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ABSTRACT. We determine the graphs whose least eigenvalue is at least —/3.

1. Introduction

Let G = (V,E) be a simple graph with n vertices. We write V(G) for the
vertex set of G, and E(G) for the edge set of G.

The complement of a graph G is denoted by G. For v € V(G), G — v denotes
the graph obtained from G by deleting the vertex v and all edges incident with v.
More generally, for U C V(G), G — U is the subgraph of G induced by V(G) \ U.

The characteristic polynomial det(zI — A) of the adjacency matrix A of G is
called the characteristic polynomial of G and denoted by Pg(z). The eigenvalues
of A (i.e.,the zeros of det(z] — A)) and the spectrum of A (which consists of the n
eigenvalues) are also called the eigenvalues and the spectrum of G, respectively. The
eigenvalues of G are usually denoted by A1, As2,...,A,; they are real because A is
symmetric. Unless we indicate otherwise, we shall assume that Ay > Ao > --- > A,
and use the notation \; = A\;(G) for i = 1,2,...,n. The least eigenvalue A, (G) of
a graph G will also be denoted by A(G).

As usual, K,,, C,, and P,, denote respectively the complete graph, the cycle and
the path on n vertices. Further, K, , denotes the complete bipartite graph on m+n
vertices. The graph K , is called a star and its vertex of maximal degree is denoted
as central. A double star D, , is the graph formed by adding an edge between the
central vertices of stars K ,,, and K p.

The cocktail-party graph CP(n) is the unique regular graph with 2n vertices of
degree 2n — 2; it is obtained from Kj,, by deleting n mutually non-adjacent edges.
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40 CVETKOVIC AND STEVANOVIC

A connected graph with n vertices is said to be a tree if it has n — 1 edges. If
T is a tree, a vertex of T' of degree one is called a leaf. An end-edge of T is an edge
one of whose endvertices is a leaf.

A connected graph with n vertices is said to be unicyclic if it has n edges. It
is called even (odd) if its unique cycle is even (odd).

The join G 7 H of graphs G and H is obtained from G and H by joining with
an edge each vertex of G to each vertex of H.

If G is a graph of order n, the corona G ® H of graphs G and H is obtained
from G and n copies of the graph H by adding edges between the i-th vertex of G
and each vertex in the i-th copy of H (i =1,2,...,n).

The line graph L(H) of any graph H is defined as follows. The vertices of
L(H) are the edges of H and two vertices of L(H) are adjacent whenever the
corresponding edges of H have a vertex of H in common.

A generalized line graph L(H;ay,...,ay) is defined for graphs H with vertex
set {1,...,n} and non-negative integers ay, ..., a, by taking the graphs L(H) and
CP(a;) (i =1,...,n) and adding extra edges: a vertex e in L(H) is joined to all
vertices in C'P(a;) if 7 is an end-vertex of e as an edge of H. We include as special
cases an ordinary line graph (a; = a2 = --- = a, = 0) and the cocktail-party graph
CP(n) (n =1 and a1 = n).

An exceptional graph is a connected graph with least eigenvalue greater than
or equal to —2 which is not a generalized line graph.

The following result of M. Doob and D. Cvetkovié [11] is our starting point.
(It appears as Theorem 1.3 of [3] with a misprint in part (v).)

THEOREM 1. If G is a connected graph with least eigenvalue greater than —2
then one of the following holds:
(i) G= L(T,l,O .,0) where T is a tree;
(ii) G = L(H) where H is a tree or an odd unicyclic graph;
(iii) G is one of 20 graphs on 6 vertices represented in the root system Eg;
(iv) G is one of 110 graphs on 7 vertices represented in the root system Er;
(v) G is one of 443 graphs on 8 vertices represented in the root system Es.

The exceptional graphs with least eigenvalue greater than —2 are those appear-
ing in parts (iii)—(v) of Theorem 1 (573 in total). Those of type (v) are one-vertex
extensions of graphs of type (iv), which are in turn one-vertex extensions of graphs
of type (iil). The 443 graphs of type (v) are tabulated in [1]. The 110 graphs of type
(iv) are identified in [5] by means of the list of 7-vertex graphs in [3]. The twenty
6-vertex graphs of type (iii) are identified in [7]. All 573 exceptional graphs with
least eigenvalue greater than —2 are also given in the technical report [6] together
with related data.

By the well-known interlacing theorem for graph eigenvalues (cf., e.g., [4, p.
19]), the property A(G) > a for a fixed real a, is a hereditary property.

It is shown in [15] that, for n > 4, if G is not a complete graph on n vertices,

then
1 -3
AG) < -3 (1 + 1)
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When n tends to infinity, this upper bound tends to 7 = —(1 +/5)/2 ~ —1.61803.
We are interested to find such graphs G whose smallest eigenvalue A(G) falls in
the gap between 7 = —(1 ++/5)/2 and this upper bound, i.e., that satisfy A, >
—(1 4 1/5)/2. Such graphs will be called 7-graphs.

Recall that x is a limit point of a set S of reals if any open interval containing
x contains an element of S different from z.

The value 7 is the largest limit point of the least eigenvalue of graphs. The
second largest limit point is w = —+/3. This follows from some results of A.J.
Hoffman who determined in [12] all reals exceeding —2 which are limit points of
the set A of least eigenvalues of graphs. Let T be a tree with at least two edges,
e an end-edge of T. Let A(T,e) be the adjacency matrix of L(T), modified by
putting —1 in the diagonal position corresponding to e. We will say that the pair
(T, e) is proper provided A(A(T,e)) < A(L(T)). (It was conjectured in [12] that
every (T, e) is proper, but so far there is no proof.) The main result of [12] is given
in the following theorem.

THEOREM 2. If (T, €) is proper, A(A(T,e)) is a limit point of A. Conversely,
if A > —2 is a limit point of A, then A = A(A(T,e)) for some proper (T,e).

The limit point 7 is obtained if T' = K » while the next limit point w is obtained
for T'= K, 3. We will also determine all w-graphs.

Before [15] it was established in [13] that if we order connected graphs on
n (n > 2) vertices by decreasing least eigenvalues the first graph is K, and the
second one is K, 1 with a pendant edge attached, which is here denoted by L,.
The sequence A(Ly,,) can be easily calculated and it is decreasing and tends to 7.

T-graphs are related to the problem of characterizing graphs with Ay < (v/5 —
1)/2 = o ~ 0.61803 [9], [10]. For let A\; > A3 > --- > X, be the eigenvalues of G.
The Courant-Weyl inequalities [14, Theorem 34.2.1], imply that Ay + A,_1 > —1,
while Ay + X, < —1 (cf. [2]). This shows that if A, > —(1 + /5)/2, then X, <
(v/5 — 1)/2. Hence, the complements of 7-graphs have s < 0.

Let @ > —2 and let S, denote the set of all graphs G satisfying A\(G) > a.
From Theorem 1 it follows that a graph G from S, is:

one of 573 exceptional graphs, or

the generalized line graph L(T’;1,0,...,0) for some tree T, or
the line graph L(T) for some tree T, or

the line graph L(H) for some odd unicyclic graph H.

Suppose that G is isomorphic to either L(T';1,0,...,0) or L(T') for some tree T.
Note that if 7" is an induced subgraph of T, then L(T") is an induced subgraph of
L(T). Since the sequence A\z(Py) is monotonic decreasing and limg,, oo Ag(Py) = —2,
it follows that there is d, € N such that a > Ag_ (Py,). If T has a diameter at
least d, then it contains P;_4; as an induced subgraph, and G = L(T') contains
P;, = L(P4, 1) as an induced subgraph, which is contradiction, since from the
interlacing theorem it follows that a > Aq, (P, ) = An(G). Therefore, we conclude
that a tree T has diameter at most d, — 1.
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Now, suppose that G is isomorphic to L(H) for some odd unicyclic graph H.
Since the sequence Ag;+1(Cai+1) is monotonic decreasing and limy, oo Aag41 (Cop1)
= —2, it follows that there is I, € N such that a > Ay +1(Co +1). If H contains
(as an induced subgraph) an odd cycle of length at least 2I, + 1, then G = L(H)
contains Coy, 1 = L(Cy, 1) as an induced subgraph too, which is contradiction,
since from the interlacing theorem it follows that a > Ay, +1(Car +1) = A (G).
Therefore, we conclude that H has a cycle of length at most 2[, — 1.

In the following two sections, we apply previous considerations to determine
the sets S, and S,,.

2. The set S,

LeEMMA 1. The wheel Wy, shown in Fig. la, is the only exceptional graph which
belongs to S;.

Proor. Looking at the tables of [6] we see that out of 573 exceptional graphs
with least eigenvalue greater than —2 only the wheel W5, shown in Fig. 1a, belongs
to S;. In fact, W5 has least eigenvalue equal to 7. O

LEMMA 2. An odd unicyclic graph H such that L(H) € S, contains an odd
cycle of length either 3 or 5.

ProoF. Since A7(C7) =~ —1.8019 < 7, we conclude that an odd unicyclic graph
H such that L(H) € S; contains an odd cycle of length either 3 or 5. O

LEMMA 3. The only unicyclic graph H with a cycle C of length 5 for which
L(H) belongs to S; is the cycle Cs itself, shown in Fig. 1b.

PROOF. Suppose that G = L(H) € S, where H is a unicyclic graph with a
cycle C of length 5. If there exists a vertex v of H adjacent to a vertex of C', then H
contains as an induced subgraph the graph B; from Fig. 2, which is a contradiction,
since then A\, (G) < X\¢(L(B1)) & —1.7566. Therefore, H does not have any vertex
adjacent to a vertex from C. The cycle C5, shown in Fig. 1b, has the smallest
eigenvalue equal to 7 and it belongs to S;. O

LEMMA 4. The line graphs of a unicyclic graph with a cycle C of length 3 which
belong to S, are shown in Fig. 1lc—f.

ProOF. Let G = L(H) and suppose that H is a unicyclic graph with a cycle
C of length 3 consisting of vertices ¢, ¢z, c3. If any of these vertices has degree at
least 4, then H contains as an induced subgraph the graph Bs from Fig. 2, which
is a contradiction, since then A, (G) < As(L(B2)) =~ —1.6813. Therefore, each of
vertices c1, co2, c3 has degree either 2 or 3. If there is a vertex v of H adjacent to
vertex ¢; for some i € {1,2,3}, and the degree of v is at least 2, then H contains as
an induced subgraph the graph Bs from Fig. 2, which is also a contradiction, since
then A\, (G) < As(L(B3)) =~ —1.7757. Therefore, possible neighbors of vertices ¢y,
¢, c3 may be only pendant vertices and we conclude that there are four possibilities,
the line graphs of which all belong to S;, and which are shown in Fig. 1cf. O
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FIGURE 1. Some 7-graphs.
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Fi1GURE 2. Forbidden subgraphs.

LEMMA 5. Suppose that G = L(T';1,0,...,0) € S;,where T is a tree with at
least one edge. Then G is either graph (g) or graph (d) as shown in Fig. 1.

PROOF. Suppose that L(T';1,0,...,0) € S, where T is a tree with at least one
edge. Consider the vertex vy of T. The vertices of L(T;1,0,...,0), corresponding
to the edges e of T having v, as an endvertex, are adjacent to both vertices of
CP(1) = K, in L(T;1,0,...,0). If there is a vertex w at distance 2 from v in
T, then L(T;1,0,...,0) contains as an induced subgraph the graph By = K 3
from Fig. 2, which is a contradiction, since then A, (L(T;1,0,...,0)) < A3(B4) =
—1.7321. Therefore, all other vertices of T' are neighbors of v;. If v; has one
neighbor, i.e., if T 2 K, then L(T;1,0) = P; € S; and it is shown in Fig. 1g. If v;
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has two neighbors, i.e., if T' = Ps, then L(T;1,0,0) is isomorphic to the graph in
Fig. 1d. However, if v; has at least three neighbors, then L(T';1,0,...,0) contains
as an induced subgraph the graph B; from Fig. 2, which is a contradiction, since
then A, (L(T;1,0,...,0)) < As(Bs) ~ —1.6458. O

LEMMA 6. Suppose that G = L(T) € S;, where T is a tree with at least one
edge. Then G is one of the graphs (g)—(k) shown in Fig. 1 or belongs to the family
Y41, shown in Fig. 3b.

PROOF. Suppose that G = L(T) € S;, where T is a tree with at least one
edge. Since A\5(Ps) = —/3 < 7, from observations in previous section, we conclude
that T has diameter at most 4.

If T has diameter 1, then T' =2 Ky and L(T') = K;, which has no edges. If T has
diameter 2, then for some n € N we have T' = K, ,, and L(T) 2 K,,. The complete
graphs have smallest eigenvalue equal to —1 and they belong to S.. However, they
form a subfamily of a larger family which we later find is contained in S-.

If T has diameter 3, then T is isomorphic to a double star D, , for some
m > n > 1. In that case, L(T) is isomorphic to a graph formed by identifying a
pair of vertices of complete graphs Kp,11 and K, y1. Since A\7(L(D42)) = —1.6262,
in order that L(Dy, ) € S; we must have that either n = 1 or m < 3. Forn = 1 the
graphs L(Dyy, 1) form a subfamily of a larger family which we later find is contained
in S;. If m < 3, then we have in all six possibilities for the pairs (m,n) and double
stars Dp, . Their line graphs all belong to Sr, except for the case m = n = 3,
and they are shown in Fig. 1g-k (since L(D;,) = Ps, which is already shown in
Fig. 1g).

Finally, suppose that T has diameter 4, let v and v be two vertices of T' with
d(u,v) = 4 and let ¢ be the unique vertex of T such that d(c,u) = d(c,v) = 2. If
there is a vertex w of T such that d(c¢,w) = 2 and either d(u, w) < 2 or d(v,w) < 2,
then T contains as an induced subgraph the graph Bg from Fig. 2, which is a
contradiction, since then A, (L(T)) < As(Bg) ~ —1.6751. Therefore, for each vertex
w of T such that d(c,w) = 2 we conclude that d(u,w) = d(v,w) = 4. Thus, there
exist non-negative integers k,! (k > 2), such that T is isomorphic to the tree Xy,
shown in Fig. 3a, while L(T') is isomorphic to the graph Y} ;, shown in Fig. 3b. O

Note that the complete graph K, is just Yy ,, while the graph L(Dyy, 1) is just
Yim.

All graphs Y ; belong to S;. To see this, it is enough to show that Y30 € S7,
since Y, is an induced subgraph of Yj4;0. Actually, the graphs Y; o may be
obtained by adding a pendant vertex to each vertex of K. On page 60 of [4] one
can find a formula for the characteristic polynomial of a graph obtained in this way
(alternatively, one can use a more general formula for the corona of two graphs in
the next section):

P(Yio0;A) = NFP(Kj; A= 1/0) = (A2 = (k= DA = 1) (A2 + A = 1)1,

Thus, the eigenvalues of Yy, o are simple eigenvalues (k—1++/(k —1)2 +4)/2,
and eigenvalues (v/5 —1)/2 and —(1 +/5)/2, each with multiplicity & — 1.
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FIGURE 3. A family of graphs.

This ends our search and establishes the following theorem.
THEOREM 3. The set S, consists of connected induced subgraphs of the follow-
ing graphs:
(1) graph (a) of Fig. 1 (i.e., the wheel Ws),
(2) graph (f) of Fig. 1,
(3) graph (k) of Fig. 1,
(4) the graph Y, o for somen =1,2,....

3. The set S,

We obviously have S, C S, since 7 = —(1 ++/5)/2 > —v/3 = w. Thus, in
order to save space, in Lemmas 7-12 below we will specify the graphs belonging to
S N\ S, only.

LEMMA 7. The exceptional graphs belonging to S, \ S, are Py 7 Ko and C5 7
2K;.

ProoF. Looking at the tables of [6] we see that out of 573 exceptional graphs
with least eigenvalue greater than —2, only the graphs Py v Ko and Cy 7 2K
belong to S, \ S;. O

LEMMA 8. An odd unicyclic graph H such that L(H) € S, contains an odd
cycle of length either 3 or 5.

PRrROOF. As in Lemma 2, it is impossible that H contains a cycle of length at
least 7, since for k > 3 we have Aspy1(Cary1) < A7(C7) = —1.8019 < w. O

LEMMA 9. There exists no unicyclic graph H with a cycle C' of length 5 for
which L(H) belongs to S, \ S;.

PRrROOF. This follows from the proof of Lemma 3, where it is shown that the
line graph of such H has smallest eigenvalue at most A\g(L(B1)) = —1.7566 < w. O
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FIGURE 4. Some w-graphs.

LEMMA 10. The line graphs of a unicyclic graph with a cycle C of length 3
which belong to S, \ Sr are those shown in Fig. 4af.

PRrROOF. Let G = L(H) and suppose that H is a unicyclic graph with a cycle
C of length 3 consisting of vertices ¢1, c2, 3. If any of these vertices has degree at
least 5, then H contains as an induced subgraph the graph By from Fig. 5, which
is a contradiction, since then A,(G) < As(L(B7)) ~ —1.7466. Therefore, each of
vertices ¢1, ¢2, c3 has degree at most 4.

As in the proof of Lemma 4, we may conclude that the possible neighbors of
vertices ¢1, ¢, c3 must be pendant vertices. We have already seen in the proof of
Lemma 4 that if the degrees of ¢1, c2 and c¢3 are at most 3, then all the corresponding
line graphs belong to S,. Therefore, we only need to consider those graphs where
one of these vertices has degree 4. There are six such nonisomorphic graphs, coded
by the nonincreasing degrees of vertices ¢;, ¢ and cs:

{(47 27 2)7 (47 37 2)7 (47 37 3)7 (47 47 2)7 (47 47 3)7 (47 47 4)}'
The line graphs of all these graphs have least eigenvalue at least —v/3 (three of

them have least eigenvalue strictly greater than —+/3 while the other three have
least eigenvalue equal to —y/3), and they are shown in Fig. 4a-f. O
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FI1GURE 5. Additional forbidden subgraphs.
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LEMMA 11. Suppose that G = L(T;1,0,...,0) € S, N\ S;, where T is a tree
with at least one edge. Then G is either one of the graphs (g)—(i) or the graph (d)
shown in Fig. 4.

PRrROOF. Suppose that L(T;1,0,...,0) € S, ~ S;, where T is a tree with at
least one edge. Consider the vertex v; of T. The vertices of L(T;1,0,...,0),
corresponding to the edges e of T having v; as its endvertex, are adjacent to both
vertices of CP(1) & K> in L(T};1,0,...,0).

The vertex v; has at most four neighbors in 7', since otherwise L(T;1,0,...,0)
contains as an induced subgraph the graph Bg from Fig. 5, which is a contradiction,
since then A, (L(T;1,0,...,0)) < A7(Bs) ~ —1.7417.

If there is a vertex w at distance 3 from vy in T, then L(T';1,0,...,0) contains
as an induced subgraph the graph By from Fig. 5, which is a contradiction, since
then X\, (L(T;1,0,...,0)) < Xs(Bg) ~ —1.8478. Therefore, all other vertices of T
are at distance at most 2 from v;.

Suppose that w is a vertex at distance 2 from v; in T, and let v be a common
neighbor of w and v;. If v; has another neighbor, say u, then L(T’;1,0,...,0)
contains as an induced subgraph the graph B;o from Fig. 5, which is a contradiction,
since then A, (L(T;1,0,...,0)) < As5(B1o) ~ —1.7491.

Therefore, either all neighbors of v; are pendant vertices, or v; is a pendant
vertex of a nontrivial star. In the first case, the generalized line graph is isomorphic
to a complete graph with one edge deleted. If v; has degree 1 or 2, then the two
corresponding generalized line graphs belong to S; (shown in Fig. 1g and Fig. 1d,
respectively). If v; has degree 3 or 4, then the two corresponding generalized line
graphs belong to S, \ S; and they are shown in Fig. 4g and Fig. 4h, respectively.
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In the second case, the generalized line graph is isomorphic to a complete graph
K, with two pendant vertices attached to one vertex of K,. For these graphs,
the least eigenvalue is monotonic non-increasing as n increases. For n = 2 the
corresponding graph has the least eigenvalue —/3 and it belongs S,, \. S, (shown
in Fig. 4i). For n = 3 the corresponding graph has least eigenvalue —1.8136 and
thus none of these graphs belong to S, \. .S, for n > 3. O

LEMMA 12. Suppose that G = L(T) € S,,, where T is a tree with at least one
edge. Then G is one of the following a) a complete graph, b) a graph formed by
identifying a pair of vertices of complete graphs K, 11 and K,,,1 where either n = 2
and m is arbitrary, orn =3 and3 < m <9, orn=4and4 <m <5, c) G is
one of the graphs shown in Fig. 4j—q, d) G belongs to the family Yy 1,1, , shown in
Fig. 6.

PROOF. Suppose that G = L(T) € S, \ S;, where T is a tree with at least
one edge. If T has diameter at least 5, then it contains Ps as an induced subgraph,
which is impossible, since Ag(Ps) & —1.8019 < w. Therefore, T' has diameter at
most 4.

If T has diameter 1, then T = K, and L(T) = K;, which has no edges. If
T has diameter 2, then for some n € N we have T' = K; ,, and L(T) = K,. The
complete graphs have smallest eigenvalue equal to —1 and they already belong to
Sr.

If T has diameter 3, then T is isomorphic to a double star D, , for some
m > n > 1. In that case, L(T) is isomorphic to a graph formed by identifying a
pair of vertices of complete graphs K,,+1 and K,+1. We have already seen that
the graphs L(Dy,1) belong to S;. Later we will show that the graphs L(Dy, )
belong to S,. If n > 3, then we have that Dig3, D¢,4 and Ds 5 are the minimal
double stars whose least eigenvalue is less than —v/3. Thus, as new graphs in S,
we will have the graphs of the form L(D,,2) for all m € N, as well as L(D,, 3) for
3<m<9and L(Dp,4) for 4 <m < 5.

Finally, suppose that T" has diameter 4, let v and v be two vertices of T with
d(u,v) = 4 and let ¢ be the unique vertex of T such that d(c,u) = d(c,v) = 2.
Denote the neighbors of ¢ by wy, ws,..., wg. Each of the vertices w; may be
adjacent to at most 4 leaves; otherwise, T' contains as an induced subgraph the
graph By from Fig. 5, which has Ag(L(B11)) = —1.7350. Further, if w; is adjacent
to at least 3 leaves for some 4, then w;, for j # i, may be adjacent to at most
one leaf; otherwise, T' contains as an induced subgraph the graph By, from Fig. 5,
which has )\7(L(B12)) ~ —1.7616.

Without loss of generality, suppose that the vertices wy, wa,.. ., w are ordered
by nonincreasing degrees. Then the following cases are possible:

a) wy is adjacent to 4 leaves. Then we may suppose that wa,. .., w; (2 <1 < k)
are each adjacent to one leaf, while wj41,..., wy are themselves leaves.

It must be that | = 2; otherwise, if I > 3 then T contains as an induced
subgraph the graph B3 from Fig. 5, which has \g(L(Bi3)) ~ —1.7558.
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With [ = 2, the least eigenvalue of these graphs is monotonic as k increases.
For k£ = 2 and k£ = 3 we obtain graphs in S,,, shown in Fig. 4j and k. The graphs
obtained for k > 5 have least eigenvalue less than —/3.

b) w; is adjacent to 3 leaves. Then we may suppose that wa,..., w; (2 <1< k)
are each adjacent to one leaf, while wi41,..., wy are themselves leaves.

It must be that | < 3; otherwise, if [ > 4 then T contains as an induced
subgraph the graph Byy from Fig. 5, which has \jo(L(By4)) & —1.7462.

With [ fixed, the least eigenvalue of these graphs is monotonic as k increases.
Thus, once the least eigenvalue of a graph from this sequence drops below —v/3,
then all the graphs following it also have the least eigenvalue less than —+/3.

If | = 2, then the corresponding graph belongs to S, only for k£ < 6, giving 5
new graphs in S,,; they are shown in Fig. 4l-p.

If | = 3, then the corresponding graph belongs to S,, only for k¥ = 3, giving one
new graph in S, ; it is shown in Fig. 4q. O

K;,
.l.. .l..
Wi a0y Zk ol

FIGURE 6. Another family of graphs.

Vertices wy, ..., w;, are each adjacent to two leaves, vertices wi, 41, .., W41,
are each adjacent to one leaf, and vertices wi, 4,41, - - . , W are themselves leaves.

We denote such a graph by Wi, , (see Fig. 6) and prove that its line graph
Zy 1.1, (see Fig. 6) always belongs to S,,. The easiest way to show this is first to
notice that Zj ,, is always an induced subgraph of Zj ;. o, and then to show that
Zy k0 belongs to S,,. The graph Z 1o can be represented as Kj ® Ko, where ®
denotes the corona of graphs. A formula for the characteristic polynomial of the
corona of two regular graphs is given in [3, p. 50], according to which we have

Pr,oK,(N)

q q p—1 1
(-4 _ 1 % 49 _ 1)? 1)P(a—1)
(A TPt )(A pp——— ) A—g+1)P(A+1)

= (N —(p+q—2A+pg—p—20+1) (A = (g—2A—2¢+1)"" (A + 1)Pla=D),
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The first factor above yields simple eigenvalues 1 (p+¢—2+/(p — ¢)2 + 4¢), and
the second factor yields eigenvalues 3 (g — 2 + \/q2 + 4¢) of the multiplicity p — 1.

For fixed ¢, the function %(p +q—2++/(p— q)? + 4q) is monotone increasing and
thus, the least eigenvalue of K, ® K, is %(q —2—+/¢>+4q),equal to 7 for g =1
and w for ¢ = 2.

Notice also that L(D,, 2), mentioned above, is just Zn,41,1,0, and thus it also
belongs to S, for arbitrary m.

This ends our search and establishes the following theorem.

THEOREM 4. The set S, consists of connected induced subgraphs of the follow-
ing graphs:
(1) the exceptional graphs Py 7 Ko and Cs 7 2K,
(2) one of the graphs (f), (h), (i), (k), (p) and (q) of Fig. 4,
(3) the graph formed by identifying a pair of vertices of the complete graphs
Kyy1 and K,y where (m,n) = (9,3) or (m,n) = (5,4),
(4) graph Zy o of Fig. 6 for some k=1,2,....
Theorems 3 and 4 show the existence of some interesting points of a different
type when compared to limit points considered by A.J. Hoffman. Namely, the
sequence

1
An(gr) (Kn ® Kg) = 3 (Q—Q—\/q2+4q), n=12,...

is constant for fixed g. We do not know whether other non-trivial such graph
sequences of line graphs of trees exist, or what is the relation between the points
defined by constant sequences and the limit points considered by A.J. Hoffman.

Acknowledgement. The authors are grateful to the referees for useful re-
marks which have improved the presentation of our results.
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