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POISSON RANDOM FIELDS
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Communicated by Slobodanka Jankovié

ABSTRACT. Basic background of the stochastic analysis of Poisson random
fields with control measures, indexed by a lattice, is presented in a unified
form suitable for all separable Hausdorff lattices. The operator method and
spectral measure theory are employed systematically.

1. Introduction

In the first part of this paper (see [5]) we introduced a simple universal model
of Poisson random fields with control measures, indexed by a lattice, dual Poisson
fields and Poisson bridges with control measures, we gave some basic properties
of such fields and found their distributions. We are now in position to begin with
basic unified stochastic analysis of such fields, fairly simple and transparent, to
demonstrate the benefits of the operator and spectral measure approach. We shall
use the same notations as in the first part of this paper.

Let us recall some basic notions and notations from the first part. Our start
object is a measure lattice (T, ), where T is a measurable lattice, which is sup-
posed to be a separable Hausdorff space, and X is a positive finite Borel measure
on T, called control measure. We define the quantum lattice (T, )% = (T% \8) of
the measure lattice (T, ), by

T =| | T,

n>0
i.e., TH is a union of the Cartesian exponents, and
A'n
3= 3 X exp(-AT)) = exp(h — AT,
n>0 n:

is a probability Borel measure on T%. Therefore, the quantum lattice becomes a
measure lattice and a probability space — our main probability space. All the fields,
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mentioned above, are defined on this probability space, except for Poisson bridges,
which are defined on the quantum lattice (T2, A2)% = ((T?)%, (\?)%).

Let T be a measurable lattice and u,v finite Borel measures on 7'. We intro-
duce measures p Vv and pAv by

[ vy = [[ 16y 9 duo) av),
[ tawnn) = [[ e n9 duw av),

where f : T — R is a measurable and bounded function. Then these operations
are commutative, associative, bilinear and distributive to addition. Further, we
have

(v v)(t) = p@)o(t), (nAv)(t)=pt)o), teT.
We define V-exponents and A-exponents by

pr =pv-vp, pM=pA-Ap, keN, pV0 =0, p=0

and exponentials by

1 1

Then we have

(expy p)(t) = expfi(t) — 1, (expn p)(t) = exp fa(t) — 1.

We recall the definition of some important random variables from the first part
of this paper: 7(a) : T* = R and £(a) : T% = R, for a € L;()\). We have

m(a) = Zaek € Li(A%) and &(a) = 7(1 4 a) exp(—(all)),
k>0

and also J(a) : T* —» R, for a € L;()\), by

J(@)(0) = —(al1) = —/ad/\
T(@) (s 1) = alts) + -+ alts) — (@l1), k> 1, t1,... ts € T

These random variables play the key role in our theory. For the elementary prop-
erties of these variables see the first part of this paper.

2. Stochastic integral

Let (T,)) be a measure lattice and (7, N = (T% \F) its quantum lattice.
Define operators M, My, M; : Ly(M) = Ly(\Y), t € T, by

M¢ =n(0), M =n(e)l, M =n(Ep)é, €€ La(\).

where, as in the first part of this paper, &; is the indicator function of (-,¢] and &
is the indicator function of [¢,-).
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Using elementary properties of the random variable 7(a), given in Proposition

2 of the first part, we see that the operators M, M;, and M; are projections for
every t € T and

MM, = M;M; = Myps, s,t €T,

ths = Mth = Mi&Vs; s, t€T

MtMZMMtZMtM:MMt:M, tET
The family {M;;t € T} is called increasing protofiltration on Ly(AF), and the
family {My;t € T} decreasing protofiltration on Lo(Af). Let us recall that Lo(\f)
is not the notation for the hole space Ly (7%, A") but for the closed subspace of all
symmetric functions on T%. The space Lo(T%, AF) is not suitable for our purposes
and we do not use it. Its role is played by the smaller space Ly(\f).
Let us denote by B,(T*) Borel o-algebra of all symmetric sets of T¢. For

A € B,(T") define projection N(A) on Lo(A") by N(A)¢ = xa&, where x4 is the
indicator function of A. Therefore, A — N(A) is a spectral measure on Lo(\F)

called canonical spectral measure.
If F € Lyo(N)= Leo(T? Bs(T?), N) then we have

/FdN-g:F-.g, €€ Ly(\).

Hence, N is a simple spectral measure having cyclic vector 1 = £(0).
Define now functions p,5 : T% — T U {0}, where {0} = T°, by p(0) = 5(0) =0
and
Pt o stp) =ta V-V tpand Pltr, ... tn) =t1 A=A tn, n21, t;eT.

We call them V-projection and A-projection. They are continuous and surjective.
They generate o-subalgebrae F(p) and F(p) of Bs(T*") by

F(p) = {p~ (B)U{0}; B € B(T)} and F(p) = {p~" (B) U{0}; B € B(T)}.
Denote by IT and II the operators of conditional expectation with respect to these
o-subalgebrae. o

Finally, define spectral measures M and M on B(T) by

M(B) =N(p~'(B)) and M(B)=N(@ '(B)), Be€B(T),
i.e., by
M(B)¢ = xp-1()¢ and M(B)E = xp-1()€, B € B(T), £ € Ly(\),
while for x,-1(p) we have
Xp-1(B) = XB(P) = >_ x#", and x§ =0
n=1
XB (t1, - ta) =xBt1 V- Vin), nx1l, t €T,

and similarly for x;-1(p)-

Spectral measure M is called protofiltration spectral measure, and M dual
protofiltration spectral measure. Note that M (B)n(0) = M(B)7(0) = 0.
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LEMMA 2.1. The following relations hold
1) (exp, A)(B) = (expA)(p 1(B)), B € B(T), where, as above

1
expy p = Z —uV" and p¥™

=uV
2) (expy(al))(B) = (exp(a))(p~(B)), B € B(T), a € Li(}).
3% (eXpA(aA))( ) = (exp(a))) (@ '(B)), B € B(T), a€ Li(\).
4
)

Vg, nzl, op

[odexpy A =MD Ep(p), ¢ € Li(expy ).
5) [pdexpy(a)) = XN Ep(p)r(a), a € Li(N).
) Jedexp,(ad) = XM Ep(p)n(a), a € Li(N).

Proor. We have

@ NB) =3 B =Y & [

n>1 ! n>1

—Z /XBd/\V" Z /x A"

ZZ—,/ xB(p)dA"Z/ x5(p) dexp A
n>1 n: Jrn Th

= /Tn Xp-1(pydexp A = (exp N)(p~' (B)),

which proves 1). Relations 2) and 3) are analogous, while 4) is equivalent to 1).

Further

/ pdexp,(a)) = / ¢(p) dexp(aX) = / p(p)m(a) dexp A = XD Ep(p)7(a),
T Th Th

which proves 5). Relation 6) is similar.

O

COROLLARY 2.1. 1) expy (a)) is absolutely continuous with respect to exp,, A,

for every a € L1()\). The density is denoted by f, i.e., dexp, (al)
a € L1 ()\)

2) Ep(p)m(a) = Ep(p)fa(p) -

3) On(a) = fo(p), and NIw(0) =0, a € Li()).

4) fo(t) = (Im(a))(t), t€T.

5) II§(a) = fita(p) exp(=A(T)).
6) fo, =€, fi=1, fo=0.

PRrOOF. If (exp, A)(B) = 0, then by the Lemma above (exp \)(p~!

and

= fa -deva A,

(B)) =0,

(expy (a)))(B) = / 5(p)m(a) dexp A = / m(a) dexp A = 0,

p~1(B)

which proves 1). Further, by the Lemma above

/(,odexpv (aX) = XD Ep(p)r(a).
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On the other hand, by 1) we have

/ pdexp, (aX) = / ¢fadexpy A = XD Ep(p) f.(p),

which proves 2). Relation 3) follows from 2), while 4) follows from 3) by restriction
on T. Relation 5) follows from 3) since £(a) = w(1 + a)exp(—A(T')). The last
relation follows from w(g;) = 7(0) + £:(p) . O

COROLLARY 2.2. Let a € L1(\) and oo € R. Then a — fa, is analytic on R
and we have

faa(®) = a™(Ma®™)(t), expy A a.e.

n>1
ProoOF. Follows from 4) of the Corollary above. O
COROLLARY 2.3. The spectral type of the spectral measure M is exp,, A, t.e.,
M(B) =0 iff (expy, A)(B) = 0.
In the same manner, the spectral type of M is exp AA.

PRrROOF. M(B) = 0 is equivalent to ||M(B)w(a)|| = 0, a € La(\). By the
lemma above

1M (B)r(a)|[* = E(xs(p)r(a))” = Exs(p)m(a’)

=MD / dexp, (a*\) = e D) (exp,, (a®)))(B).
B
Our assertion now follows from 1) of Corollary 2.1. O

REMARK 2.1. M is spectral measure on the subspace {¢ € La(\f); M¢ = 0}
and not on Ly (Af) since M (B)n(0) =0 which means that M(T) =1 — M.

COROLLARY 2.4. We have My = M + M((-,1]), and My = M + M([t,)),
teT.

ProoF. Follows immediately from definitions. O

COROLLARY 2.5. If ¢ € Loo(M), then [@dM is a continuous hermitian
operator on Ly(\f) and

[eare=ow) & ¢era0) and | [pam]= ol
Analogous properties hold for M .

PROOF. First relation follows from the definition of M , and second from stan-
dard spectral measure theory. See [1]. O
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DEFINITION 2.1. Let U be the chaos development isometry (see the first part
of this paper [5]). Define projections

1) E,=UMU*, teT.

2) E UMtU teT.

)_( ) =UM(B)U*, B € B(T).
4) E(B) =UM(B)U*, B € B(T).
5 E = MU*

Then B — E(B) is called filtration spectral measure, and B — E(B) dual filtra-
tion spectral measure. They are spectral measures on LI(M) = {¢€ € Ly(M\F); E€ =
0} and not on Ly(\%) since E(B)1 = E(B)1 = 0, which means that E(T) =
E(T) = I — E. The family {E;;t € T} is called increasing filtration on La(\%),
and {E;;t € T} decreasing filtration on Lo(A").

COROLLARY 2.6. We have E;£(a) = £(eia) and Eif(a) = £(g7a), for every
teT and a € Ly()N).

Further, E; s the conditional expectation with respect to o -algebra F; gen-
erated by {&(5a);8 < t,a € La(N\)}, while Ey is the conditional expectation with
respect to o -algebra F; generated by {£(Z5a);8 > t,a € La(N\)}.

PROOF. First assertion follows from definition, while other assertions follow
immediately from the first assertion and the fact that {£(a);a € La(\)} generates
Ly(A9). O

COROLLARY 2.7_. The spectral type of the spectral measure E is exp, A, while
the spectral type of E is exp, A.

ProoF. Follows from Corollary 2.3. O

COROLLARY 2.8. If ¢ € Loo(E), then [@dE is a continuous hermitian oper-
ator on Ly(\?) and

[oBe =09, €€ L), and || [ dE] =lpl

Analogous properties hold for E.
PRrOOF. Follows from Corollary 2.5. O
COROLLARY 2.9. We have E; = E + E((-,t]), and E; =E + E([t,-)), t€ T.
Proo¥F. Follows from Corollary 2.4. O

REMARK 2.2. Using standard spectral measure theory we state some elemen-
tary assertions about the spectral measure E. For the details see [1]. Analogous
assertions hold for E.

We do not need any additional intervention to prove these assertions.

PROPOSITION 2.1. If ¢,9 € Loo(E), then

/cpdE-/zde: /cpz/sz and /godE-Hn()\) Cc H,(A), n=0,
where Hp(\) is the n-th chaos. See the first part [5].
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PROPOSITION 2.2. For £,m € La(\f) define Borel measure e¢, on T by
een(B) = (E(B)|n), Be B(T), and e¢ = e¢¢. Then
1) el n = 0

4 Iegnl( ) < e(B)'/?ey(B)'/?, B € B(T).

([ ¢dE€n) = [ pdeey, ¢ € Loo(E).
6) €e(a).ev) = expy(ab)), a,b € Ly(A).

PROPOSITION 2.3. Let S(E) be the vector space of all Borel functions ¢ : T —
R = RU {—o00,00} being finite E a.e. If ¢ € S(E), then [pdE is a symmet-
ric, densely defined and closed operator on Lo(\?) with domain {€ € La(A\f);¢ €
Ly(eg)}. If ¢ € S(E), € € Ly(X*) and ¢ € La(eg), then [ @dEE € Ly(A%) and

H/godEé“H :/g02de§.

COROLLARY 2.10. For & € Lo(AF) define spectral jet

#5(©) = { [ pdBE g € Lateo)}.

Then the map ¢ — [ @dE¢ is isometric isomorphism of La(e¢) and Hg(E). Spe-
cially, Hg(€) is closed in Ly(\?).

PROPOSITION 2.4. If ;1 € Hg(&), 12 € Hi(&) and

m :/(PldE& and 12 :/gosz&’

then dey, n, = p1padeg, ¢, . Further, if n € Hg(€), then Hg(n) C Hg(€).

We say that &,m € Ly(\") are E-orthogonal, £ Lg 7, if e¢, = 0. Chaoses are
E-orthogonal i.e., Hi(\) Lg H,(\), k#n.

DEFINITION 2.2. If A € B,(T?) and B € B(T), then N(A) and M(B) com-
mute, but N(A4) and E(B) do not commute, in general. To avoid this unpleasant
property we define o-subalgebra o(D) of B,(T%) x B(T) to be generated by all
sets Ax B, A€ B,(T%), B € B(T) such that N(A) and E(B) do commute.

For A x B € o(D) define projection D(A x B) on La(\) by

D(A x B) = N(A)E(B) = E(B)N(A).

2) eey = eng |
; >0 and ||ec]| = ec(T) = [I€ — Be|?.
5)

By the standard spectral measure theory [1], D can be extended on o(D) as a
spectral measure on LI(NF) = {£ € Lo(M);E¢ = 0}. The extension is again
denoted by D, and is called the field spectral measure on Ly (\?).

Analogously we define the dual field spectral measure D replacing E by E in
this definition.

REMARK 2.3. Using standard spectral measure theory we state some elemen-
tary assertions about the field spectral measure D. For the details see [1]. Analo-
gous assertions hold for D.

We do not need any additional intervention to prove these assertions.
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PROPOSITION 2.5. If F € Lo(D) = Loo(0(D), D), then

/FdD /Fw, )dD(w,t)

is a continuous hermitian operator on Ly(A\%) and we have
) || [ FdD|| = [|F|oo -
) fFldD . fFQdD = fFlFQd.D, Fl,FQ S LOO(D)
3) D(T® x B) = E(B), B € B(T).
4) If F € L(D) and F(w,t) = ¢(t), D a.e., then [ FdD = [ ¢dE.
PROPOSITION 2.6. For &,m € La(A%) let us define measure g, : o(D) = R
by te.n(C) = (D(C)eln) and pe = pee. Then we have
1) e =0

2) MEW :/Jlnyg'
3) ne 20 and |luell = pe(T° x T) = ||€ — E¢|]>.

4) |pe,nl(C) < pe(C)'?y (C)'1?, C € 0(D).
(J FdD¢n) = [ Fdpe.y, F € Loo(D).

PROPOSITION 2.7. Let S(D) be the vector space of all o(D)-measurable func-
tions F : T* x T — R being finite D a.e. If F € S(D), then [ FdD is a symmet-
ric, densely defined and closed operator on La(A\) with domain {£ € Ly(M); F €
Ly(ue)}. If F € S(D), € € La(A\') and F € La(ug), then [ FADE € La(X\F) and

H/FdDgH :/deug.

COROLLARY 2.11. For & € Lo(AF) define spectral jet

(€)= { [ FAD&F € Laluo)}.
Then the map F — [ FdD{ is isometric isomorphism of La(ue) and Hp(€).
Specially, Hp(£) is closed in Ly(\Y).

PROPOSITION 2.8. 1) Hg(¢) C Hp(€), € € Ly(\Y).
2) If m € Hp(&1), m2 € Hp(&2) and

’I’h :/FldDé-l and 772 Z/FQdDé-Q)

then dpy, n, = FiFsdue, ¢, -

We say that &,m € La(\¥) are D-orthogonal, £ Lp 0, if ue,, = 0. For closed
subspaces H; and Hy of Ly(\!) we have

H1 J_D Hg 1mp11es H1 J_E H2 1mp11es H1 1 HQ.

PROPOSITION 2.9. The spectral type of the canonical spectral measure N is A9
Further, the spectral type of the field spectral measure D is N x exp,, A, while the
spectral type of D is A\ X exp, \.

DEFINITION 2.3. Let £ € Ly(\%), F € S(D) and F € La(u¢). Then the
integral [ FdD¢ is called stochastic integral of the field F with respect to the
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martingale {&;t € T}, where & = E;£. For the stochastic integral we also use
following notations

/FdD§ = /ng = /Ftdgt = /Ftdg(t).

COROLLARY 2.12. The stochastic integral has following properties
2) E(B) [Fd¢ = [ xpFdE.

3) D(C) [Fd¢ = [xcFd¢.

4) [FidD- [Fdé= [FFdf, Fi € Lo(D).

REMARK 2.4. We also use “differential” notation for stochastic integral i.e., if
n = [ Fd¢, then we write dy = Fd or dn, = Fidé, or dn(t) = Fydé(t), where
F, = F(-,1).

3. Quadratic variations

Let (T,)) be a measure lattice and (T, \)? its quantum lattice. The canonical
spectral measure N on T has the spectral type A7, the filtration spectral measure
E has the spectral type exp,, A, while the field spectral measure D has the spectral
type Af x expy A.

Define Borel measure v on T by dy = exp(—A)dexp, A. Because v and
expy A are equivalent we conclude that also « is the spectral type of E.

Therefore, if £, € L(A?), then pg,, is absolutely continuous with respect to
Mx . Let us denote by ©¢,n the density of pe , with respect to A?x~. Hence, Peon
is a unique o(D)-measurable function such that dug, = ¢¢ nd(A\* x 7). Further,
we have

1) dlpg,q| = |og,nld(N* x 7).

2) [ lpenldNE x 7) = [lpeqll < 1€ —EE| - [In — Enl.

3) e,y is bilinear in € and 7.

Let us denote by M (") Banach space of all Borel random measures p :
B(T) — Li(\) with norm ||u|ly = supY_, E|u(Bx)|, where sup is taken over
all finite partitions of 7T'.

THEOREM 3.1. Let &,n € Ly(\*), B € B(T) and (£,n)(B) = [5 ¢endy. Then
B = (£,1)(B) is a random measure in Li(\?).

Further, {€,m) € M(A?) and the map (-,-) : Lo(A8) x Ly(N) — M(X\Y) is
continuous, bilinear, symmetric and |{§,n) |1 < ||1€ — E|| - ||n — En||.

PROOF. Because ¢, is bilinear and symmetric it is enough to prove the last
inequality.
Let {Bi,...,B,} be a finite Borel partition of T". Then
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&l = sup S BIE,7) (By) =supZE‘ / wg,ndv‘
k k By

<supY B / (el dy =sup S g0l (T° x By)
k By k

= el < 1€ —E&| - [In — Enll,

which proves our assertions. O

DEFINITION 3.1. If £, € Ly()\Y), then the random measure (£,7) from the
Theorem above, is called quadratic variation of £ and n. We also write (£) = (£,£).

COROLLARY 3.1. For every &,m € Loy(\") and B € B(T) we have
E(¢,n)(B) = e¢,n(B).

PRrROOF. We have
E(.)(B) = E [ eqdy = ics(T* x B)
= (D(T* x B)é[n) = (E(B)E|n) = e¢,n(B). g
COROLLARY 3.2. For every &,m € Lo(\}) and F € Ly (|pe,n|) we have
/ Fdue, = E / Fd(e,n)(t), where F,=F(-1).
PRrooFr. By the Fubini Theorem
/ Fdug, = / Foend( N x7) =E / Fyd(&,n) (). O
COROLLARY 3.3. If ;; € Hp(&1), ne € Hp(&:2) and
M =/F1d§1 and 12 =/F2d§2,

then
(7717772)(B)=/ FyFod(&1,62).
B

Proo¥F. Follows from Proposition 2.8 O

PROPOSITION 3.1. If a,b € Ly(N), then
(¢(a),&(b))(B) = /B §(era)€(eb) exp(—(ale:d))d(expy (ab)))(t)-
PROOF. By the Theorem above, random measure (£(a),£(b)) is of the form

(£(a),£()) (B) = /B E(era)E(erb)hay (1) dy (2),

where h,p is a Borel function to be determined.
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By corollaries 2.1 and 3.1 we have
E(¢(a), £(0))(B) = €¢(a),¢(v) (B) = expy (abA)(B)

=/ fabdexpv’\:/ fabeij‘d’Y-
B B

On the other hand, again by Corollary 3.1
E(¢(a),£(0))(B) = /Bexp(alstb)ha,b(t) dy(t).

Therefore exp(ale;b)has(t) = fas(t) exp A(t), ie.,
has(t) = fab(t) exp(—(aleh) + A1) 7 ae.,
which proves our assertion.

COROLLARY 3.4. For a,b € Ly()\) and a,8 € R the function

(a, B) = (£(aa), £(Bb))(B)
is analytic on R for every B € B(T).

PRrOOF. Follows from the Proposition above and the relations
n

£(aa) = Z %Jn(a) and exp, (ab)) = Z Z—T(a)\)vn.

n>0 n>1
COROLLARY 3.5. 1) (J(a), J(b)}(B) = [gabdX, a,b € La(N).
2) (J(a), Jn(b))(B) = [pnJn_1(etb)a(t)b(t) dA(t), n > 1.
3) (J(a),€0)(B) = [ &(eeb)alt)b(t) dA(t).

91

PROOF. In formula of Proposition 3.1 put aa and Bb in place of a and b
and apply Corollary 3.4 by developing both sides in Taylor series. Now equate the

coefficients.

4. Representation by stochastic integrals

LEMMA 4.1. For a € Ly()\) define 8(a) € Ly(N\) by

0(a) =1+ / £(era) " LdE(a) ().
Then we have
(6(a),0(b)) = /exp(—(aIEtb) + () fa (1) d (2).
PROOF. By Propositions 2.8 and 3.1

(6(a),6(0))(B) = /B £(e1) " E(erb) " d(E(a), EB)) (1)
- /B exp(—(alesb))d(expy (abA)) (1)

- /B exp(—(alerd) + A1) fan (t) dy(t),

O
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which proves our assertion. We used here the relation (1,£) = 0, £ € Ly(\F). This
relation follows immediately from definition of the quadratic variation. O

PROPOSITION 4.1. For a € La()) let

1

= Z Hen(a)
n>0
be the chaos development of 6(a) in La(A). Then 8g(a) =1, 61(a) = J(a) and
an
f(aa) = g EOn(a), a € R.
n>0

Further, we have

D=3 () [ Islera)dBu@)(®), n>1
k=1

PROOF. By the Lemma above df(a)(t) = &(gia)tdé(a)(t) or dé(a)(t) =
&(era) df(a)(t) which means

fla) =1+ / £(e1a) dB(a) (9).

Now replace a by aa, develop both sides in series and equate coefficients to get all
the assertions. O

COROLLARY 4.1. The element 0(1) has mazimal type with respect to the field
spectral measure D i.e., pgn) = Mox oy, (6(1)) =7.

PROOF. Put a =1 in Lemma 4.1. O

THEOREM 4.1. 1) (0,(a),0r(b)) =0, n # k, a,b € Ly(N\). Specially, 6,(a)
and 0y (b) are D -orthogonal for every n # k.
2) We have

k
d(0x(a),6 =Ky (5)(=1)F ™ (aled)* ™ d(abX) ™ (1),

m=1
for every k> 1 and a,b E La()N).
(-

3) d{B,(1)(t) = k! z_ (5)(=1)k-m )k -mdAvm(t), k> 1.

ProOF. By Lemma 4.1 we have
d(0(a), 6(b))(t) = exp(—(ale;b))d(expy (abA))(?).

Replace a and b by aa and b in this formula, develop both sides in series with
respect to o and 3, using Proposition 4.1. Now equate the coefficients to get 1)
and 2). Relation 3) follows from 2) for a=b=1. O
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THEOREM 4.2. 1) We have

@)™ (0 = Y- 1 () tled)™ *au @) 6000,

k=1
for every m > 1 and a,b € La(N).
2) V(1) = 3 g (HAO™Fd0(1)(), m>1.
k=1
ProOF. By Lemma 4.1 we have d(exp,, (abA))(t) =exp(ale:d) d{fx(a), 0k (D)) (t).
Replace a and b by aa and Sb in this formula, develop both sides in series with

respect to a and [, using Proposition 4.1. Now equate the coefficients to get 1).
Relation 2) follows from 1) for a =b=1. O

ExAMPLE 4.1. Let T = R and let A be a positive finite Borel measure on R.
Then we have

1) dA\Y™(t) = mA(t)™ 1dA(t), m > 1.
2) d(exp, \)(t) = exp A(t) dA(t).

0(a) =1+ J(a).
(

£:E£+/Fd0(1) :E§+/FdJ(1),

for a unique D-measurable field F'. This property simplifies a great deal the
stochastic analysis in this case. Unfortunately, this is not the general case, as we
will see in the next example. Even more, this is very rare situation.

ExaMPLE 4.2. Let T = R"™, n > 2, and let A be a positive finite Borel measure
on R™ such that A = Ay x --- x A,, where Aq,...,\, are nondiscrete measures
on R. Using the example above we have following relations:

1) dAY™(t) =mh@)™ tdh@t), m>1,i=1,...,n.

2) dAV™(t) = m™A(t)™LdA(t), m > 1.

3) We have

dtexp, M0 = 2 exp 30)aro)

where P, is the Stirling polynomial defined by

_ k™ -
P.,(z)=e ZZ sz = ZS(n,k)x’“, zeR, n>1,
k21 k=1
where S(n, k) is the Stirling number of the second kind. See also the first part of
this paper [5].
4) For (6(1)) we have
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5) For (6(1)) we have
A6 (1))(t) = k*S(n, k)A(®)*HdA D),

forevery k=1,...,n.
6) 6x(1)#0, k=1,...,n,and 6x(1) =0 for k > n.
7) For a € Ly()\) we have

"1
a) = 1+Zyok(a)
k=1

8) Because 6,(1),...,0,(1) are D-orthogonal we see that property 6) of the
example above dos not hold. Even more, there exists no element & € Ly(\?) such
that

§=E£+/Fd£o,

which means that no spectral jet is equal to the hole space.
ExamPLE 4.3. Let I =[0,1] C R and J, be the diagonal of I C R" i.e.,

Jn={au;a€el}, u=(1,...,1) €I

Further, let A be the Lebesgue measure on J,,. Then
D At)=ti AN t,, t€TI".
2) dAV™(t) = mA(@#)™dA(t), m > 1.
d(expy \)(t) = exp A(t)dA(t).
O(1) =A=1.
0:1(1) #0, and 6,(1) =0, k > 2.
0(a) =1+ J(a).
Property 6) of the example 4.1 holds here as well.
If the lattice structure of R™ induces linear ordering on the support of A, then
we have 6;(1) #0, and 6,(1) =0, k > 2.

DEFINITION 4.1. We say that the measure lattice (T, A) has the spectral di-
mension 7 if 6,(1) # 0 and 6;(1) =0 for k > n. If such n does not exist we say
that the spectral dimension of (T, A) is infinite.

)
3)
4)
5)
6)

7)

EXAMPLE 4.4. The spectral dimension of the measure lattices from examples
4.1 and 4.3 is 1, while from example 4.2 is n. Therefore, there is a measure lattice
of the spectral dimension n for every n > 1.

Let T =C(I), I =[0,1], and let A be the classical Wiener measure on T'. It
is easy to see that the spectral dimension of (7, ) is infinite.

Any quantum lattice has infinite spectral dimension.

DEFINITION 4.2. Let Rj(\) be the closed subspace of Ly(A") generated by
{6k(a);a € Ly(N)}, for k > 0. Then Ry () is called k-th reduced chaos of La(Af).
We see that Ro(A) = R and Ri(\) = Hi(X).

Further, let R(A) = >~ Rk () be the orthogonal sum of the reduced chaoses.
It is called reduced space of Ly(A\?). Denote by Z the orthogonal projection on
R(\). Then Z is called derandomizator on Ly ().
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THEOREM 4.3. 1) Reduced chaoses Ry(\), k > 0, are D -orthogonal.

2) EHp(A) = Re(A), k> 0.

3) For every &,m € La(A\) the random measure (E€,Zn) is, in fact, nonrandom
i.e., E(E& 2Zn)(B) = (2¢,2n)(B), for every B € B(T). Hence the name for =.
Eé(a) = 6(a), a € La(N).

EJk(a) = Hk(a), k>0, a€ Lg()\)
= commutes with spectral measure E .
E[FdD = [(EF)dE-E, F € Loo(D).

Ut s
~

N D
~—

PRrOOF. Assertion 1) follows from 1) of Theorem 4.1. Assertion 2) follows
from 5), while 3) follows from 4) and Theorem 4.1. Relations 4) and 5) follow from
Proposition 4.1. Relation 6) is evident, while 7) follows from 4) and 6). d

COROLLARY 4.2. We have Ef(a) = 0(era) and E0;(a) = bx(cra), for every
teT, a€ Ly(N\) and k> 0.

PrOOF. Follows from 4), 5) and 6) of the Theorem above. O

DEFINITION 4.3. Let S;(\), k > 1, be the closed subspace of Lo () generated
by

{/FdD -04(a); F € Loo(D), a € Lg()\)}.
Also let Sg(A\) = R. Then Si(A) is called k-th spectral jet of (T, )).

We see that Si1(\) = Hp(6:(1)).

THEOREM 4.4. The spectral jets of (T, \) are D -orthogonal and Ly(\?) is an

orthogonal sum of the spectral jets of (T, \) i.e., La(A') = 3 Sp(N).
k>0

PROOF. D-orthogonality of the spectral jets of (T, ) follows from the D-
orthogonality of the reduced chaoses. Because of

fla) =1+ / £(e1a) dB(a) (2),

we see that the orthogonal sum 37, -, Sk(}) contains {(a) for every a € L»(X)
which proves our assertion since {£(a);a € La()\)} generates Lo(A9). O

COROLLARY 4.3. If the spectral dimension of (T, ) is n, then Sk(\) = {0},
for k> n and Ly(A%) = So(A\) + - + Sp(N). Further, every £ € Lo(\') can be
represented as a sum of n stochastic integrals.

PRrROOF. In this case Or(a) = 0 for £ > n and a € Ly(\) which implies
Sk(A) = {0}, for £k > n. If n =1 we have the classical situation, the same as of
the Poisson process i.e., La(A') = R+ Hp(#1(1)) and every & € La(\%) can be
represented uniquely as

§:E§+/Fd0(1). O
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