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ABSTRACT. The classes KRoo, M Rs, Roo of rapidly varying functions are
natural extensions of Karamata’s concept of regular variation. In [2] we intro-
duced a new class K of perfect Karamata’s kernels and its subclasses © and
3. In this paper we study inclusion properties of these classes and, among
other results, we prove KRooc C MRc C X C O C K.

Introduction

We begin with some definitions from Karamata'’s theory. A positive measurable
function £ is slowly varying in Karamata’s sense if £(Azx) ~ £(x) (x — o0), for each
A > 0. Functions of the form z?{4(z), p € R are regularly varying with index p [1].

‘- . 7 s z .
For a positive measurable function f, define f by f(z) : IROG It is well
known [1], that f(z) = p, 0 < p < 0o (z = o), if and only if f is regularly varying
function in Karamata’s sense with index p.
From there it follows an extension to the class © of rapidly varying functions.
In [2] we gave the following definition.

DEFINITION 1. A positive measurable function p belongs to the class © if and
only if p(z) = oo (z — o).

There is no representation form for the class © since its structure is ambiguous.
For example, we showed in [2] that it is not closed under multiplication.

DEFINITION 2. Let ¥ denote the maximal subclass of ® which is closed under
multiplication. Then X consists of all positive measurable functions s such that
52 € O [2, Theorem 1].

We also introduced the class K of perfect Karamata’s kernels.
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DEFINITION 3. A positive measurable kernel C(-) belongs to the class K if the
asymptotic relation [,* f(¢)C(t) dt ~ f(z) [, C(t) dt (z — oc), takes place for every
regularly varying function f(-) of arbitrary index.

It is proved in [2] that a necessary and sufficient condition for C' € K is

(1) /Iw C(t)dt € ©.

Strict inclusion [2],
(2) ¥ COcCKkK,

takes place in the sense that ©/% and K/© are not empty.
From the property of regularly varying function f with index p, VA > 0,
f(Az)/f(z) = N (z — o00), a natural extension to the class R, arises.

DEFINITION 4. [1, p. 83] A positive measurable function f belongs to the class
R if f(Ax)/f(z) = oo (z = o), for each A > 1.

Subclasses of Ry, are KR, and M R..

DEFINITION 5. [1, p. 85] Let f be positive and measurable. Then

(0 £ € K it and only i€ i fnt 170
(ii) f € MRy if and only if lim inf )1‘r>1f1 @) > 0 for every d € R,

=1 for every ¢ € R,

There is strict inclusion [1, p. 83]
(3) KRo C MRy, C Re.

We shall investigate intermediate inclusion properties of the classes KR,
MR, Ry and ¥, ©, K apart from (2) and (3).

Results
In all cases there is a strict inclusion property between the classes of rapidly
varying functions mentioned above, except in the following one.

PROPOSITION 1. The classes Ry, and © are incomparable i.e., they have not
an inclusion property.

Because of the assertion above, there are two inclusion chains. The first one is
PROPOSITION 2. An extension of (3) is the following

KRy C MRy C R C K.
The second one is
PROPOSITION 3. An extension of (2) is the following
KR, C MR, CXCOCK.

Therefore the class K includes all known classes of rapidly varying functions
in Karamata’s sense.
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Proofs

PROOF OF PROPOSITION 1. In order to prove that the classes R, and © are

incomparable, we have to find some positive measurable functions f and g such
that f € Re but f ¢ © and g € © but g ¢ R. O

An example of f is the next one. Let f(x) := xe® except at the points z = €™,
n € N, where we put f(e") := e¢ ~". Now, using Definition 4, it is easy to verify
that f € Rs. But

f(em =een_"//en etdt =0  (n— o).
1

Hence liminf f(x) = 0, and f ¢ ©.
T—00
An example of g is the following: denote by (p,.), n € N the sequence of

primes and let g(z) := ze® except at the points z = p, where g(p,) := p,e*P.
Since g(z) > ze® for z > 1, we get

w))xe”“// eldt — oo (z — 00);
1

2
hence g € ©. But liminf 9(22) =2,ie,9¢ R
In order to prove Proposition 2, taking into account (3), we just have to prove
that then f € K whenever f € R.. For this we need the following two lemmas.

LEmMA 1. If f € Ro, then/ f(t)dt € KRy

PRrROOF. Denote by F(x f1 t)dt, and let f € Ro. Since, for fixed A > 1,
FA)/f({t) = oo (t — oo) (Deﬁnltlon 4) for any A > 0 we can find o such that
Ft) > Af(¢) for t > tg > 1. Now, for sufficiently large z, we get

FQ)  Flto)+[07 f()dt  F(to)+A [ f(M)dt  Flto) +/\Aftz
= > > > )
F(z)  F(to)+ ft t) dt F(to)+ [y, f(t)dt F(to)+ [y f dt

since f(t) — oo (t — oo). Since A can be arbitrary large, we conclude that
F(z) € Roo. But F(z) is also monotone increasing, hence [1, p. 85] F € KRy. O

LEMMA 2. If g € MR then g € ©. Hence MR, C O.
This lemma is proved in [1, p. 104].

PROOF OF PROPOSITION 2. Since KRy, C MR (3), from the above lemmas
we get F(z) = [ f(t)dt € ©. Applying (1), we obtain f € K. Hence Ry, C K.

To prove strict 1nc1us10n we shall consider a function f; defined as: fi(z) := e*
except at the points £ = 2", n € N where we put f1(2") := 2". Then, clearly
[{ f1(t) dt € ©; hence by (1), f, € K. Yet

. fi1(2x)
it 55

hence f; ¢ Roo.- O

=2,
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PROOF OF PROPOSITION 3. From (2) and (3) follows that we have to prove
that MR, is a proper subclass of ¥. Applying Lemma 2 we obtain KR,, C
MRy, C ©. But from Definition 5 evidently follows that if f € M R, then also
f? € MR, C ©. Hence, according to Definition 2, MR, C X.

To prove that the class M R, is a proper subclass of X, we shall consider the
following example. Let f(z) := v/Iogz exp(log® ), > 1 except on intervals of the
form (exp(n — 1/n),expn], n € N, where we put f(z) := v/logz exp(log® x)/ ¥/n.
We have to prove that f € ¥, i.e., f2 € ©. In order to make calculations simpler,
let us change the scale: x — exp z. In terms of h(z) := f(e*), we obtain

2( % 2
f2(ez) — emf (6 ) — zh (1‘) .
[T P@rtd Iy R d

Then for x > 0,

/ R2(t) dt < / te? dt < 2
0

0

Hence for z ¢ |J (n —1/n,n],
n=1

~ 2 212
f2(e") = f””};;zf; o > IL:2$2 — 00 (x = o0).
0

If x € (n — 1/n,n] we obtain

2

T n—1/n T eQm
/ B2 (t) dt = / h%(t) dt + / h%(t) dt < exp(2(n —1/n)?) +
0 0 n

~1/n vn'
Hence
Ple) > we?™” [\/n _ z
exp(2(n —1/n)?) +e22*/\/n 1+ /nexp(2(n —1/n)? — 222)
>n_1/n—>oo (z — o0).

vn+1
Therefore we proved that f2 € ©. By Definition 2 this means that f € . Yet
n h(n—=1/n+t) _ 1

t>0 h(n—1/n) ~— ¥n’

Hence

lim inf inf f(z)
a—o0 A>1 f(x)

i.e., by Definition 5(i), f ¢ MR,. This yields the strict inclusion MR, C X.
Therefore Proposition 3 is proved. O

=0,

REMARK 1. From Definition 3, it follows that if a function f is in the class K,
it is still in K if changed in a denumerable number of points.
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This remark is e.g., useful if one wants to verify that ® # K. Suppose fi1 € K
is arbitrary. Define fo(n) = [;* fi(s)s~'ds for n =1,2,... and fo = fi elsewhere.
Then fy € K, fy ¢ 0.

A similar remark applies to the proof of Proposition 2. The definition of f; :=
e® is irrelevant. Take f; € K arbitrary. Then define fo(2") = 2" for n € N and
fo = f1 elsewhere. Then fo ¢ R, and Fy € K.

Since there is no representation (except for K R, ) of rapidly varying functions,
any information about it is welcomed. We can provide here such a one.

COROLLARY 1. If f € Ry, then

/j f(t)dt = exp (y(a:) + z(z) + /j @dt),

t
where y(z) is non-decreasing and z(z) — 0, u(zx) = oo (x — o0).

This result is a combination of Lemma 1 and well-known representation for the
class KRy [1, p. 86].
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