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REMARKS ON THE CONDITIONS
FOR UNIQUE EXTREMALITY
OF QUASICONFORMAL MAPPINGS

Edgar Reich

ABSTRACT. In work dating to 1981, two different sufficient conditions for
unique extremality of quasiconformal mappings, referred to here as Theo-
rem A and Theorem B were found. In the case of Theorem A, the condition
is now known to also be necessary. In spite of this, Theorem B has been
found to be the more useful of the two conditions in delicate situations.
However, the question of whether the conditions of Theorem B are neces-
sary is still open. We discuss some matters relevant to this problem. As
a new illustration of Theorem B, we show that it can be used to give a
self-contained proof of a result of Strebel’s.

0. Introduction

In [3], two separate sufficient conditions for unique extremality of quasicon-
formal mappings of Teichmiiller type, referred to as Theorem A and Theorem B,
were proved. A review of the statements and an outline of their proofs are given
in Section 1, following. It turned out [1] that the conditions for Theorem A were
not only sufficient but also necessary for unique extremality. For Theorem B the
question of necessity is open. In Section 3 we explore some of the difficulties of this
question and state a positive partial result, Theorem 3.1. In practice, Theorem B
has turned out to be more useful than Theorem A for proving unique extremality in
delicate cases. A rather spectacular illustration of this is found in a recent paper [2]
of V. Markovié¢. A less difficult example is given in Section 2, below.

1. Review of the conditions and their proofs

Assume that f(z) and g(z) are quasiconformal mappings of a region Q of the
plane, agreeing on 0.
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Let py, pg, pg-1, prg-1, respectively denote the complex dilatations of f, g,
f71, 971, and let

(L.1) K(2) = pp(2), l2) = (g1 0 f)(2), B(2) = (ng-1 0 f)(2).

Furthermore, let L!() denote the class of functions holomorphic in £ and be-
longing to L'(Q). Under the foregoing conditions, it is known! that the following
inequality holds for all ¢ € LL(Q):

(lel* = 181*) + (1 = |k]) (|a| —Re %)
" / / L+ =)@ = 18P)

a K (1 - Ba)(a - B)
<Re//—<cp——go> dz dy
SRS Jatal (P ) 0 (- 18P
Our object is to discuss some known conditions for the unique extremality of f

among the class of quasiconformal mappings of 2 with the same boundary values
as f and belonging to the same homotopy class as f, for the case when

0(2)
lpo(2)]

| dx dy

S

(1.3) R(z) = uy(2) = b

where ¢, (z) is holomorphic in 2 but not necessarily an element of L!(Q). If one
analyzes the development in [3] it is seen to implicitly involve two lemmas, stated
as Lemma A and Lemma B below. These lemmas do not occur explicitly in [3],
but their proofs are actually there.

Before proceeding, disregarding the definitions (1.1) and (1.3), we shall say that
the constant k and the arbitrary functions, k € L>® (), a € L>(Q), 8 € L>=(Q),
© € LY(Q), satisfy the Main Inequality, written

(1.4) {k,k,0,0,p} € M
for short, to mean solely that 0 < k < 1, and that
(1.5) IK(2)] = la(2)| < ks 1) < K ace. in O,
and that the inequality (1.2) is satisfied.?
LEMMA 1.1. Suppose {k,k,a, (3,9} € M, where |k(z)| = k a.e. in Q. Then
(1.6)
[ te= 1ot dzdy < VG [[ 1= Bl (Kol - Reto)) i,

8k(1 + k%)?

Cok)= ——m——.
o(k) (1+k)2(1—-k)S
!Inequality (1.2) is a version of an inequality due to K. Strebel and the author, sometimes
referred to as the “Main Inequality”. See [3] and the references there.
2In particular, note that whether or not ¢ is holomorphic plays no part in (1.4).
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Proof. The proof consists merely in algebraic manipulation of (1.2). See [3,
pp. 292-294]. O

For &, ¢ as in (1.5), let

e} = Re [[ (Mol = w(2)(2)) dody.

LEMMA A. Suppose |k(z)| = k a.e. in Q, and {k,k,a,8,p,} € M, n =
1,2,..., where

(1.7) lim ¢n(2) = o(2) #0 a.e. in Q,
n— oo

and

(18) Tim 8{p,} =0.

Then a = 3.

Proof. Using Schwarz’s Inequality in (1.6) gives

/ / o — Bl do dy < Colk)S{pn}, n=1,2,....
Q

By (1.7) and Fatou’s Lemma,
// o = BI?|ipo | dz dy = 0,
Q
O

LEMMA B. Suppose |k(z)| = k a.e. in Q, and {k,k,a,8,0n} € M, n =
1,2,..., where (1.7), (1.9), and (1.10) hold.

(1.9 {6{¢n}} is a bounded sequence

and the conclusion follows.

(1.10) lim inf // |on (2)| dz dy = 0 uniformly with respect to n,
Q(n,t)

t—0

where Q(n,t) = {z € Q: |pn(2)| > (1/t)|po(2)|}. Then a = 6.
Proof. The proof also starts with (1.6), but involves a more refined procedure
than the one used for Lemma A. See [3, pp. 294-295]. O

The basic results of [3] follow immediately from (1.1) and (1.2) in conjunction
with Lemmas A and B; namely,

THEOREM A. Suppose f is a quasiconformal mapping Q with ps(2) of the form
(1.3), and such that (1.7) and (1.8) hold for a sequence p, € L1(Q), n =1,2,....
Then f is uniquely extremal.

THEOREM B. Suppose f is a quasiconformal mapping of Q with ps(z) of the
form (1.3), and such that (1.7), (1.9) and (1.10) hold for a sequence ¢, € LL(1),
n=1,2.... Then f is uniquely extremal.



70 REICH

2. New proof of a theorem of Strebel
The mapping f(z) = r%¢¥, (2 = re??), where s is a positive constant, occurs in
numerous contexts in the theory of plane quasiconformal mappings. This mapping

has complex dilatation

Iz s—1
= — = v
f. s+1

(2), v(2)

z
(2.1) e G40

From (2.1) one sees that f is a K-quasiconformal mapping of the complex plane C
onto itself, with K = max(s,1/s).

STREBEL’'S THEOREM [5]. Let E C C be a closed denumerably infinite set. If
E has an accumulation point at z = 0 but not at z = 0o (or at z = oo but not at
z2=0), then f is an extremal mapping among the class of quasiconformal mappings
of C onto itself that agree with f on E and are homotopic to f, but f is not uniquely
extremal. If E has accumulation points both at z = 0 and at z = oo, then f is the
uniquely extremal quasiconformal mapping of C onto itself that agrees with f on E
and is homotopic to f.

A surprising aspect of Strebel’s theorem (as he points out) is that the density
of E near 0 or oo plays no role in determining whether or not extremality or unique
extremality of f holds. Our purpose will be to give an “analytic” proof of both
parts of Strebel’s theorem. This may be compared with Strebel’s “geometric” proof
which makes strong use of a modulus theorem of Teichmiiller’s. The analytic proof
turns out to be somewhat shorter than the original proof.

There is evidently no loss of generality in assuming that £ has an accumulation
point at z = 0. If E is bounded, then it is easy to see that f cannot be uniquely
extremal by merely replacing f outside a circle of sufficiently large radius by a
multiple of the identity.

Note that we can write

_ ®o(2) . 1
(2.2) v(z) = a2’ with ¢,(2) = ok

For Q =C \ E, we set

lell= [[ @y, peri@,
Mol = [[ ool dody, Mgl =Redlyl, o € I4(@).

Neglecting the unimportant factor  in the definition of 8{p}, set 6{p} = ||ol|—Alp]-
It is clear that 6{¢} > 0 for all p € L1(Q).

It follows from well known principles that, with a given set E, f is extremal if
and only if ||A]| = 1; that is, if and only if there exist ¢, € L1(Q), such that

(2.3) lim ALPnl _

n=o0 |||

1.
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According to Theorem B, we have the following:

A sufficient condition that f is uniquely extremal is that there ezist p,, € LL(Q),
such that (2.4), (2.5), and (2.6) hold; namely

(2.4) lim ¢, (z) = 1/22, pointwise a.e. in §Q,
n—oo
(2.5) {6{pn}} is a bounded sequence,
(2.6) lim // |on(2)| dz dy = 0 uniformly with respect to n,
t—0 Q(n,t)

where Q(n,t) = {z € Q : |pn(2)| > 1/t|2%|}, (t > 0).

Of conditions (2.4)—(2.6), conditions (2.4) and (2.5) have to be given first pri-
ority; if we are lucky with our choice of {¢,}, the hope is that (2.6) is satisfied
automatically.® In our proof of Strebel’s theorem we will choose ¢, (2) as

A
2.7 A= — "~
where a and A, with 0 < |a| < 1 < |A|, will be selected for n =1,2,3,... as certain
elements of E. It is clear that ¢ € LL(Q) for any such choice of a and A. We
proceed to the details that will lead to the selection. For the function ¢(a, 4, z) of
(2.7) we have, setting v = a/A, (0 < || < 1),

1 2w 1
(2'8) A[QO] = //C mdl‘dy = mlog m,
1
29 o= ], e -

It will alternately be useful to write

1 ].
llell = //|z|<1 2 —a)(1 = 2/A)] dzdy + //|z|<1 |2(z = 1/A)(1 — az)| dz dy
(2.10) =hth

and correspondingly,

1 1
s =[], smaamam e+ [ e
(2.11) = At A

3This matter is discussed further in Section 3.
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LEMMA 2.1. We have 6{¢(a,A,-)} <200, (0 < |a| < 1/4, |A| > 4).
Proof. By (2.10), (2.11),

5{<p(a,A, )} = (51 + (52, 51 = Il — ReAl, 52 = IZ — R6A2.
It is evidently enough to consider §; since any bound for §; on the postulated set

of pairs (a, A) will also be a bound for d;. Replacing z by az in the integration, we
can write

1 1
o1(a, 4) = //z<1/|a| [|z<z— D2 I -Da —vz)] dzdy = On+ 012,

where
N .
|z]<2 2<|z[<1/|al

Since |y| < 1/16, we have

8 1
(2.12) 61 < 2 // — — _dxdy < 18.
7)) z1<2 12(z = 1)
In polar coordinates we can write
(2.13)

1/|a\ 27 1 1 27 [Imw]Z
010 = G(r)dr, G = — —Re— | df = ————d#,
12 / (r)dr, G(r) / <|w| ew) / [wPllwl + Rew]

where
w=(r— e*w)(l — 'yrew) =r+r(1-— rew) —e ¥, (2<r<1/la).

During this interval for r, we have

| | < ‘g‘ i = i < 1
TS 1Al o T4 S 3
Hence, .
1 3 )
>r—= 1=2r -2

Rew >r 4(1+r) 1 T 121

Therefore, by (2.13),
7 [Im w]?
(2.14) G(r)gf o, 2 <r<1/la).
0

Now, .
Imw = sinf + rIm~ — 72 Im(vye®).
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Therefore,
[Imw| <1+ y[(r? +7) <1+2R?, 2<7r <1/al).
Furthermore,
wlze-0a-hz(3) (1- ) 2 5 <<,
So, by (2.14),

(1+2lr)?
r3

G(r) <120 , 2<r<1/la]).

Going back to (2.13), this gives

1 1 2 1 4 2
012 €120 |- +4|y|log— + —5| <120 |+ — + —| < 75.
o <120 [+ 4iton -+ | <120 [+ 3+
So, in view of (2.12), we get 1 (a, A) < 18 +75 < 100, when 0 < |a| < 0.25, |4| > 4.
Since the same bound holds for d;(a, A), the proof is complete. O

LEMMA 2.2. For fized A, we have

1 1
(2.15) Alp] = 27 log Tal +0Q), ||l =2nlog al +0(1), asa—0.

Proof. The first relation follows immediately from (2.8). The second assertion
follows from Lemma 2.1 and the fact that ||p]| > |[Alg]|. O

We now proceed to what we will need in connection with condition (2.6). Let

Taan=[[ lpaAzldedy, (>0,
Q(a,A,t)

where Q(a, A,t) = {z € C : |¢(a, A, 2)| > 1/t|2|?}.

LEMMA 2.3. Ast — 0, J(a, A, t) = 4nt + o(t), uniformly with repect to a, A,
0<la < 1/4, |4] > 4.

Proof. Analogously to the development above, we can write J(a, A,t) = Jy1+Ja,
where the integrand for J; is the same as the integrand for I; in (2.10), but the
domain of integration for J; is {z € C : |z| < 1, z € Q(a, A,t)}. Jo is obtained from
Jy by interchanging a and 1/A. Replacing the integration variable z by az again,

(2.16) Ji(a, A, t) = //|z(z — 1)1(1 —) dedy,

where the domain of integration is now
<t}.

1
(2.17) {zEC:z<—,
2| il

(z =11 —v2)
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Since the factor |1 — vz| is uniformly bounded away from 0 in the domain of inte-
gration, one sees from (2.16) and (2.17) that, as t — 0,

1
Ji(a, A,t =// ———dz dy + o(t) = 27t + o(t),
i ) 2=y (e—1) <ty (L =) (z = 1)| ) )

uniformly with respect to a, A. Since the same holds for J»(a, 4,t), the lemma
follows. O

Proof of the theorem. For the case when both 0 and oo are accumulation points
of E, we let ¢, (2) = ¢(an, An, 2), where {a,}, {An} are subsequences of points of
E with lima, = 0, lim 4,, = co. It is obvious that (2.4) holds. By Lemma 2.1,
condition (2.5) holds, and by Lemma 2.3, condition (2.6) holds, and hence unique
extremality of f follows.

When we are only given that 0 is an accumulation point of E, it is clear
that one can rescale the problem so that E contains at least one point T, with
|T| > 4. We then choose p(2) = ¢(an, T, z). By multiplying ¢, (2) by appropriate
unimodular complex constants we can insure that Afp,] > 0. By Lemma 2.2, it
follows that (2.3) holds, thus guaranteeing that f is extremal. Since (2.3) holds,
{¢n} constitutes what is known as a Hamilton sequence for p¢. It may at first sight
seem strange that lim ¢, (z) differs from ¢,(z), but for a Hamilton sequence it is
only the behavior of the elements of the sequence near points where the L!'-norm
is large that matters. O

In the unique-extremality case, our sequence {y,} has the property that
liminf §{¢,} > 0.
n—oo

Namely, by Fatou’s Lemma,

1 1
o S 2lim] > _ .
llnn—1>1c>rcl>f6{90"}/2h§gl()r,lf61(a’j4)///c [|Z(z—1)| Rez(z—l) drdy >0
— 00

This shows that the proof of unique extremality, using our particular sequence
{¢n}, could not have been accomplished with Theorem A, which, although it would
not have required hypothesis (2.6), would have required, not just that {6{p,}} is
bounded, but that lim §{¢,} = 0.

3. An open question

It is clearly of interest to know whether condition (1.10) can be omitted from
the hypotheses of Theorem B. We do not know the answer. If the answer were
yes, then Theorem B would be a stronger theorem than Theorem A, and it would
provide a necessary and sufficient condition for unique extremality. We proceed
with some remarks relevant to the basic special case when f is the affine stretch
Ak, where K is a constant, K > 1,

f(2) = Ak(2) = Kz +iy, (2 =2z +1y).

In this case, k(2) = pr(z) =k = (K —-1)/(K +1) >0, a(z) = —k, p,(2) = 1. The
problem is therefore the following:
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QUESTION. Suppose there ezists a sequence @, € LL(Q), n=1,2,..., so that

(1) limp— o0 n(2) = 1 locally uniformly in Q,

(i) {[[fq [lon(2)] — Repn(z)] dxdy} is a bounded sequence.

Does it follow that Ak is a uniquely extremal quasiconformal mapping of Q for
the boundary values induced by Ax ?

We note that conditions (i) and (i) do not imply that (1.10) holds. A simple
counterexample is obtained by letting €2 be the unit square S = {(z,y) : 0 < z < 1,
0 < y < 1}, and setting

(3.1) on(z) =ne ™ +1, z€S8.

Conditions (i) and (ii) are satisfied, but it is easy to check that, contrary to (1.10),

// |pn(2)|drdy — 1 as n — oc.
{2€8:]pn(2)|>vn}

A roughly positive answer to our question can be obtained by introducing the
concept of a tight region. We shall say that Q is a tight region if Q does not contain
any region congruent to Q; = {z = z + iy : © > |y|°} whenever 1 < s < 3, i.e.,
whenever s, < s < 3, where s, is close to 3. Examples of tight regions are regions {2
of finite area, and regions {2, with s > 3. Another example is the region consisting
of the plane punctured at the integral lattice points {m + in} of [2]. For all these
examples it is known that Ag is uniquely extremal. On the other hand, among
examples of non-tight regions are the regions 05 when 1 < s < 3, as well as Strebel’s
famous chimney region {z : |[Imz| < 1} U {Rez < 0}. For these examples of non-
tight regions it is known that Ak is extremal but not uniquely extremal. Of course
there are also many examples of non-tight regions, for example the half plane, for
which Ak is not even extremal. So it seems that, at least roughly speaking, the
class of regions 2 for which Ag is uniquely extremal resembles the class of regions
Q that are tight in the foregoing sense.

THEOREM 3.1. Suppose there ezists a sequence pn € L1(Q), n =1,2,..., such
that conditions (i) and (ii) hold. Then Q is a tight region.

Proof. The proof is by contradiction. Suppose 2 contained a region g for
some s, 1 < s < 3. By the first part of Theorem 1.1 of [4], if ¢, € LL(Q?) and if
condition (i) holds, then

lim / /Q [lon(2)] — Ren(2)] dody = +oo

n—oo

This contradicts condition (ii). O

In contrast to the procedure used for proving Theorem A or Theorem B, the
Main Inequality (1.2) alone is not powerful enough to settle the question. This can
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be seen by taking Q2 = S and defining ¢, by (3.1) again. With f = Ak, Inequality
(1.2) becomes

|5( )|2
1+kﬁ k+ﬁ(z))

Since S has finite area, Ak is obviously uniquely extremal. If this followed from
(3.2) alone, where ¢, is given by (3.1), then (3.2) would have to imply that 8(z) =
a(z) = —k. In fact, however, substituting 3(z) = 0 in (3.2) in order to see if it
might satisfy (3.2), we are led to the inequality

(3.3) k// |ne™™* + 1|dx dy > Re// dedy, n=12,...

Since the left side of (3.3) goes to 2k as n — oo and the right side to 1, we see that
if we choose, say k = 0.7, then 3(z) = 0 will satisfy (3.2) for all sufficiently large n.
Hence (3.2) is unfortunately not strong enough to imply that o = 3 with the above
sequence {¢n}. So, if the answer to the open question is yes, some facts beyond
the Main Inequality will have to be used to show it.
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