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ABSTRACT. This paper is a companion to another paper where it is shown
that the multiplicative monoids of Temperley-Lieb algebras are isomorphic to
monoids of endomorphisms in categories where an endofunctor is adjoint to
itself. Such a self-adjunction underlies the orthogonal group case of Brauer’s
representation of the Brauer centralizer algebras. The present paper provides
detailed proofs of results on the presentation of various monoids of diagrams
by generators and relations, on which the other paper depends.

1. Introduction

As an offshoot of Jones’ polynomial approach to knot and link invariants,
Temperley-Lieb algebras have played in the 1990s a prominent role in knot the-
ory and low-dimensional topology (see [14], [17] and [20]). In [6] it is shown that
the multiplicative monoids of Temperley-Lieb algebras are closely related to the
general notion of adjunction, one of the fundamental notions of category theory,
and of mathematics in general (see [18]). More precisely, it is shown that these
monoids are isomorphic to monoids of endomorphisms in categories involved in one
kind of self-adjoint situation, where an endofunctor is adjoint to itself.

As shown in [6], such a self-adjunction may be found in categories whose arrows
are matrices, where the functor adjoint to itself is based on the Kronecker product
of matrices. This self-adjunction underlies the orthogonal group case of Brauer’s
representation of the Brauer algebras, which can be restricted to the Temperley-
Lieb subalgebras of the Brauer algebras (see [3], [21, Section 3], and [10, Section
3]). This leads in [6] to a representation of braid groups in Temperley-Lieb algebras
similar to the standard one that stems from Jones, but not the same. The present
paper is devoted to proving precisely results on which [6] relies.

A self-adjunction, which we will also call £-adjunction, is an adjunction in
which an endofunctor is adjoint to itself, which means that it is both left and right
adjoint to itself (for the general notion of adjunction see [18, Chapter IV]). In an
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L-adjunction we have a category (A, o,1) and a functor F from A to A such that
¢ is the counit of the adjunction with components ¢, : FFFa — a and y is the
unit of the adjunction with components v, : a = F'Fa. Let x, be an abbreviation
for g0, : a = a. A K-adjunction is an L-adjunction that satisfies the addi-
tional equation Fk, = kp,. A J-adjunction is an L-adjunction that satisfies the
additional equation k, = 1,. Every J-adjunction is a K-adjunction, but not vice
versa.

In the paper we proceed as follows. We first present by generators and relations
monoids for which it is shown in [6] that they are engendered by categories involved
in self-adjoint situations. These categories engender monoids, whose names will be
indexed by w, when we consider a total binary operation on all arrows defined
with the help of composition. Our categories engender monoids of a different kind,
with names indexed by n, when we consider just composition, restricting ourselves
to endomorphisms in the category. We deal first with the monoids related to
L-adjunction, and next with those related K-adjunction, which is the adjunction
encountered in connection with Temperley-Lieb algebras.

Next we prove in detail that our monoids are isomorphic to monoids made of
equivalence classes of diagrams which in knot theory would be called planar tangles,
without crossings, and which we call friezes. In these representations, there are
two different notions of equivalence of friezes: the £ notion is based purely on
planar ambient isotopies, whereas the /K notion allows circles to cross lines, which
is forbidden in the £ notion. So the mathematical content of the most general
notion of self-adjunction is caught by the notion of planar ambient isotopy. The
diagrammatic representation of the K,, monoids is not a new result, but £,, and its
diagrammatic representation don’t seem to have been treated so far.

In the diagrammatic representation of the third notion of self-adjunction, J-
adjunction, we don’t take account of circles at all. This notion is more strict than X-
adjunction. With the help of friezes, we show for this third notion that it is maximal
in the sense that we could not extend it with any further assumption without
trivializing it. This maximality is an essential ingredient in the proof given in [6]
that we have in matrices an isomorphic representation of the monoids of Temperley-
Lieb algebras. However, this maximality need not serve only for that particular
goal, which can be reached by other means, as mentioned in [6]. Maximality can
serve to establish the isomorphism of other nontrivial representations of the monoids
of Temperley-Lieb algebras.

We consider in Section 11 monoids interpreted in friezes with points labelled
by all integers, and not only positive integers, and also monoids interpreted in
cylindrical friezes. This matter, though related to other matters in the paper, is
independent of its main thrust, and is presented with less details.

In the main body of the paper, however, we strive, as we said above, to give
detailed proofs of isomorphisms of monoids, and so our style of exposition will be
occasionally rather formal. It will be such at the beginning, and it might help the
reader while going through Sections 2-4 to take a look at Sections 5-7, to get some
motivation.
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2. The monoids £, and K,

The monoid £, has for every k € NT = N—{0} a generator |k], called a
cup, and a generator [k], called a cap. The terms of £, are defined inductively by
stipulating that the generators and 1 are terms, and that if ¢ and u are terms, then
(tu) is a term. As usual, we will omit the outermost parentheses of terms. In the
presence of associativity we will omit all parentheses, since they can be restored as
we please.

The monoid L, is freely generated from the generators above so that the fol-
lowing equations hold between terms of £, for [ < k:

(1) 1=t 1=t

2)  t(w) = (tu)o,
(cup) k|11 = ][k +2],
(cap) [11k] = [k +2]11],
(cup-cap 1) [I|Tk+2] = K] [1],
(cup-cap 2) [k +2|[l] = [I][k],

(cup-cap 3) |k|[k+1] =1.

The monoid K, is defined as the monoid L, save that we have the additional

equation
(cup-cap 4) |k|[k] = [k +1][k+1],

which, of course, implies |k|[k] = |I][l]- To understand the equations of £, and
K., it helps to have in mind their diagrammatic interpretation of Sections 5-7 (see
in particular the diagrams corresponding to | k| and [k] at the beginning of Section
6).

Let [k] be an abbreviation for |k|[k], and let us call such terms circles. Then
(cup-cap 4) says that we have only one circle, which we designate by ¢. We have
the following equations in £, for [ < k:

LE11] = [Nk,

L[k + 2] = [K][1].
For the first equation we have

LI = (2] [k + 2][1], Dby (cup)
= [UJ[U]Lk], by (cup-cap 2),
and for the second
Uk +2][k+2] = [k][1][k + 2], by (cup)
= |k|[K]L1], by (cup-cap 1).
We derive analogously the following dual equations of £, for I < k:
[11k] = [k1[1],
[k + 2][1] = [11[k].



4 DOSEN AND PETRIC

So in K, we have the equations

[kle = c[k],
[Kle = c[k],

which yield the equation tc = ct for any term t.

3. Finite multisets, circular forms and ordinals

Let an o-monoid be a monoid with an arbitrary unary operation o, and consider
the free commutative o-monoid F generated by the empty set of generators. In F
the operation o is a one-one function.

The elements of F may be designated by parenthetical words, i.e., well-formed
words in the alphabet {(,)}, which will be precisely defined in a moment, where the
empty word stands for the unit of the monoid, concatenation is monoid multipli-
cation, and o(a) is written simply (a). Parenthetical words are defined inductively
as follows:

(0) the empty word is a parenthetical word;
(1) if a is a parenthetical word, then (a) is a parenthetical word;
(2) if a and b are parenthetical words, then ab is a parenthetical word.

We consider next several isomorphic representations of F, via finite multisets,
circular forms in the plane and ordinals.

If we take that () is the empty multiset, then the elements of F of the form
(a) may be identified with finite multisets, i.e., the hierarchy of finite multisets
obtained by starting from the empty multiset () as the only wrelement. To obtain
a more conventional notation for these multisets, just replace () everywhere by 0,
replace the remaining left parentheses ( by left braces { and the remaining right
parentheses ) by right braces }, and put in commas where concatenation occurs.

The elements of F may also be identified with nonintersecting finite collections
of circles in the plane factored through homeomorphisms of the plane mapping one
collection into another (cf. [12, Section II]). For this interpretation, just replace (a)
by (@). Since we will be interested in particular in this plane interpretation, we call
the elements of F circular forms. The empty circular form is the unit of 7. When
we need to refer to it we use e. We refer to other circular forms with parenthetical
words.

The free commutative o-monoid F has another isomorphic representation in
the ordinals contained in the ordinal ¢y = min{¢ | w® = ¢}, i.e., in the ordinals
lesser than 9. By Cantor’s Normal Form Theorem (see, for example, [15, VIL.7,
Theorem 2, p. 248], or [16, IV.2, Theorem 2.14, p. 127],), for every ordinal o > 0
in g¢ there is a unique finite ordinal n > 1 and a unique sequence of ordinals
ay > -+ 2 a, contained in a, i.e., lesser than «, such that & = w® + --- + W,
The natural sum o § g of

a:wa1+...+wa", a1 2 2 Qp,
ﬂ:w51+...+wﬂm, ﬂlz"'Zﬂma
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is defined as w" + --- + w+™ where v1,...,Yn+m iS obtained by permuting
the sequence ai,...,0p,081,--.,0m so that v4 > -+ > 74, (this operation
was introduced by Hessenberg; see [15, p. 252] or [16, p. 130]). We also have
a0 = 0fa = a. The natural sum § and the ordinal sum + don’t coincide
in general: f# is commutative, but + is not (for example, w = 1+ w # w + 1,
but 1fw =wil =w+1= w’ + w?). However, if a; > -+ > ay, then
WA 4w = L fw®n,

Let w be the unary operation that assigns to every a € ¢q the ordinal w® € .
Then it can be shown that the commutative o-monoid (gg, f,0,w) is isomorphic
to F by the isomorphism ¢ : g9 — F such that ¢(0) is the empty word and

W + -+ w*) = .. ) = (L)) - (am))-
That the function t=! : F — ¢ defined inductively by
1"He) =0,
v Hab) =" Ha) § 7 H(D),
(@) =w @
is the inverse of « is established by easy inductions relying on the fact that

vatB) = va)uB).

It is well known in proof theory that the ordinal £9 and natural sums play an
important role in Gentzen’s proof of the consistency of formal Peano arithmetic
PA (see [7, Paper 8, §4]). Induction up to any ordinal lesser than &g is derivable
in PA; induction up to €9, which is not derivable in PA, is not only sufficient, but
also necessary, for proving the consistency of PA (see [7, Paper 9]).

From the isomorphism of F with (g, ,0,w ) we obtain immediately a normal
form for the elements of F. Circular forms inherit a well-ordering from the ordinals,
and we have the following inductive definition. The empty word is in normal
form, and if ai,...,a,, n > 1, are parenthetical words in normal form such that
a1 = .-+ = ap, then (a1)...(ap) is in normal form. We call this normal form of
parenthetical words the Cantor normal form.

fLet a commutative o-monoid be called solid iff it satisfies

(solid) o(a) = o(1)a,

where 1 is the unit of the monoid. The free solid commutative o-monoid F' gener-
ated by the empty set of generators is isomorphic to the structure (N, +,0,... +1)
by the isomorphism that assigns to n the sequence of n pairs ( ). So (solid) makes
(€0, 8, 0,w ) collapse into (w,§,D,... +1). For k € N, let kN = {kn | n € N} and
EN = {k" | n € N}. If k > 1, then (N, +,0,...+1) is isomorphic to (kN, +,0, ...+k),
which for k£ > 2 is isomorphic to (kN,-,1,... k).

The equation (solid) is what a unary function o : M — M, for a monoid M,
has to satisfy to be in the image of the Cayley monomorphic representation of M in
MM which assigns to every a € M the function f, € MM such that f,(b) = ab.
In the presence of (solid), the function fo,) will be equal to oo f,. The equation
(solid) can be replaced by o(ab) = o(a)b, and in commutative o-monoids it could,
of course, as well be written o(a) = ao(1).
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4. Normal forms in £, and K,

For k € N7 let cg be the term 1 of £,. For a > 0 an ordinal in £y whose
Cantor normal form is w®* + - .- +w** let the term cf of L, be defined inductively
as

L 02-14-1 (k] ... k] 03-7-1 [k].

Next, let af be the term k], and let af be the term |k]c ;. Similarly, let b} be
the term [k], and let by be the term ¢ [k].
Consider terms of £, of the form

31 Bm 71 Vi a1
b]-1 ...bj Chy -+ Cpy @

m

ale..agr

where n,m,l 20, n+m+121, 51> > jJm, k1 <+ <k, i3 <+ <y, and
for every p € {1,...,1} we have 7, # 0. If n is 0, the sequence ag' ...a;" is empty,
and analogously if m or [ is 0. Terms of £, of this form and the term 1 will be
said to be in normal form.

In the definition of normal form we could have required that ky > --- > ky,
or, as a matter of fact, we could have imposed any other order on these particular
indices, with the same effect. We have chosen the order above for the sake of
definiteness. (Putting aside complications involving the terms cff and the ordinals,
the idea of our normal form may be found in [1, p. 106].

To reduce terms of £, to normal form we use an alternative formulation of £,
which is obtained as follows. Now the generators are the a terms af, the b terms
by and the ¢ terms cf for k € Nt and a € go. These terms are now primitive, and
not defined. We generate terms with these generators, 1 and multiplication, and
we stipulate the following equations for [ < k:

(1) 1t=t, tl=t,

(2) t(uv) = (tu)v,

(aa) aga; = afagH,

(bb)  bby = b ,bf,

@) &=1,

(c2) ey = czw,

(ce) cgclﬁ = clﬁcg, for I < k,

ab equations:

abl) af‘bf_i_2 = bfa;",
ab2) ag+2blﬁ = blﬁag,

(
(
(ab3.1) agbg_H = cfcg_,_l,
(
(

ab 3.2) ag+1b£ = cgcf_H,

ab3.3) a2l =",
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ac equations:

(@) agq] = qaf,
(ac2) afcl,, = cyaf,
(ac3) agel,, = agm,
bc equations:
(bel) b} =bc],
(bc2) cz+2blﬂ =v’c),
(be3)  cf . bp =bi".

It is tiresome, but pretty straightforward, to derive all these equations in the
original formulation of £, for defined ¢, a and b¢, while with |k]| defined as aj
and [k] defined as bY, we easily derive in the new formulation the equations of the
original formulation of £,. We can, moreover, derive in the new formulation the
inductive definitions of cf, af and bg. We can then prove the following lemma for
Lo

NORMAL FORM LEMMA. Ewvery term is equal to a term in normal form.

Proor. We will give a reduction procedure that transforms every term ¢ of
L, into a term t' in normal form such that ¢ = ¢' in £,. (In logical jargon, we
establish that this procedure is strongly normalizing—namely, that any sequence
of reduction steps terminates in a term in normal form.)

Take a term ¢ in the new alternative formulation of £, and let subterms of
this term of the forms on the left-hand sides of the equations of the alternative
formulation except (2) be called redezes. A reduction consists in replacing a redex
of ¢t by the term on the right-hand side of the corresponding equation. Note that
the terms on the left-hand sides of these equations cover all possible cases for terms
of the forms agb?, aZc) and ¢]b?, and all these cases exclude each other.

A subterm of ¢ which is an a term will be called an a subterm of t, and anal-
ogously with b and c. For a particular subterm af of ¢ let o(af) be the number
of b subterms of ¢ on the right-hand side of a§ in t. Let ny be the sum of all the
numbers o(ay) for every a subterm af of t. If there are no a subterms of ¢, then
ny is zero.

For a particular subterm af of ¢ let o,(a$) be the number of a subterms af of
t on the right-hand side of af in ¢ such that | < k. Let o, be the sum of all the
numbers o, (af) for every a subterm aj of ¢t. For a particular subterm bf of ¢ let
a5(b7) be the number of b subterms b of ¢ on the left-hand side of b in ¢ such
that | < k. Let op be the sum of all the numbers ab(bf ) for every b subterm bf of
t. For a particular subterm ¢ of ¢ let 7(c;') be the number of a subterms on the
left-hand side ¢;' in ¢ plus the number of b subterms on the right-hand side of ¢] in
t. Let 7 be the sum of all the numbers 7(¢]') for every ¢ subterm ¢] of t. Let v, be
the number of ¢ subterms of ¢, and let ;1 be the number of subterms 1 of t. Then
let no be o, +0p + 7+ 20, + 1.
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Let o. be defined as o, save that a is everywhere replaced by ¢, and let ns
be o.. With reductions based on (¢2) and (cc), the number ng decreases, while
ny and ny don’t increase. With reductions based on (1), (c1), (aa), (bb) and the
ac and bc equations, ny decreases, n; doesn’t change, and n3 may even increase
in case we apply (ac2) or (bc2). With reductions based on the ab equations, ny
decreases, while ny and n3 may increase. Then we take as the complezity measure
of t the ordered triple (n1,n2,n3). These triples are well-ordered lexicographically,
and with every reduction the complexity measure decreases. So by induction on
the complexity measure, we obtain that every term in the new formulation is equal
to a term without redexes, and it is easy to check that such a term stands for a
term in normal form of the original formulation of £,,. O

Let ¢ stand for [k], where k € NT. Let ¢ be the empty sequence, and let ¢"*!
be ¢"c. Consider terms of £, of the form

(] [im 1 i) - - - in]

where n,m,l >0, n+m+1>1,5, >--- > jn and i; < --+ < i,. Terms of this
form and the term 1 will be said to be in K-normal form. (We could as well put
¢! on the extreme left, or on the extreme right, or, actually, anywhere, but for the
sake of definiteness, and, by analogy with the normal form of £, we put ¢ in the
middle.)

We can easily derive from the Normal Form Lemma for £, the Normal Form
Lemma for K, which says that every term is equal in K, to a term in K-normal
form. For that it is enough to use the uniqueness of ¢ and t¢c = ct. However,
the Normal Form Lemma for K, has a much simpler direct proof, which does not
require the introduction of an alternative formulation of X,,. This proof is obtained
by simplifying the proof of the Normal Form Lemma for £,. The complications of
the previous proof were all due to distinguishing [k] from [k + 1] and to the absence
of t¢c = ¢t. In K, we have in fact assumed (solid), and the ordinals in £y have
collapsed into natural numbers.

5. Friezes

By a one-manifold with boundary we understand a Hausdorff topological space
whose points have open neighbourhoods homeomorphic to the real intervals (—1,1)
or [0,1), the boundary points having the latter kind of neighbourhoods. For a > 0
a real number, let R, be [0,00) % [0,a]. Let {(z,a) | z > 0} be the top of R, and
{(z,0) | £ > 0} the bottom of R,.

An w-diagram D in R, is a compact one-manifold with boundary with denu-
merably many connected components embedded in R,

such that the intersection of D with the top of R, is ¢(D) = {(i,a) | i € NT}
the intersection of D with the bottom of R, is b(D) = {(¢,0) | i € Nt} and
t(D) U b(D) is the set of boundary points of D.

It follows from this definition that every w-diagram has denumerably many
components homeomorphic to [0,1], which are called threads, and at most a de-
numerable number of components homeomorphic to S, which are called circular



THE GEOMETRY OF SELF-ADJUNCTION 9

components. The threads and the circular components make all the connected
components of an w-diagram. All these components are mutually disjoint. Every
thread has two end points that belong to the boundary ¢(D) U b(D). When one
of these end points is in (D) and the other in b(D), the thread is transversal. A
transversal thread is vertical when the first coordinates of its end points are equal.
A thread that is not transversal is a cup when both of its end points are in #(D),
and it is a cap when they are both in b(D).

A friezeis an w-diagram with a finite number of cups, caps and circular compo-
nents. Although many, but not all, of the definitions that follow can be formulated
for all w-diagrams, and not only for friezes, we will be interested here only in
friezes, and we will formulate our definitions only with respect to them. The no-
tion of frieze corresponds to a special kind of tangle of knot theory, in which there
are no crossings (see [4, p. 99], [19, Chapter 9], [11, Chapter 12]).

For D; a frieze in R, and D, frieze in Ry, we say that D; is L-equivalent to
D,, and write Dy =, D,, iff there is a homeomorphism h : R, — Ry such that
h[D:] = D, and for every i € N* we have h(i,0) = (i,0) and h(i,a) = (i,b). It is
straightforward to check that £L-equivalence between friezes is indeed an equivalence
relation.

This definition is equivalent to a definition of £-equivalence in terms of ambient
isotopies. The situation is analogous to what one finds in knot theory, where one
can define equivalence of knots either in terms of ambient isotopies or in a simpler
manner, analogous to what we have in the preceding paragraph. The equivalence
of these two definitions is proved with the help of Alexander’s trick (see [4, Chapter
1B]), an adaptation of which also works in the case of L-equivalence.

For D; a frieze in R, and D, a frieze in Ry, we say that D is K-equivalent
to Ds, and write Dy & D, iff there is a homeomorphism A : D; — D> such
that for every i € N we have h(i,0) = (i,0) and h(i,a) = (i,b). It is clear that
this defines an equivalence relation on friezes, which is wider than L-equivalence:
namely, if D; 2, Dy, then D; = D,, but the converse need not hold. If D,
and D, are without circular components, then Dy =2, D, iff D; = D,;. The
relation of K-equivalence takes account only of the number of circular components,
whereas L-equivalence takes also account of whether circular components are one
in another, and, in general, in which region of the diagram they are located.

If 4 stands for (i,a) and —i stands for (7,0), we may identify the end points of
each thread in a frieze in R, by a pair of integers in Z—{0}. For M an ordered set
and for a,b € M such that a < b, let a segment [a,b] in M be {z € M | a < z < b}.
The numbers a and b are the end points of [a,b]. We say that [a, b] encloses [c,d]
iff a < cand d < b. A set of segments is nonoverlapping iff every two distinct
segments in it are either disjoint or one of these segments encloses the other.

We may then establish a one-to-one correspondence between the set © of
threads of a frieze and a set Sg of nonoverlapping segments in Z —{0}. Every
element of Z —{0} is an end point of a segment in Se. Since enclosure is irreflexive
and transitive, Sg is partially ordered by enclosure. This is a tree-like ordering
without root, with a finite number of branching nodes. For example, in the frieze
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3 4

u 1\/2 J 6 7 08 9
© o
1NN

0 1 2 3 4

the set © of threads corresponds to the following tree in Sg:

[—4,-3] [1,2]
| |
[_57_2] [_173] [475]

[_107_9] [_87_7] [_676]

\/

[—11,7]

[—12,8]

[—13,9]

[-13 —n,9+ n]

The branching points of this tree are [—6, 6] and [—11, 7]. This tree-like ordering
of Se induces an isomorphic ordering of ©.

If from a frieze D in R, we omit all the threads, we obtain a disjoint family of
connected sets in R,, which are called the regions of D. Every circular component
of D is included in a unique region of D. The closure of a region of D has a
border that includes a nonempty set of threads. In the tree-like ordering, this set
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must have a lowest thread, and all the other threads in the set, if any, are its
immediate successors. Every thread is the lowest thread for some region. In our
example, in the region in which one finds as circular components a circle and a
square, the lowest thread is the one corresponding to [—11, 7], and its immediate
successors correspond to [—10,—9], [-8, —7] and [—6, 6]. Assigning to every region
of a frieze the corresponding lowest thread in the border establishes a one-to-one
correspondence between regions and threads.

The collection (possibly empty) of circular components in a single region of a
frieze corresponds to a circular form (see Section 3), which can then be coded by
an ordinal in g¢. In every frieze we can assign to every thread the ordinal that
corresponds to the collection of circular components in the region for which this is
the lowest thread. This describes all the circular components of a frieze. (In an w-
diagram that is not a frieze it is possible that one collection of circular components,
which is in a region without lowest thread, is not covered.)

Then it is easy to establish the following.

REMARK 1£. The friezes D; and D, are L-equivalent iff
(i) the end points of the threads in D; are identified with the same pairs of integers
as the end points of the threads in D5,
(ii) the same ordinals in ¢ are assigned to the threads of Dy and D, that are
identified with the same pairs of integers.

This means that the L-equivalence class of a frieze may be identified with a
function f : S — €9, where the domain Sg of f is a set of nonoverlapping segments
in Z—{0}.

REMARK 1K. The friezes D; and D> are K-equivalent iff
(i) the end points of the threads in D; are identified with the same pairs of integers
as the end points of the threads in D5,
(ii) D; and D, have the same number of circular components.

This means that the K-equivalence class of a frieze may be identified with a
pair (Se,l) where Sg is a set of nonoverlapping segments in Z— {0}, and [ is a
natural number, which is the number of circular components.

The set of L-equivalence classes of friezes is endowed with the structure of a
monoid in the following manner. Let the unit frieze I be {(i,y) | i € NT and y €
[0,1]} in Ry. So I has no circular components and all of its threads are vertical

threads. We draw I as follows:
1

1 2 3

For two friezes D1 in R, and D, in Ry let the composition of D, and D, be
defined as follows:

D> oDy ={(z,y +b) | (z,y) € D1} U Ds.
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It is easy to see that Dy o Dy is a frieze in Ry4p.

For 1 < ¢ < 4, let D; be a frieze in R,, and suppose Dy =, D3 with the
homeomorphism h; : Ry, — Ra, and Dy =y D4 with the homeomorphism hy :
R,, = Rs,. Then DyoD; =, Dy o D3 with the homeomorphism h : Ry, 44, —
R, 1 q, defined as follows. For p! the first and p? the second projection, let

h(.’L‘ ) — (pl(hl(xay - a2))ap2(h1(xay - a2)) + a4)a lfy > az
v = hQ(ny)J lf.’USClQ

So the composition o defines an operation on L-equivalence classes of friezes.
We can then establish that

(1) ToD=;D, DoI=D,
(2) Dso(DyoD:) =g (D3oDs)eDs.

The equivalences of (1) follow from the fact that the threads of I oD, Do I and
D are identified with the same pairs of integers, because all the threads of I are
vertical transversal threads, and from the fact that I has no circular component.
Then we apply Remark 1£. For the equivalence (2), it is clear that D3 o (D3 o Dy)
is actually identical to (D3 o D3) o Dy. So the set of L£-equivalence classes of friezes
has the structure of a monoid, and the monoid structure of the set of K-equivalence
classes of friezes is defined quite analogously. We will show for these monoids that
they are isomorphic to £, and K, respectively.

6. Generating friezes

For k € Nt let the cup frieze V}, be the frieze in R; without circular compo-
nents, with a single semicircular cup with the end points (k,1) and (k + 1,1); all
the other threads are straight line segments connecting (¢,0) and (i,1) for i < k
and (4,0) and (¢ + 2,1) for ¢ > k. This frieze looks as follows:

' N\

1 2 k-1 k k+1 k+2 k43

For k € N7 let the cap frieze Ay, be the frieze in R; that is defined analogously
to Vi and looks as follows:
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)

1 2 k-1 k k+1 k+2 k43

Let a frieze without cups and caps be called a circular frieze. Note that ac-
cording to this definition the unit frieze I is a circular frieze. For circular friezes
we can prove the following lemma.

GENERATING CIRCLES LEMMA. FEwvery circular frieze is L-equivalent to a
frieze generated from the unit frieze I and the cup and cap friezes with the op-
eration of composition o .

PROOF. If there are no circular components in our circular frieze, then, by
Remark 1L, this frieze is L-equivalent to the unit frieze I. Suppose then that there
are circular components in our circular frieze, and take a circular component in this
frieze that is not within another circular component. For example, let that be the
right outer circle in the following frieze

a

~lo®

1 k-1 & k41 k+2
We replace this by
k k+1
o|©|°
1 k-1 k k+1

which is £-equivalent to the original frieze. In the frieze in the middle there are less
circular components than in the original frieze, and the lemma follows by induction.
(By judicious choices, we can ensure that the composition of cup and cap friezes
we obtain at the end corresponds to a term of £, in normal form.) O
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Note that the unit frieze I is L-equivalent to Vi o Agy1 (or to Vg1 o Ag), for
any k € NT, so that, strictly speaking, the mentioning of I is superfluous in the
preceding and in the following lemma.

GENERATING LEMMA. FEvery frieze is L-equivalent to a frieze generated from
the unit frieze I and the cup and cap friezes with the operation of composition o .

Proor. We proceed by induction on the sum of the numbers of cups and caps
in the given frieze. The basis of the induction is covered by the Generating Circles
Lemma. If our frieze has cups, it must have a cup whose end points are (7,a) and
(1 4+ 1,a). If, for example, we have

| o

(N A

1 i—2 i—1 & i+1 i+2 43

¥

oy

1 i—2 i—1 4 i+1 i+2 i43

we replace this by

which is L-equivalent to the original frieze. In the lowest frieze there are less cups,
and the same number of caps. We apply to this frieze the induction hypothesis, and
we apply the Generating Circles Lemma to the highest frieze. We proceed analo-
gously with caps. (Again, by judicious choices, we can ensure that the composition
of cup and cap friezes we obtain at the end corresponds to a term of £, in normal
form.) O

Since L-equivalence implies K-equivalence, we have the Generating Circles
Lemma and the Generating Lemma also for £-equivalence replaced by K-equivalence.
It follows from the Generating Lemma that there are only denumerably many
L-equivalence classes of friezes, and the same holds a fortiori for K-equivalence
classes. If we had allowed infinitely many cups or caps in friezes, then we would
have a continuum of different £ or K-equivalence classes of friezes (which is clear
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from the fact that we can code 0-1 sequences with such friezes). The corresponding
monoids could not then be finitely generated, as £, and K, are. With infinitely
many circular components we would have a continuum of different L-equivalence
classes, but not so for K-equivalence classes (see Section 9).

7. L, and K, are monoids of friezes

Let F be the set of friezes. We define as follows a map 4 from the terms of L,
into F:

6(Lk]) = Vi,
6([k]) = Ak,

5(1) =1,

3(tu) = 8(t) o 5(u)

We can then prove the following.

SOUNDNESS LEMMA. Ift =wu in L, then §(t) =, 6(u).

PrOOF. We already verified in Section 5 that we have replacement of equiv-
alents, and that the equations (1) and (2) of the axiomatization of £, are satisfied
for I and o. It just remains to verify the remaining equations, which is quite
straightforward. O

We have an analogous Soundness Lemma for K, and =, involving the addi-
tional checking of (cup-cap 4).

Let [F]z be the set of L-equivalence classes [D]; = {D' : D =, D'} for all
friezes D (and analogously with £ replaced by K). This set is a monoid whose unit
is [I]z and whose multiplication is defined by taking that [D1]z[Ds]z is [Dy © Da]r.-
The Soundness Lemma guarantees that there is a homomorphism, defined via 6,
from £, to the monoid [F]z, and the Generating Lemma guarantees that this
homomorphism is onto. We have the same with £ replaced by K. It remains to
establish that these homomorphisms from £, onto [F]z and from K, onto [Flx
are also one-one.

We can prove the following lemmata.

AUXILIARY LEMMA. Ift and u are terms of L, in normal form and 6(t) =,
d(u), then t and u are the same term.

ProOOF. Let ¢t and u be the following two terms:

51 Bm 11 M Q1 an
bj1 ...bjmck1 ceCp QA"
U ! ’ ! 7 ’
I} o e
Wr W alt L
J1 Tt F1 o ]

If ai' ...a3" is different from a;.l,ll . .az’t', then either n <n' orn’ <nor (n=n'
and for some p € {1,...,n} either i, # i}, or a;, # a;)). Since iy < --- < in, each
index i, corresponds to the left end point of a cup. So if n < n' or n' < n or
ip # iy, then () and §(u) don’t have the same left end points of cups, and hence,
they cannot be L-equivalent by Remark 1£(%). If, on the other hand, §(t) and é(u)

have cups identified with the same pairs of integers, then for some p € {1,...,n}
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we have o, # o, and, since different ordinals are assigned to threads of J(t) and
d(u) identified with the same pairs of integers, by Remark 1L£(i4), the friezes 0(t)
and §(u) cannot be L-equivalent. We reason analogously with a replaced by b and
c. O

COMPLETENESS LEMMA.  If §(t) &, 6(u), then t = u in L.

PrOOF. By the Normal Form Lemma of Section 4, for every term ¢ and every
term u of £, there are terms ¢’ and «' in normal form such that t = ¢ and u = v’
in £,. By the Soundness Lemma, we obtain §(t) =, §(¢') and §(u) =, §(u'), and
if §(t) =2, d(u), it follows that §(t') =, d(u'). Then, by the Auxiliary Lemma, the
terms ¢ and u' are the same term, and hence t = u in £,,. O

The Auxiliary Lemma and the Completeness Lemma are easily obtained when
L is replaced by K. So we may conclude that our homomorphisms from £, onto
[F]z and from K, onto [F]x are one-one, and hence £, is isomorphic to [F]z and
K. is isomorphic to [Flk.

We may also conclude that for every term ¢ of £, there is a unique term ¢’
in normal form such that t = ¢ in £,. If t =¢ and t = t" in L, then ¢’ = ¢"
in £,, and hence, by the Soundness Lemma, §(t') =, §(¢"). If t' and ¢ are in
normal form, by the Auxiliary Lemma we obtain that ¢ and ¢ are the same term.
We conclude analogously that the X-normal form is unique in the same sense with
respect to Ky, .

8. The monoids £,, and £,

The monoid £, has for every i € {1,...,n — 1} a generator h;, called a diapsis
(plural diapsides), and also for every ordinal o € gg and every k € {1,...,n+1} a
generator cy, called a c-term. The number n here could in principle be any natural
number, but the interesting monoids £, have n > 2. When n is 0 or 1, we have no
diapsides. The diapsis h; corresponds to the term [i]|i] of £,. The terms of £,
are obtained from these generators and 1 by closing under multiplication.

We assume the following equations for £,:

(1) 1=t tl=t,

2)  tw) = (tu),

() 1=¢,

(2) g =",

(cc) @d =cler, fork#1,
(h1)  hihjpa = hjohi, fori<j,
(h2)  hihit1hi = hi,

(hel’)  hicy =cgh;, fork#i+1,
(he2')  hicSi1h; = 2" hy,

(he3)  cfh; = cfyoh;.
With the help of (¢2) we can derive (cc) for k =1 too.
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With h; defined as [i][i] and ¢f defined as in Section 4, we can check easily
that all the equations above hold in £,. We can make this checking also with
friezes. So L,, is a submonoid of £, .

An n-frieze is a frieze such that for every k > n + 1 we have a vertical thread
identified with [—k, k] and for every k > n + 2 the ordinal of circular components
assigned to the thread [—k,k] is 0. Each n-frieze without circular components
may be conceived up to L-equivalence or K-equivalence, which here coincide, as
an element of the free (noncommutative) o-monoid generated by the empty set
of generators (cf. Section 3). This is because the threads of each n-frieze without
circular components are identified with a rooted subtree of Sg (see Section 5), whose
root is [—(n+1),n+ 1], and this rooted tree may be coded by a parenthetical word.

If F, is the set of n-friezes, let [F,] be the set of L-equivalence classes of these
friezes, and analogously for [Fp]x. The set [F,]cz has the structure of a monoid
defined as for [F|..

Then it can be shown that the monoid [F,]. is isomorphic to £,, with the help
of a map 4 : £,, — F,, that maps a diapsis hy, into the diapsidal n-frieze Hy,, which
is the n-frieze in Ry, for some b > 1, without circular components, with a single
semicircular cup with the end points (k, b) and (k + 1,b), and a single semicircular
cap with the end points (k,0) and (k + 1,0); all the other threads are vertical
threads orthogonal to the z axis. A diapsidal n-frieze Hy looks as follows:

’ N\

[

1 k-1 k k+1 k42

The c-term cf is mapped by 0 into the frieze

where o stands for an arbitrary circular form corresponding to . We also have
(1) = I and §(tu) = 6(t) e 6(u), as before. It is clear that the unit frieze I is an
n-frieze for every n € N, and that the composition of two n-friezes is an n-frieze.

We will not go into details of the proof that we have an isomorphism here,
because we don’t have much use for £,, in this work. A great part of this proof is
analogous to what we had for £, or to what we have for K, in [2] (see below).
The essential part of the proof is the definition of unique normal form for elements
of £,,. Here is how such a normal form would look like.
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For1<j<i<n—1and a,pf € g, let the block hﬁf] be defined as

C;-l_;’_lhihi_l . hj+1h'jcjg+1'
A term of £,, in normal form will be 1, or it looks as follows:

RN RO it

where n,l >0,k <---<kj,by <---<bp,and ¢; < --- < ¢,. All the c-terms on
the left-hand side are such that they could be permuted with all the blocks, and
pass to the right-hand side; i.e., they would not be “captured” by a block. We must
also make a choice for the indices &, of these c-terms to ensure uniqueness, and -,
should not be 0.

One way to define the monoid /C,, is to have the same generators as for £,
and the following equations, which we add to those of L,:

w® _ a+l

C, _Ck )
a _ .«
Ck _Ck+1‘

The first equation has the effect of collapsing the ordinals in £¢ into natural numbers
(as the equation (solid) of Section 3), while the second equation has the effect of
making superfluous the lower index of c-terms.

An alternative, and simpler, axiomatization of K,, is obtained as follows. The
monoid K, has for every i € {1,...,n — 1} a generator h;, called again a diapsis,
and also the generator c, called the circle. The terms of K,, are obtained from these
generators and 1 by closing under multiplication. For K,, we assume the equations
(1), (2), (h1), (h2) and the following two equations:

(hel)  hie = chg,
(hCQ) hihi = Chi.

The equations (h1), (h2) and (hc2), which may be derived from Jones’ paper
[9, p. 13], and which appear in the form above in many works of Kauffman (see
[14], [13, Section 6], and references therein), are usually tied to the presentation
of Temperley-Lieb algebras. They may, however, be found in Brauer algebras too
(see [21, pp. 180-181]).

With h; defined as [7]|¢] and ¢ defined as [7|[i] we can check easily that K,
is a submonoid of £, .

For 1 < j <4< n—1,let the block hj; ;) be defined as h;hi—1...hj11h;. The
block hy; ;), which is defined as h;, will be called singular. (One could conceive |i]
as the infinite block ... h;1ohiy1h;, whereas [i] would be h;hiy1hiyo...) Let ¢! be
¢, and let ¢! be ce.

A term is in Jones normal form iff it is either of the form clh[bl,al] N T
for ,k>0,l4+k>1,a; <---<apand b <---< by, or it is the term 1 (see [9,
§4.1.4, p. 14]). As before, if [ = 0, then ¢! is the empty sequence, and if k = 0, then
h[b1,a1] . h[bk,ak] is empty.

Then we can prove the following lemma as in [2]. (A lemma with the same
content is established in a different manner in [9, pp. 13-14] and [8, pp. 87-89]).
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NORMAL FORM LEMMA. Ewvery term of K, is equal in K, to a term in Jones
normal form.

We ascertained above that the unit frieze I of Section 5 is an n-frieze for
every n € N. We have also defined there what is the diapsidal n-frieze H; for
i € {1,---,n—1}. The circular n-frieze C is the n-frieze that differs from the unit
frieze I by having a single circular component, which, for the sake of definiteness, we
choose to be a circle of radius 1/4, with centre (1/2,1/2). We have also mentioned
that the composition of two n-friezes is an n-frieze. Then we can prove the following
lemma as in [2]. (Different, and more sketchy, proofs of this lemma may be found
in [20, Chapter VIII, Section 26] and [13, Section 6]; in [1, Proposition 4.1.3] one
may find a proof of something more general, and somewhat more complicated.)

GENERATING LEMMA. Every n-frieze is K-equivalent to an n-frieze generated
from I, C and the diapsidal n-friezes H;, for i € {1,--- ,n — 1}, with the operation
of composition o .

Let D,, be the set of n-friezes. We define as follows a map § from the terms of
K, into D,,:

d(h;) = H;,

5(c) = C,

5(1) =1,
5(tu) = 8(2) o 6(u)

We can then prove easily the following.
SOUNDNESS LEMMA. Ift =w in K, then 6(t) =k §(u).

We want to show that the homomorphism from K, to [F,]x defined via 4,
whose existence is guaranteed by the Soundness Lemma, is an isomorphism. The
Generating Lemma guarantees that this homomorphism is onto, and it remains to
establish that it is one-one. The proof of that is based on the following lemmata,
proved in [2].

KEY LEMMA. If t is the term hpy, o) -« hipy 0] with a1 < -+ < ap and
by <--- < by, then T(g(t) is ai,...,ar and B5(t) is b1,...,bg.

AUXILIARY LEMMA If t and u are terms of K, in Jones normal form and
8(t) =i 6(u), then t and u are the same term.

COMPLETENESS LEMMA. If §(t) =k 6(u), thent = u in K,.

This last lemma is proved analogously to the Completeness Lemma of the
preceding section by using the Normal Form Lemma, the Soundness Lemma and
the Auxiliary Lemma of the present section. With this lemma we have established
that KC,, is isomorphic to [Fp]xk.

By reasoning as at the end of the preceding section, we can conclude that for
every term t of K,, there is a unique term ¢’ in Jones normal form such that ¢t = ¢’
in KC,,.
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9. The monoid 7,

Let J, be the monoid defined as £, save that for every k& € NT we require

also

[kITk] =1,
ie., [k] = 1. It is clear that all the equations of K, are satisfied in J,,, but not
conversely. In 7, circles are irrelevant.

The monoid 7, is obtained by extending K,, with ¢ = 1, or ¢ = 1. Alterna-
tively, we may omit c-terms, or the generator ¢, and assume only the equations (1),
(2), (h1) and (h2) of the preceding section, together with the idempotency of h;,
namely, h;h; = h;. (These axioms may be found in [9, p. 13]). The monoids 7,
are submonoids of 7.

Let a J-frieze be an w-diagram with a finite number of cups and caps and
denumerably many circular components. (Instead of “denumerably many circular
components” we could put “k circular components for a fixed infinite cardinal ”;
for the sake of definiteness, we chose k to be the least infinite cardinal w.) We
define KC-equivalence of J-friezes as for friezes, and we transpose other definitions
of Section 5 to J-friezes in the same manner. It is clear that the following holds,
which means that circular components are irrelevant.

REMARK 17. The J-friezes D, and D, are K-equivalent iff the end points of
the threads in D; are identified with the same pairs of integers as the end points
of the threads in Ds.

The unit J-frieze is defined as the unit frieze I save that we assume that it
has denumerably many circular components, which are located in some arbitrary
regions. With composition of J-friezes defined as before, the set of K-equivalence
classes of J-friezes makes a monoid.

By adapting the argument in Sections 6 and 7, we can show that this monoid
is isomorphic to J,,. We don’t need any more the Generating Circles Lemma, since
circular J-friezes are K-equivalent to the unit J-frieze. The cup and cap friezes
Vi, and Ay have now denumerably many circular components, which are located in
some arbitrary regions.

A J-n-frieze is defined as an n-frieze save that it has denumerably many circular
components. Then we can show by adapting the argument in the preceding section
that 7, is isomorphic to the monoid [F 7., ]k of K-equivalence classes of [J-n-friezes.

An alternative proof that the map from 7, to [Fz.n]k, defined analogously
to what we had in the preceding section, is one-one may be obtained as follows.
One can establish that the cardinality of [F7.,]x is the n-th Catalan number
(2n)!/(n!(n +1)!) (see the comment after the definition of n-frieze in the preceding
section; see also [13, Section 6.1, and references therein]). Independently, one es-
tablishes as in [9, p. 14] that the number of terms of 7, in Jones normal form is also
the n-th Catalan number. So, by the Normal Form Lemma of the preceding section,
the cardinality of 7, is at most the n-th Catalan number. Since, by the Generating
Lemma of that section, it is known that the map above is onto, it follows that it is
one-one. This argument is on the lines of the argument in [5, Note C, pp. 464-465],
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which establishes that the standard presentation of symmetric groups is complete
with respect to permutations. It can also be adapted to give an alternative proof of
the Completeness Lemma of the preceding section, which is not based on the Key
Lemma and the Auxiliary Lemma of that section.

10. The maximality of 7,

We will now show that 7, is maximal in the following sense. Let ¢ and u be
terms of £, such that ¢ = u does not hold in 7,. If X is defined as 7, save that
we require also t = u, then for every k € N* we have [k]|k] =1 in X. With the
same assumptions, for some n € N we have that X’ is isomorphic to the monoid
Z/n, i.e., the additive commutative monoid Z with equality modulo n.

For t a term of £,,, and for §(t) the corresponding J-frieze, defined analogously
to what we had in Section 7, let cups(t) € N be the number of cups in 4(¢), and
caps(t) € N the number of caps in 6(¢). For ¢t; and ¢2 terms of L, let the balance
B(t1,t2) € N of the pair (¢1,t2) be defined by

Blt1,ts) = |cups(ts) — cups(ts) + caps(tz) — caps(ty)).

Let X be defined as above. We will show that X is isomorphic to Z/3(¢,u). In
order to prove that we need first the following lemma.

BALANCE LEMMA. Ift; =ty holds in X, then for some n € N we have that
ﬂ(tla t2) = ’I’Lﬂ(t, u)

PrROOF. We proceed by induction on the length of the derivation of t; = ¢
in X. If t; = t5 holds in Tws then ﬁ(tl,tg) =0=0- ﬁ(t,u), and if ty =ty ist = u,
then B(t1,t2) = B(t,u). It is easy to see that B(t1,t2) = B(t2,t1). Next, if for some
ny,n2 € N we have B(t1,t2) = n18(t,u) and B(t2,t3) = n2f(t,u), then for some
21,29 € Z such that |z1| = ny and |z2] = ng

cups(t1) — cups(ta) + caps(tz) — caps(ty) = z18(t, u
cups(ta) — cups(ts) + caps(ts) — caps(tz) = 228(t, u

)

~— —

Then
cups(ty) — cups(tz) + caps(ts) — caps(t1) = (21 + 22) B(t, u),

and hence 3(t1,t3) = |21 + 22|6(t,u).
We also have that 3(t1,t2) = B(|lk]t1, |k]t2). To show that, we have the

following cases for 4(t;), i € {1,2}:

(1.1): (k,0) and (k + 1,0) are the end points of a single cap;

(1.2): (k,0) and (k + 1,0) are the end points of two caps;

(1.3): one of (k,0) and (k + 1,0) is the end point of a cap, and the other is

the end point of a transversal thread;
(2): (k,0) and (k + 1,0) are the end points of two transversal threads.

Here we illustrate §(|k|t;) in these various cases:
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(1.1)
a(t:)
()
/
3(Lk])
ko k+1
(1.2)
3(ti)
/A /A
/ /
3(Lk])
k k41 k  k+1
(1.3)
3(ts) /
/A
/
(LKD)
k k+1
(2)
(ts) /
3(Lk])
k k41

In cases (1.1), (1.2) and (1.3) we have

(1) cups(ti) = cups(|k]t:),
caps(ti) = caps(|k|t:) + 1;
and in case (2) we have

(2)  cups(ti) = cups(|k]t:) — 1,
caps(t;) = caps(|k|t;)-



THE GEOMETRY OF SELF-ADJUNCTION 23

When for both §(¢1) and 6(t2) we have (1), it is clear that 8(t1,t2) = B(|k]t1, [k]t2),
and the same if for both we have (2). If for one of d(¢;) we have (1) and for the
other (2), we have again this equality of balances.

We show analogously that 8(t1,t2) = B(t1[k],t2[k]), and since we have triv-
ially that

B(t1,t2)

B([k1t1, [k]t2)
(t1|k],t2|k])
(1t1,1t5)
(t11,t21),

B
B
B

we can conclude that for every term s of £,

B(t1,t2) = B(st1, st2)
= /B(tls,tQS).

From that the lemma follows. O

We have seen in Section 5 that every K-equivalence class of a frieze may be
identified with a pair (Se,!) where Sg is a set of nonoverlapping segments in Z—{0},
and [ is the number of circular components. For J-friezes [ is always w, and hence
every J-frieze is identified up to K-equivalence with Sg. To identify Sg of a J-
frieze it is enough to identify the rooted tree that makes the branching part of the
tree of Sg, which is the part of Sg from the leaves down to the lowest node after
which no node is branching. (This tree may consist of a single node.) We call this
rooted subtree of Sg the crown of Sg. In the example in Section 5, the lowest
node after which no node is branching is [—11, 7] and the crown is the tree above
[-11, 7], whose root is this node.

The transversal thread in the J-frieze that corresponds to the root of the
crown will be called the crown thread. Every [J-frieze has a crown thread. If the
end points of a crown thread are (k,0) and (I, a), we call (k,l) the crown pair. So
in our example the crown pair is (11,7). All threads on the right-hand side of the
crown thread are transversal threads identified with [—(k+n),l+n], for n > 1 and
(k,1) the crown pair.

Suppose t = u does not hold in 7, and let X be as before J, plus t = u. Let
[71] .- [dm1lé1] ... lin] be the normal form of ¢, and [ki]...[kp]|l1] ... lg] the
normal form of u. We show that there is a term v (built out of ¢ and ) such that
v =11in X, but not in 7.

Let s1 be |kp+ 1] ... k1 + 1], let so be [I;+1]...[lh + 17, let s} be |jm + 1]
... |J1 + 1], and, finally, let s} be [i, +1]...[i1 + 1]. It is clear that by (cup-cap
3) we have sjuss = 1 and sjtshb =1 in 7, while s;tso = 1 and sjush = 1 hold in
X.

(7) If m > p, then sitso = 1 cannot hold in J,, because the normal form of
s1tse has at least one cap, and analogously if n > ¢, because then the normal form
of s1ts2 has at least one cup. If m < p or n < g, then sjus, = 1 cannot hold in 7.
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(#4) If m = p and n = ¢, then we proceed by induction on m +n. f m+n =1,
then we have in X either [j1] = [ki] for j1 # ki, or |i1] = [l1] for 41 # I;.
If j1 < ki, then we have [j1]|k1 —1] = 1 in X, but not in J,. We proceed
analogously in the other cases of j; # ki and i1 # [;.

Suppose now m +n > 1 and m > 1. Let a cap-block [r,...,r — k] be
[r][r —1]...[r — k] forr € NT and k € N. Then the sequence of caps [j1] - - - [Jim]
can be written in terms of cap-blocks as

[r1,-csrr — kil - [Thy- oy — ki

such that 1 < h < m, r1 = j1, rh — kp = jm and r; — k; — 1441 = 2. Let
[r],...,7] — k] be the leftmost cap-block of [ki]...[km], as [r1,...,r1 — k1] is
the leftmost cap-block of [j1] ... [jm]- We have

|_T1+k‘1+1“_7'1,...,7“1—k’1-] =|_T1,...,T1—k1+1-|.
If ry + k1 = r] + k7, then
lri+k +1[ry,...,r =K ] =[rl,...,r — k] +17,

and from ¢ = u in X, we obtain |r; + k1 + 1]t = |71 + k1 + 1]w in X, but not in
Jw, since the difference in the normal forms of ¢ and u persists. We can then apply
the induction hypothesis, since the new m has decreased. If r1 + k1 > 7} + ki, then
for some 7'/

e+ ko + 1Tk Thm] = kil - [k ][]

(as can be ascertained from the corresponding J-friezes), and with [r; + k; + 1]t
= |ry + k1 + 1|u we are in case (i). All the other cases, where r1 + k; < r] + ki,
and where n > 1, are dealt with analogously.

We can verify that 8(¢t,u) = 8(v,1). If v is s1tss, then

B(t,u) = B(s1tsa, s1usz),

as we have seen in the proof of the Balance Lemma, and the right-hand side is
equal to 3(v,1). We reason analogously for the other possible forms of v.
If (k,1) is the crown pair of §(v), then |k — 1| = 28(v,1). The numbers k and [
cannot both be 1; otherwise, v = 1 would hold in 7,,. We have the following cases.
(1) Suppose k = [ > 1. If for some ¢ we have v = h; in J,, where h;
abbreviates [4]|¢], then in X we have h; = 1, and hence

hi = hihit1hi, by (h2)
= h/i:l:l7 by (1)
So for every k € NT we have hy, = 1 in X.
If for every ¢ we don’t have v = h; in J,,, then |k —1|v[k—1] =1in X, and

in the crown pair (k¥',1") of |k — 1|v[k — 1] we have k' < k and I' < . This is clear
from the following picture:
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6(Tk —17)

6(v)

=
6(lk —1])

k-1 k

We would have |k —1|v[k —1] =1 in J, only if we had v = hy_» in 7, as
can be seen from the following picture:

6([k —17)

d(v)

e
6(lk—1]) ---

There are several straightforward cases to consider in order to prove this as-
sertion. So |k —1|v[k —1] =1 does not hold in J,, and by induction we obtain
h; =1 in X for some i. So, as above, for every k € Nt we have hy =1 in X.

(2) If k #1, and min(k,l) = mq > 1, then |my —1|v[m; — 1] =1 in X, and
in the crown pair (k',1") of |[my — 1|v[my — 1] we have k' < k and !’ < . This is
clear from the following picture:

(71— 11) \\
N

6(v)

/
5(lL 1))

-1 1 k

We cannot have |m; — 1|v[m; — 1] =1 in J, because we must have |k'—1'| =
|k — 1|, as it is clear from the picture. We continue in the same manner until we
reach a term |m, — 1| ... |m; —1|v[my — 1]...[m, — 1], which we abbreviate by
v, such that v = 1 in X, and the crown pair of §(v') is either (1, — k + 1) or
(k—1+1,1). Suppose ! > k. Then in é(v') there must be a cup [i,7 + 1], and we
have
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That v'h; = v' is clear from the picture

5(hs) ‘

5(v")

We proceed analogously when k > [. As before, from h; = 1 we derive that for
every k € NT we have hy, =1 in X.

So, both in case (1) and in case (2), for every k € NT we have hy, = 1 in X.
Since

le][i+1 i +1] = [i+1], by (cup-cap 3),
with h;;1 = 1, we obtain |¢] = [i{+ 1] in X for every i € Nt. Analogously, we
obtain [i] = [i + 1] in X for every i € NT.

If [1]° and [1]° are 1, while [1]*¥+1 is [1]*[1] and [1]**! is [1]*[1], then
every element of X is either of the form |[1]* or of the form [1]* for some k € N.
To see that, start from the normal form of an element, identify all cups with |1],
all caps with [1], and then use [1][1] = 1.

So all the elements of X are the following

o [ % 110 1 [ (2% 23,

If A(t,u) = 0, then the Balance Lemma guarantees that all the elements of X’ above
are mutually distinct. Composition in X then behaves as addition of integers, where
1 is zero, and so X is isomorphic to Z = Z/0.

In case B(t,u) = n > 0, the elements of X above are not all mutually distinct.
We are then in case (2), and from v' = 1 we can infer [1|® =1, and also [1]™ = 1,
in X. Hence every element of X is equal to one of the following

1,1, ..t

and by the Balance Lemma these are all mutually distinct. Composition in X then
behaves as addition of integers modulo n, where 1 is zero, and so X' is isomorphic
to Z/n. So, in any case, we have that X is isomorphic to Z/3(t, u).

11. The monoids L4, and K.,

The monoid L., is defined as £, save that for every k € Z there is a generator
|k] and a generator [k], and there are two additional generators // and \\. The
equations of L4, are those of £, plus

LK1/ = /] 1k +1],
[EV/ = //Tk+11,
N/ =/\=1.
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We derive easily
Lk + 1]\ = \\[%],
[k +11\\ = \\[&].

The monoid K, has in addition the equation (cup-cap 4).

Let //° be the empty sequence, while //*+1 is //*//, and analogously for \\*.
We can define the normal form for terms of L4, as the normal form for £, of
Section 4 prefixed with either //* or \\* for ¥ € N. It is clear that combined with
the Normal Form Lemma of Section 4 the equations above enable us to reduce
every term to a term in normal form equal to the original term.

Let now R, be (—o00,00) % [0,a]. An Fw-diagram in R, is defined as an w-
diagram save that NV is replaced by Z. A + frieze is a +w-diagram with a finite
number of cups, caps and circular components.

The cups and caps |k| and [k] are mapped to =+ friezes analogously to what
we had before, while // and \\ are mapped into the L-equivalence classes of the

S
NN

One could conceive ////, i.e., // multiplied with itself, as the infinite block
. thlhoh_lh_g ‘e and \\\\ as the infinite block ... h_2h_1h0h1h2 ‘e

That the monoid £, is isomorphic to a monoid made of L-equivalence classes
of + friezes is shown analogously to what we had for £,, and the same can be
shown with £ replaced by K. From these isomorphisms it follows that £, can be
embedded in £, and analogously with . This is because we can identify every
frieze with a =+ frieze such that for every z < 0 we have a vertical thread with the
end points (z,0) and (z, a).

The monoid Efbyl is defined as the monoid £,, save that we have also the diap-
sides hg and h,. To the equations of £,, we add the equations

ho :hna

' = Chtas

hi// = //hgy1, for ke {0,...,n—1}
\/=//\=1

The monoid K%' is obtained from £ as K, is obtained from L,,.
Note that while £,, was a submonoid of £, because of hg = h,, we don’t have
that £%y1 is a submonoid of £4,. For the same reason E%yl is not a submonoid of
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£fly_:1, while £,, was isomorphic to two submonoids of £,11 (we map h; either to
h; or to hir1). The same holds when £ is replaced by K.

The monoid £ may be shown isomorphic to a monoid made of equivalence
classes of cylindric friezes, which are roughly defined as follows. Instead of diagrams
in R, we now have diagrams in cylinders where the top and bottom are copies of
a circle with n points labelled counterclockwise with the numbers from 1 to n. We
interpret h; for i € {1,...,n — 1} by

1 n

| i—1 i il 2 |

while hg and h,, are interpreted by

1 n
L J
2 n—1
1 n
2 n—1

We interpret // and \\ by

n—2 n—1

n
n—2 n—
\ n

n—1

Cylindric friezes are special three-dimensional tangles, whereas with friezes and
=+ friezes we had only two-dimensional tangles. In these special three-dimensional
tangles we have only “cyclic braidings” or “torsions” like those obtained from the

last two pictures, and further “cyclic braidings” obtained by composing these. Di-
agrams like our cylindric friezes were considered in [10].
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