem 1 uses Karamata’s ideas.

It was the first of these footnotes that led the present author to Karamata’s
original papers, and to the lucid writings of the Yugoslav School in general, since
I had difficulty in understanding Feller’s exposition. Indeed I established contact
with Ranko Bojanié¢ and received some material from Karamata himself from his
home address in Geneva. The small book (Seneta, 1976) was the eventual result of
a synthesis of the basics. (Its Preface gives more detail on its evolution).

It was intriguing to find that Feller’s origins were also Balkan (like Karamata
in 1902, he was born in Zagreb in 1906; and he spent his youth in this city) and
that their lifetimes nearly coincided. We shall see that Feller continued Yugoslav
academic contacts until 1939. Thus the questions arose: when did the concept of
regularly varying functions make an explicit appearance within limit theorems of
probability theory, and when did Feller become aware of Karamata’s work? The
exploration of these issues occupies the latter part of this paper.

While the monotonicity of f in Theorem K is adequate for most probabilistic
applications, even in our sequel, in fact it is not essential to the conclusion, and
can be relaxed to its essence to give a more natural version of this Characterization
Theorem. We proceed in this direction to a result in the spirit of Karamata (1933);
and then show how to use the Characterization Theorem to identify the spectral
functions for the stable probability laws in the Lévy Canonical Representation for
the infinitely divisible laws. The final result of the identification in the probabilis-
tic setting is of course well-known, but our Karamata-esque approach may be of
interest.

2. Characterization Theory

LEMMA 1. Let h(z) be a real function defined and finite on [A, 0c0) for some A.
Then a necessary and sufficient condition for

h(z+1) —h(z) 5> c= h(z)/z —> ¢

as  — oo, where —oo < ¢ < 00, is that h(z) be bounded on each finite interval
beyond some value xg.
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The sufficiency of the condition is a continuous variable version of Cauchy’s
theorem that the Cesaro limit of a sequence exists and is the same as the ordinary
limit if this exists and is a finite number. A complete proof may be found in Seneta
(1973; 1976, §1.7). The first of these references contains a discussion related to the
present section.

THEOREM 1. Let f be a function defined and finite on some interval [A, c0),
and bounded on every finite subinterval of [A,00). Further suppose that as © — 0o

Tim (f(z+) = £(2)) = (1) @
at t =t1,t3 € R, with 1(t1),v(t2) finite. Then (2) holds for t € D, where D = {t :
t = gty + rta, q,r integers} and Y(t) = t, t € D, where v is independent of t.
ProOF. We first show that if (2) holds for any t1,t2 € R then for integers g, r
lim (f(z + gty + 1) — f(z)) = q(ta) + (L) 3)
Since

f@+ gt +rt2) — f(z) = f(z + gty +1t2) = f(z +rt2) + f(z + 1t2) — f(2)
it is sufficient to show that for j = 1,2

Jim, fly + stj) — f(y) = s¢(ty)

for integer s. This is clearly true if s =0. If s > 0

s

Fly+sty) = fly) = D (Fly+ity) = fly + (i = 1)ty),

i=1
— s9(t;)
asy = oo. If s <0, put w =y + stj, so
fly+st;) — fly) = —(f(w —stj) — f(w)) ,
— s1)(t;)

since —s is a positive integer, as y — 00, by the preceding. Thus(2) holds for ¢ € D,

by(3).
Now in (2) put for ¢t € D with ¢t > 0, v = z/t, so that

Jim (v +1) = (1) = b (t)

By Lemma 1, consequently

lim f(vt)

so that
LS ) )
z—00 I v—=o00 Ut t
Thus fort € D, t > 0,
Y@)/t="

is independent of ¢.
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Ifte D, t<0,in(2) put w= —z/t, so that
T f(~t(w— 1)) — f(~tw) = (1),

But since —t € D, we see from (2) that the limit is —¢(—t), and since —t > 0,
by the preceding, —¢(—t) = «¢. Thus for ¢t < 0, also ¢(t) = «vt. Thus for all t € D,
P(t) = t. 0

COROLLARY 1. Under the conditions of Theorem 1, if (2) holds for all t € [a,b],
a fized closed subinterval of R, then (2) holds for all t € R, and ¢(t) = vt, t € R.

PrOOF. The extension of (2) from ¢ € [a,b] to all ¢t € R is standard. For
identifying 1, the proof of the second part of Theorem 1 can be used by taking D
as R. |

COROLLARY 2. Theorem K.

ProOF. Boundedness on every finite subinterval of [4, o) follows from mono-
tonicity. The set D in Theorem 1 is dense in R by Kronecker’s Theorem. (Hardy
and Wright, Chapter XXIII, Theorem 438). 1 (t) is monotone on D in the same
sense as f is in R. Suppose f is nondecreasing. Let {3 € R. Then we can choose
arbitrarily small €1,€e5 > 0 such that tg — €1,tg + €5 € D. Then

V(to = €1) = Y(to — &) <liminf(f(z +to) — f())
< limsup(f(xz + to) — f(x))

Tr—00
< Y(to + €2) = y(to + €2)
and letting €1, €5 — 0 yields the result. O

Corollary 1 is a non-measure-theoretic version of Karamata’s Characterization
Theorem which accords with his general derivation (Karamata, 1933, p. 56) using
in effect a continuous version of Cauchy’s Theorem. Karamata does not state his
assumptions, which led to this elegant method of proof being overlooked, and re-
garded as incorrect. The modern definition of a regularly varying function requires
f(z) to be defined and measurable on [A, 00) and to satisfy

fl@+1) = flz) = ()

as © — oo for each t in a subset of positive measure of (—oo, 00), where (t) is finite-
valued for such ¢. Such functions f have the property that there exists a constant
B > A such that f is bounded on any finite subinterval of [B,c0) (Bojani¢ and
Seneta, 1971), so that in fact this measurability requirement is more restrictive, and
Corollary 1 may be used to define “weakly” regularly varying functions (Seneta,
1973; 1976, §1.7). Monotonicity implies both measurability and boundedness on
finite intervals; but the convergence in Corollary 2 (Theorem K) is assumed only
for a set of t which is countable, and thus of Lebesgue measure 0.

Theorem K can be re-expressed in more restricted form: If f is monotone on
R, and for all x € R

fle+1t) = flx) =4() (4)
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at t = t1,to € R such that 1 /t» is irrational, and ¢ is independent of z, then (4)
holds for all ¢t € R, and v(t) = ~¢ for all t € R, with « a constant independent of
t. Moreover then
f(x) = f(0)+ vz, =z € R.

This is precisely the form that is needed to identify the form of the spectral functions
for the class of stable probability laws in the Lévy Canonical Representation of
their characteristic function which itself dates to about 1937. Indeed within this
probabilistic context this form is in fact to be found in Khinchin (1938,pp. 95-97).
An awareness of Karamata’s work and its relevance to probability, however, did
not come for at least 10 years more, with World War 2 intervening. The following
result is a more general proposition along the lines of this restricted form, but
which generalizes the monotonicity assumption. It is given in a “multiplicative”
form more immediately relevant to probabilistic settings.

THEOREM 2. Suppose that P(u) is defined and > 0 on Rt = (0,00), that
P(u) > 0 and P(u) and 1/P(u) are bounded on o closed finite subinterval [c,d],
c < d, of R, and that P(u) satisfies

aP(u) = P(au), BP(u) = P(bu), Yu € Rt (5)

for some two relatively prime integers a, 3(# 1), and some a,b > 0. Then P(u) =
P(1)u?, for some constant vy and for all u = a%b", q,r integers, which is a set dense
in RT.

PROOF. Suppose Ina/Inb = m/n for some integers m,n (i.e., a™ = b™); then
from (5), a"P(u) = P(a™u), 8™ P(u) = P(b"u), Vu € RT, so a™P(u) = ™ P(u),
and taking u = ug € [c, d] so that P(ug) > 0, gives a™ = ™. This is a contradiction
to a, B relatively prime. Hence the set D = {t : t = glna + rInb, ¢, r integers} is
dense in R (by Kronecker’s Theorem). Hence the set {a?b", g, r integers} is dense
in Rt. But for any integers g, r,

P(a%"u) = a?P(b"u) = a?B"P(u), u € R . (6)

Now suppose for some u; € RT, P(u;) = 0. Then P(a9b"u;) = 0 for all integers
q,r; but since the set a?b"u; is dense in RT, for some ¢ and r, a?b"u; € [c,d] and
P(u) > 0 on [c,d], giving a contradiction. Hence P(u) > 0 on R*.

Now set f(z) =In P(e%), z € R, so that(from(6))

f(t—l—x)—f(m)=qlna+rlnﬂ,=¢(t),t€D, (7)

independently of € R. Clearly, at t = 0 we may define ¥(0) = 0. Now choose
to € D such that ¢ < ¢+ t9 < d. Then since f(to + ) = f(z) + ¥(to), f(x),
assumed bounded on [¢, d], is bounded on [¢+ tg, d +t], and continuing in this way,
on [c+ ntg, d+ ntg), integer n > 0, hence on [¢,d + nty]. Thus f is bounded on any
finite interval to the right of ¢, and similar reasoning gives it bounded on any finite
interval to the left of d, hence it is bounded on any finite interval.

Now arguing as in the second part of the proof of Theorem 1, we obtain t(t) =
~t, t € D, for some v independent of ¢t. Returning to (7) and putting z = 0
completes the proof, with C' = exp{f(0)} = P(1). d
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3. Identification of the Spectral Functions of the Stable Laws

Lukacs (1960, p. 90) calls the following result in probability theory the Lévy
Canonical Representation: ¢(t) is an infinitely divisible characteristic function if
and only if it can be written in the form

2 —0 -
log ¢(t) = ita — =t* + / (eit“ L ) dM (u)

2 - o 1+u?

Ry Ay itu
itu 1— Z— dN
- Ao (e 14 u? (u)

where M (u), N(u) and o? satisfy the following four conditions:

(i) M(u) and N(u) are non-decreasing in the intervals (—o0,0) and (0, 0)
respectively.

(ii) M(—o00) = N(o0) =0.

(iii) The integrals ffe u?dM (u) and [; u”dM (u) are finite for every € > 0.

(iv) The constant o? is real and non-negative.

The representation is then unique.

The stable laws are a class of the infinitely divisible laws for which, given any
by > 0, by > 0, there exists a b > 0 such that (Lukacs, 1960, p. 99):

o?(b* — b} —b2) =0 (8)
M®™'y) = M(b;'y) + M(by'y) ify <0 9)
N~ 'y) = Ny y) + N(by ty) if y > 0. (10)

The purpose of this section is to identify the form of N(y) for y > 0 and M (y)
for y < 0 using Theorem 2. Put by = b = 1 in (10), write P(u) = —N(u), u € RT;
then for all u € R, there is an A = 1/b > 0 such that

P(Au) = 2P(u) (11)

where P(u) > 0 and non-increasing. Thus (iterating (11)) P(A™u) = 2"P(u),
u € RT, each integer n, (positive or negative). Hence if there is a uo such that
P(ug) > 0, it follows that 0 < A < 1, and (by monotonicity) that P(u) > 0,
u € Rt. Thus either P(u) = 0 for all u, or P(u) > 0 for all v and P(u) and
1/P(u) are bounded on any interval [¢,d] € RT. Applying (10) once more gives the
existence of a B > 0 such that

P(Bu) =3P(u), u € R

and hence we may now apply Theorem 2 with a =2, a = A, 8 =3,b = B to
obtain the result invoking the monotonicity of P, that P(u) = P(1)u?, u € RT,
v < 0 (which includes the case P(u) =0, u € RT, which results if P(1) = 0). Thus
for some constant v < 0, N(y) = N(1)y”, y > 0 with N(1) <0.

A similar argument can be applied to P(u) = M (—u), u € RT, using the same
A and B as with N, on account of (9) and (10), which results in the same v =
In2/In A as with N giving finally M (y) = M (—1)|y|” for y < 0, with M(-1) > 0.

The fact that v > —2 follows from e.g., the finiteness of [ u>dN(u) unless
N(1) is zero. Suppose now N (1) # 0 (so A7 = 2, for v > —2); supposing 02 > 0
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(8) implies A~2 = 2, a contradiction. Similarly if M (—1) # 0. Thus 6% > 0 implies
N(1) =0 = M(-1). If 62 = 0 not both N(1) and M(—1) can be zero, otherwise
log ¢(t) = ita. This corresponds to a distribution degenerate at a, a trivial case.
This completes our identification.

Feller had a long-term preoccupation with representations of the Lévy type for
infinitely divisible distributions, going back to a paper in Serbo-Croatian (Feller,
1938/1939). In Feller (1966) his development of infinitely divisible distributions in
Section XVII.2 is substantially different from the more classic one of Lukacs (1960).
Nevertheless, in his identification of the stable-law spectral measures in his version
of a Canonical Representation he uses the regular variation ideas of his VIIL.8.

In IX.8, Domains of Attraction, Feller (1966) uses regular variation explicitly in
formulating a necessary and sufficient condition for a probability distribution func-
tion F' to belong to the domain of attraction of some non-degenerate distribution
(in fact the possible limit laws are just the stable laws). It is in the discovery of
such necessary and sufficient conditions that regularly varying functions (although
not recognized explicitly as such) make their appearance.

4. Regular Variation as Necessary and Sufficient

In his book, Khinchin (1938, p. 102, Theorem 4.5) gives as necessary and
sufficient condition for F to be in the domain of the normal (Gaussian) law G the
condition

-0 (12)

2?(1— F(z) + F(—x))
Ul(x)

as x — 00, where
U@ = [y
ly|<=z

attributing the result equally, to independently written papers of Khinchin (1935),
Lévy (1935), and Feller (1936). Khinchin gives the year of appearance as 1935 to
all, an error perpetuated in the definitive book of Gnedenko and Kolmogorov of
1949 (an English translation appeared in 1954). Khinchin (1938, p. 101) states
that at the time the domains of attraction of the other (i.e., non-Gaussian) stable
laws were not known. The three papers were written in an intensely competitive
milieu. In a follow-up paper, for example, Feller (1937, p. 30) cites a letter from
Lévy that in spite of its later appearance, Lévy’s paper was received substantially
earlier than Feller’s (October 1934 against May 1935) and had been presented to
the Société Mathématique de France.

In fact—as Feller (1966, IX.8) later points out—(12) is equivalent to U(z) be-
ing slowly varying at infinity in Karamata’s sense. This is actually an extension
to measures (of the density form e.g., Seneta, 1976, Theorem 2.1, p. 53) of one
of Karamata’s theorems, as Feller (1969) claims. The two papers (Feller, 1936,
1937) seem to be the first of Feller’s writings on probabilistic topics. He was at
the time already in Stockholm and in the company of Harald Cramér. The papers
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treat the Central Limit Theorem and concern themselves with not-necessarily iden-
tically distributed random summands. Regular variation (or slow variation) is not
mentioned.

Lévy’s (1935) derivation of a necessary and sufficient condition is also essentially
“probabilistic”. However Lévy (1935, p. 366), as preliminary, gives as a necessary
and sufficient condition for the Weak Law of Large Numbers (WLLN) what appears
to be a regular variation condition. Feller (1966, VIL.7, p. 233) proves an elegant
theorem that a WLLN holds for sums of independently and identically distributed
random variables with distribution function F' (F'(0) = 0) if and only if

HL- F(1) /Ot 2dF(z) = 0

as t = oo. The proof is direct, but there is a footnote:

81t will be seen in VIIL8 that [this condition] is equivalent to
regular variation of 1 — F(z) with exponent —1. (The use of this
would simplify the proofs).

A necessary and sufficient condition for F' to be in the domains of attraction
of the other (non-degenerate, non-normal) stable laws (i.e., of index a, 0 < a < 2)
is credited in Gnedenko and Kolmogorov (1968) to what is a next generation of
researchers, Gnedenko (1939) (following Khinchin) and Doeblin (1940) (following
Lévy). We quote here Doeblin (1940, Théoréme V, p. 81):

La condition nécessaire et suffisante ... est ..., si X — oo
F(-X)=mX)X % 1-FX)=hy(X)X™ ¢

avec hy (kX)/h1(X) — 1 quelque soit k, et que lim hy /(h1 + h2)
existe.

The idea of a regularly and slowly varying function is very clear here, although
there is still no mention of Karamata or of the explicit concept of a slowly vary-
ing function. We have not been able to see Gnedenko’s paper. Doeblin’s paper
appeared in the first issue of Studia Mathematica to be published after Soviet
troops had occupied (in late 1939 under the Nazi-Soviet pact) “Polish” Ukraine,
and specifically the city of Lwéw (L’viv, L’vov, Léopol, Lemberg) where the journal
was published. Like all articles in that issue, it has a summary in Ukrainian. Pre-
sumably wartime conditions precluded for some time the article becoming available
to non-Soviet readers. It is known that Feller once met Doeblin (who died during
the war).

It seems that the explicit connection between regular variation and probability
limit theorems was made after 1943. In a well-known paper on extreme values
in French, in an American journal, the Karamata connection is still absent even
though Gnedenko (1943, Théoreme 4, p. 439) gives as a necessary and sufficient
condition:

lim 1— F(kx) _

z—oo 1 — F(:L')
for every k > 0. This is again, like Doeblin, only a short step to a connection with
Karamata’s general theory.

-
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The paper of Karamata (1930) is actually listed in the references to Gnedenko
and Kolmogorov’s book in its 1954 English translation (and so was likely listed in
the 1949 Russian version) but there appears to be no mention within the book. It
is likely that it was the English version of Gnedenko and Kolmogorov’s book which
led to a recognition of the relevance of Karamata’s theory by Feller and others.
Karamata’s Tauberian Theorem, already well-known from 1930, which also plays
an important part in probability theory, and also involves regular variation of F,
may have contributed to this recognition.

5. William Feller

Despite Feller’s Balkan origins, it would thus seem that he made the probabilis-
tic connection with Karamata’s theory relatively late in his career. He contributed
(Feller, 1969) to the volume of L’Enseignement Mathématique (“Dédié & la mémoire
de Jovan Karamata”) but gives in his article no clue about any closer contact. It
is therefore appropriate to use this present Karamata commemoration to set out a
few little-known details concerning Feller’s pre-American period, and some parallels
with Karamata.

Karamata was born February 1, 1902 in Zagreb, and died in Geneva on August
14, 1967. Feller was born in Zagreb on July 7, 1906, and died January 14, 1970 in
New York. At the time of their birth and up to the end of World War I, Zagreb
as a city of the Austro-Hungarian Empire was called Agram. Feller’s family was
German-speaking. Feller’s Catholic mother, in anticipation of a difficult birth de-
termined to give her offspring the name of the saint on whose day in the (German)
Catholic saint’s list the birth occurred. The saint’s name was Willibald. The family
decided to use the Croatian Catholic list, which gave the name Vilim, which Feller
kept until coming to Germany. He attended the University in Zagreb from 1923
to 1925, and from 1925 to 1928 he was at the University of Gottingen where in
1926 (at the age of 20) he earned his doctorate. Here he became acquainted with
David Hilbert and Richard Courant who encouraged him to a mathematical career.
In 1928 he went as Privat-dozent to the University of Kiel, but left in 1933 after
refusing to sign a Nazi oath. Of interest to historians of probability are two joint
papers with Erhard Tornier in 1933 (not on probabilistic topics). During a subse-
quent years in Copenhagen, he came to know Harald and Nils Bohr, and during
five years (1934-1939) at the University of Stockholm, he had as senior colleagues
Marcel Riesz and Harald Cramér. Tt is during this last period, presumably under
the influence of Cramér, that his probabilistic papers (such as Feller 1936, 1937)
begin to appear. These two papers mention both Cramér and Riesz.

In Germany, since “Vilim” sounded strange, he changed his name to the very
common German name “Willy”, and it is under the name Willy Feller that his
German language papers (Feller 1936, 1937, 1939) appear. Actually Feller (1939)
is a German abbreviation of the fuller paper (Feller, 1938/1939) written in Serbo-
Croatian, and dated Stockholm, September 1937, which has underneath the title the
annotation: Napisao ¢lan dopisnik Vilim (W.) Feller [By Corresponding Member
Vilim (W.) Feller — E.S.]. Articles from the Radovi of the Yugoslav Academy
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in Zagreb (actually Jugoslavenska Akademija Znanosti i Umgjetnosti. Radowvi.),
generally written in Serbo-Croatian, would be republished in abbreviated form
in the Bulletin International in a more international language (French, German,
English, Italian or Latin). There has consequently been confusion of various kinds
over language and pagination in citing the two versions (Feller 1938/1939, 1939).
It is notable, however, that in 1939 Feller was still in touch with language and
country of his youth, and indeed as we have seen, was a Corresponding Member
of the Yugoslav Academy of Zagreb. Karamata had been elected as Corresponding
Member of this Academy in 1933. Feller’s list of publications shows an earlier item
[1934] in the Bulletin International.

The Feller (1938/1939, 1939) work is especially interesting since it begins his
preoccupation with the Lévy Canonical Representation of infinitely divisible laws,
of which we have spoken earlier. He states [our translation into English]:

In the following, without claims to novelty, we will give a direct
analytical proof, in essence, related to the proof of Kolmogorov’s
special case. Such a generalization is not without interest...

Feller’s proof is not, however, itself yet free of the stochastic process (Mar-
kovian) context of Lévy. In the later (Serbo-Croatian) version of the paper there
is an additional footnote indicating that Feller had just seen another new [1938]
derivation by Khinchin of Lévy’s formula.

Feller came to the U.S. in 1939. Since in the North American context the name
“Willy” had a funny connotation, he decided to use “William”. The surname was
always “Feller”, contrary to myth (Rota, 1989). His father was Eugen Viktor Feller,
and his mother’s maiden name was Ida Oehmichen. In 1990 Feller’s sister (a retired
medical doctor) Dr. Zora Feller, was still living in Germany.

Acknowledgements. I am grateful to Professors Herbert Busemann, Kai Lai
Chung, Joanne Elliott, Loren Pitt and Simon Tavaré for details on W. Feller’s
family and early biography, in correspondence of 1990.
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