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SUBPARACOMPACT INVERSE IMAGES
OF 2-SUBPARACOMPACT SPACES

Ying Ge
Communicated by Rade Zivaljevic

ABSTRACT. We prove that subparacompact mappings inversely preserve 2-
subparacompactness. As some applications of the above result, we obtain that
both perfect mappings and closed Lindelof regular mappings inversely preserve
2-subparacompactness, which answer a question on 2-subparacompactness pos-
ed by Qu and Yasui affirmatively. Also we give a counterexample to show that
closed Lindelof mappings do not inversely preserve 2-subparacompactness.

1. Introduction

In [6], Qu and Yasui discussed relative subparacompactness, and gave some
beautiful characterizations of 1-subparacompactness [6]. By this characterizations,
they obtained that 1-subparacompactness is inversely preserved under perfect map-
pings [6]. Unfortunately, we do not know whether analogous characterizations of
2-subparacompactness are true, so authors of [6] raised the following question.

QUESTION 1.1. [6] Is 2-subparacompactness inversely preserved under perfect
mappings?

Notice that subparacompactness is inversely preserved under both perfect map-
pings (need not with regular domain) and closed Lindelof mappings with regular
domain [3]. We are even more interested in the following question.

QUESTION 1.2. (1) Is 2-subparacompactness inversely preserved under closed
Lindelof mappings with regular domain?
(2) Furthermore, can regularity in the above (1) be omitted?
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We use subparacompact mappings, which were introduced by Buhagiar and
Miwa in [2], to investigate the above Questions 1.2. We prove that subparacom-
pact mappings inversely preserve 2-subparacompactness. As some applications of
this result, we obtain that both perfect mapping and closed Lindelof regular map-
pings inversely preserve 2-subparacompactness. Especially, closed Lindelof map-
pings with regular domain inversely preserve 2-subparacompactness. Also we give
a counterexample to show that closed Lindelof mappings do not inversely preserve
2-subparacompactness.

Throughout this paper, all spaces are 77 and all maps are continuous and onto.
w denotes the first infinite ordinal. Let € X, A be a subset of a space X and U
be a collection of subsets of X. YU=J{U : U e U}, UNA={UNA:U e U}
and ord(z,U) denotes the cardinal of the family {U € U : z € U}. Let U and V
be families of subsets of a space X. We say that V is a partial refinement of U, if
for every V € V there is U € U such that V' C U; moreover, we say that )V is a
refinement of U, if in addition JV = |JU is also satisfied. Let Xo be a subspace of
a space X, and U be a family of subsets of X. We say that I is discrete at Xo in X,
if for every & € X there is an open in X neighborhood of x that intersects at most
one member of /. Having the above definition, we define o-discreteness at Xy in
X in a natural way. If f : X — Y is a mapping, then f(U) = {f(U) : U € U} and
f7'V) = {f~Y(V) : V € V}. The sequence {P,, : n < w} of collections of subsets
of a space are abbreviated to {P,}. One may refer to [3] and [5] for undefined
notations and terminology.

DEFINITION 1.3. A space X is called subparacompact if every open cover of X
has a o-discrete closed refinement.

DEFINITION 1.4. [6] A subspace Xy of a space X is called 2-subparacompact
in X, if for any open cover U of X, there exists a partial refinement F of ¢ such
that F is o-discrete at Xg in X closed in X and JF D Xo.

REMARK 1.5. [6] In the above Definition 1.4, 2-subparacompactness coincide
with the subparacompactness if Xo = X.

DEFINITION 1.6. [2] A mapping f : X — Y iscalled T3 (T}), if foreveryy € YV
and all z,z' € f~(y),  # 2', the points x and z' have disjoint neighborhoods in X
(every of the points x, z' has a neighborhood in X not containing the other point);
is called regular, if for every x € X and every closed set F' in X such that = & F,
there exists a neighborhood G of f(x) such that z and F N f~1(G) have disjoint
neighborhoods in f=1(G).

REMARK 1.7. (1) A mapping is T, T» and regular respectively if the domain
is Ty, T» and regular respectively.
(2) Since all spaces are assumed to be T1, all mappings are Ty from [2].

DEFINITION 1.8. A closed mapping f : X — Y is called perfect (closed
Lindelof), if for every y € Y, f~!(y) is a compact subset (Lindelof subset) of X.

DEFINITION 1.9. [2] A mapping f : X — Y is called paracompact, if for

every y € Y and every open (in X) cover Y = {U, : a € A} of f1(y) (ie.,
[ Hy) CU{U, : @ € A}), there exists a neighborhood G,, of y such that f~1(G,)
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is covered by U and U A f~1(G,) has a y-locally finite open refinement F, that
is the open refinement F of U A f~'(G,) has the following property: for every
x € f~1(y), there exists a neighborhood O, of x such that O, meets finitely many
elements of F.

DEFINITION 1.10. [2] A mapping f : X — Y is called subparacompact, if for
every y € Y and every open (in X) cover U of f1(y), there exists a neighborhood
G, of y such that f~(G,) is covered by U and U A f1(G,) has a o-discrete closed
refinement F in f~!(G,), that is the refinement F of & A f~1(G,) is of the form
F = Upew Fn, where Fy, is closed and discrete in f~1(G,) for every n < w.

REMARK 1.11. [2] Perfect mapping => paracompact mapping.

2. The main results

LEMMA 2.1. [4] A mapping f : X — Y is closed if and only if for every
y €Y and every open subset U in X which contains f~1(y), there exists an open
neighborhood V of y such that f~1(V) C U.

LEMMA 2.2. [2] For a mapping f : X =Y the following are equivalent.

(1) f is paracompact Ts;

(2) f is regular and for every y € Y and every open (in X ) cover U of f~1(y),
there ezists a neighborhood G, of y such that f='(G,) is covered by U and U A
[~HG,) has a y — o-discrete open refinement V. This is equivalent to saying that
the refinement V of UA f~(Gy) is of the form V = Un<w Vn,where for every n < w
there exists a neighborhood G,(y) of y such that G,(y) C Gy and V,, is discrete in
f_l(Gn(y))f

(3) f is Ty and for everyy € Y and every open (in X ) cover U of f~1(y), there
ezists a neighborhood Gy of y such that f~*(G,) is covered by U and U A f~1(G,)
has a closed locally finite refinement in f~1(Gy).

LEMMA 2.3. [2] A mapping f : X = Y is subparacompact if and only if for
every y € Y and every open (in X ) cover U of f~1(y), there exists a neighborhood
Gy of y such that f~*(Gy) is covered by U and U A f~*(Gy) has a o-locally finite
closed refinement F in f~1(G,), that is the refinement F of U A f71(G,) is of
the form F = Fn, where Fp, is closed and locally finite in f~1(G,) for every
n<w.

n<w

REMARK 2.4. Paracompact 75 mapping => subparacompact mapping from
Lemma 2.2 and Lemma 2.3.

PROPOSITION 2.5. Let f: X — Y be a closed Lindelof regular mapping. Then
f is paracompact, and so is subparacompact.

PROOF. Let y € Y and U be an open (in X) cover of f1(y). Then there exists
a countable {U, : n < w} C U such that f1(y) C U{Un : n < w}. Since f is closed,
there exists an open neighborhood G, of y such that f~*(G,) C U{Un : n < w}
from Lemma 2.1. Put V,, = {U, N f~(Gy)} for every n < w and V = {J,,, V-
Then V is a y — o-discrete open refinement of U A f~1(G,). So f is paracompact
from Lemma 2.2. O
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LEMMA 2.6. Let f : X — Y be a mapping, Yy be a subspace of Y and Xy =
FY(Yo). If F is discrete at Yy in Y closed in'Y, then f~1(F) is discrete at Xq in
X closed in X.

PRrOOF. The proof of this lemma is routine, so we omit it. O

THEOREM 2.7. Let f : X — Y be a subparacompact mapping. If Yy is 2-
subparacompact in'Y, then Xo = f1(Yo) is 2-subparacompact in X.

PROOF. Let U be an open cover of X. Since f is subparacompact, there exists
a neighborhood G, of y for every y € Yy such that f~!(G,) is covered by ¢ and
U N f1(Gy) has a o-discrete closed refinement Fyy = J,,, ., Fm,y in f~(Gy). Let
G ={Gy :y € Yp}. Since Yp is 2-subparacompact in Y, G has a partial refinement
W = U{Wr : n < w} such that every W, is discrete at ¥y in Y closed in YV
and W D Y. For every n < w, we can assume W, = {Wy, : y € Y5} and
Why C G(y). Put Prm = U{Fmy A f T (Wny) 1 y € Yo} for every n < w and
m <w,and P =U,, ,.c,, Pn,m- It is easy to see that P is a partial refinement of U
and P D Xp. To complete the proof, it suffices to show the following two claims
for every n < w and m < w.

Claim A: P, , is discrete at X in X.

Let z € Xo. f1(Wh) ={f *(Wyny) : y € Yo} is discrete at Xo in X closed in
X from Lemma 2.6, there exists an open neighborhood U, of z in X and ' € Yy
such that U, N f~1(W,,) =0 forall y € Yo \ {y'}. If z & f1(W,, ), notice that
F7Y (W) is closed in X, then there exists an open neighborhood V, of z in X such
that V, N f~1(W,,) = 0. Put W, = U, NV,. Then W, is a neighborhood of z in
X and WoNP =@ forall P € Pp . Ifz € f~1(Wp,y), notice that Fp, ,r is discrete
in f7H(Gy) and f~* (W) C f71(Gy), then there exists an open neighborhood
V, of z in f~'(G,) (and so V, open in X) such that V, intersects at most one
member of Fp, ,». Put W, = U, NV,. Then W, is an open neighborhood of z in X
and W, intersects at most one member of P, . This shows that P, ., is discrete
at X(] in X.

Claim B: Py, , is closed in X.

Let f'(Wny) NF € Ppm, where F € Fpy and y € Yy. For whenever
s [ Way) N, ifa g fH(Way), put Up = X N fH (W y); Hx € fH(Way)
(soz ¢ F), put U, = f~(Gy) ~ F . Then U, is a neighborhood of z in X
and U, N (f~'(Wpy) N F) = 0. This shows that f~!(W,,) N F is closed in X
consequently, Py, , is closed in X. O

We have the following corollaries from Remark 1.7(1), Remark 1.11 and Propo-
sition 2.5.

COROLLARY 2.8. Both perfect mappings and closed Lindelof regular mappings
inversely preserve 2-subparacompactness.

COROLLARY 2.9. Closed Lindelof mappings with regular domain inversely pre-
serve 2-subparacompactness.
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3. The counterexample

Now we give a counterexample to show that both regularity of closed Lindelof
mapping in Corollary 2.8 and regularity of the domain in Corollary 2.9 can not
be omitted, even can not be replaced by T>. By Remark 1.5, It suffices to give a
counterexample to show that closed Lindelof 75 mappings do not inversely preserve
subparacompactness, even if the domain is 7. Recall a space X is said to be
strongly paracompact [3] if every open cover has star-finite open refinement; is said
to be (countable) #-refinable [3], if for every (countable) open cover of X, there
exists a sequence {U,} of open refinements such that for every z € X, there exists
some n € N with ord(z,U,) < co. It is well known that strong paracompactness
— subparacompactness = #-refinability for T»-spaces.

ExAMPLE 3.1. There exists a closed Lindelof T5 mapping f : X — Y, such
that X is Ty, but not #-refinable, and Y is T strongly paracompact.

Let X, @ and I be the set of all real numbers, the set of all rational numbers and
the set of all irrational numbers respectively. Define a base B of X by B = {{z} :
z € [JU{G(z,n) :z € Q,n € N}; here G(z,n) ={yel:-1/n<y—z <1/n}
U {z}. So, X is a Bennett and Lutzer’s space [1]. Define an equivalence relation
R on X as follows: x Ry if and only if z,y € @ or x = y. Let Y be the quotient
space X/R and let f be a natural mapping from X onto Y. Then

(1) X is Ty, it is neigher regular nor §-refinable [1].

(2) Y is T, strongly paracompact: The fact that Y is T is clear. Let U be any
open cover. Pick zg € Q. Put yo = f(xg). Pick U € U such that yo € U. Then
{UYU{{y} :y € Y — U} is a discrete (hence star-finite) open refinement of U, so
Y is strongly paracompact.

(3) f is a closed Lindelof mapping: It is clear.

(4) f is a T> mapping: It is clear from that X is a T»-space.

REMARK 3.2. (1) In fact, X is not countably f-refinable: Assume X is count-
ably @-refinable. Let &/ be any open cover of X. Then there exists a countable
subfamily V of U which cover Q. Put W = |[JV. Then W is clopen in X and V
is a countable open cover of W. Notice that countable 8-refinability is hereditary
to closed subspace, W is countably 8-refinable, so there exists a sequence of open
refinements {V,, : n € N} of V, such that for every € W there exists n € N such
that ord(z,V,) < co. Put U, =V, U{{z} : 2 € X — W} for every n < w. Then
{U,} is a sequence of open refinements of Y. For every xz € X, if z € W, then
there exists n < w such that ord(z,V,) < oo, hence ord(z,Uy) = ord(z, V,) < oc;
if £ € X — W, then ord(z,U,) = 1 < oo for every n € N. Thus X is f-refinable.
This is a contradiction, as X is not f-refinable [1].

(2) The above Example 2.1 show that all covering property which are between
strong paracompactness and countable 8-refinability need not be inversely preserved
under closed Lindelof T mappings even if the domain is T5.

The author would like to thank the referee for his valuable amendments.
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