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ON THE ZEROS OF FUNCTIONS
IN THE BERS SPACE

A. Fletcher and V. Markovié

ABSTRACT. We present some results on the distribution of zeros of functions
in the Bers space Q(D), showing how the distribution depends on the bounds
of the growth of |f(2)| as |z| — 1, for f € Q(D). We also exhibit an open and
dense subset, M C Q(D), which has the property of uniform control over the
number of zeros in disks of hyperbolic radius 1 contained in .

Overview

Functions in the Bers space of the unit disk, @ = Q(D), have restricted growth
as one approaches the boundary 0ID. We use this fact to prove some results on the
distribution of the zeros of such functions in Section 2.

THEOREM 2.3. There exists a universal constant Cs such that for all ¢ € @,
there exists r4 € (0,1) depending on ¢ such that

n(r) < CsA(r)log A(r), (r € (r4,1)),

where we define n(r) to be the number of zeros of ¢ in {z € D : |z| < r} and A(r)
to be the hyperbolic area of this disk, for r € (0,1).

THEOREM 2.4. Let ¢ € Q, then there exists an increasing sequence (t,) with
tn, = 1 such that n(t,) <4/(1 —t,).

In Sections 3 and 4, we define the subset M C @ by
M:={peQ:3¢>0,V2€D,|¢lp,(-) > q}

and prove that M is open and dense in ). For a given ¢ € M, we have uniform
control over the number of zeros on ¢ in disks of hyperbolic radius 1.

Most of the work here is needed in proving that M is dense in . This is
achieved using linear functionals, since the Banach dual of the space of the Bergman
space of the disk, A'(ID), can be identified with (). We can characterize M in
terms of a property involving linear functionals, and work with this characterization
instead.
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A key point is that linear functionals on A'(D) corresponding to masses on
small hyperbolic disks in D) have a representation as some element of (), ie. given
Qu,r = {2z € D: dn(2,w) < R}, define pi(,, gy = 1, , and then there exists some
Yw,R € @ such that

/D ey f davdy = / p GRS dedy, (Vf € A(D)).

This means that while we cannot add such masses to an element of () and hope
to still have an element of @) (let alone an analytic function), we can consider the
linear functional given by adding such masses to an element of (), and this will
have a representation as an element of () (as hinted in the equation above). We
prove the density of M in () by adding appropriately small masses to elements of
() which are not in M.

1. Introduction

Let D := {2z € C: |z] < 1} be the open unit disk in the complex plane C. The
Bers space @ = Q(D) is the linear normed space defined by @ := {¢ analytic on D :

[|¢ll < oo}, where
lo(2)|

lloll = sup
z€D p2(27)

is the Bers norm, and p is the hyperbolic density on D, given by p(z) = 2/(1—|z|)2.
Let N be any Riemann surface carrying the hyperbolic metric, or equivalently, has
D as the universal cover, and let 7 : D — NN be the covering map. The covering
group I is defined by

[:={v:D — D conformal : 7(y(2)) = n(2), Vz € D}.

The group T is a discrete group of Mdbius transformations on I, and N can be
represented as N ~ /T

The Bers space can be generalized to any Riemann surface N which can be
represented as N ~ D/T in the following way. If ¢ is a quadratic differential on N
(i.e., a (2,0) differential form), let ¢ be its lift to D defined by

¢(2) = p(n(2)) (7' (2))*, (2 € D).
For any v € T" and z € D,

L1 e(1(2) = B(r(v () (@' (1(2)))* = B () (7' (7(2)))* (V' (2))*-

The hyperbolic metric piy on N is defined via the covering map 7 by

p(z) = pn(m(2))|7' ()], (2 €D).
For any v € T and z € D,

(1.2) p(v(2)) = pn (m(y ()| (v(2))1' (2)]-

Combining (1.1) and (1.2) shows that the expression
|5(n(2))lon" (7 (2)) = le(2)|p~>(2)
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is invariant under change of chart, which means it is a function on the surface N.
Thus the Bers space on N is Q(N) = Q(T") := {@ analytic on N: |||y < oo},
where

@lln = Sup |5 (2)lpn’ (n(2)) = sup lo(2) |2 (2)-
Quadratic differentials on closed Riemann surfaces are in the corresponding Bers
space.

For r € (0,1), we define n(r) to be the number of zeros of ¢ in the closed disk
of radius 7, centered at 0. The area of the aforementioned disk will be denoted
A(r), and a calculation shows

2w
(1.3) A(r) =/ z)dzdy = / / 5 dsdf =
{z€C|z |<r} (1-s%)2 1 -

Thus as 7 — 1, we have that A( ) ~ 1/(1 —r), where f( ) g(r) if and only if
there exists a constant k > 1 and £ € (0,1) such that for r > £ we have

(r)
r)

Let Iy (2) = {w € D : dy(w, 2) < t}, where dj denotes the hyperbolic metric.
Since Dy (z) is a compact subset of I, any ¢ which is analytic in D can only have

finitely many zeros in Dy (z). However, as z varies, the number of zeros of ¢ in
Dy (2) need not be bounded, even for ¢ € @, as the following example shows.

[y

1
- < < K.

/

&
<
—

ExaMmpPLE. If (o) is a sequence in D satisfying a, # 0 for all n, and also
satisfying > >° | (1—|a,|) < oo and if k is a non-negative integer, then the Blaschke
product

kn 21l e

(1 —aR2)

is a bounded analytic function on D, and B only has zeros at «,, of order equal to
the number of times the value of «,, appears in the sequence, and at the origin of
order k. The proof of this can be found in, for example, [3]. Now let a;, = 1 —1/n?
and k£ = 0. Clearly the summation condition above is satisfied and, letting B denote
the Blaschke product with these zeros, B is bounded and hence B € Q.

Qpt1 — Qp 2n +1
— 0 Qny1 2n° + 2n
which converges to 0 as n — oo.
1+
dp(an, any1) = log ( ﬁn)
1- ﬂn

and since 8, — 0 as n = oo, dp(@n,antr1) = 0 as n — co. Hence the number of
zeros of B in Dy (a;,) is unbounded as n — oc.

For a general analytic function on D, the Weierstrass Factor Theorem (see [3])
says that the only condition on its zeros is that they cannot have a cluster point in
D, so n(r) can grow arbitrarily rapidly as r — 1. However, the growth condition
on Bers functions allows more to be said.
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The study of the trajectory structure of quadratic differentials is an important
ingredient in the theory of quasiconformal maps and Teichmiiller theory (see [5] for
trajectories of quadratic differentials and, for example, [1] for the role of quadratic
differentials in Teichmiiller theory), as well as in the theory of harmonic maps
between surfaces (see [4]). As an illustration, if f : Ny — N, is a harmonic
map between two Riemann surfaces, then the Hopf differential of f is defined by
Hopf(f) := (pn, © f)f:(fz). Then f is quasiconformal if and only if Hopf(f) €
Q).

Analyzing the extent to which one can generalize the theory of quadratic differ-
entials to elements from the Bers space is an interesting question. The motivation
for this comes from the need to understand the nature of harmonic maps, and their
Hopf differentials, between non-compact hyperbolic surfaces.

The key to understanding the trajectory structure of Bers quadratic differen-
tials is to understand the distribution of zeros. In this paper, we obtain various
results on the growth of n(r) for ¢ € Q(ID). The above example shows that there
are ¢ € Q(D) for which we do not have uniform control over the number of zeros
in hyperbolic disks of finite radius. However, we identify an open and dense subset
of @(D) which has this property.

We would like to thank Mike Wolf for useful conversations related to this paper.
Amongst other things, this paper deals with some questions raised by him, in
particular Theorems 2.3 and 2.4.

2. The growth of n(r)

PROPOSITION 2.1. If p € Q is the lift of a quadratic differential from a compact
Riemann surface N ~ D/T', then there exist constants Cy and r9 € (0,1) depending
on ¢ and T such that

A(r)
Co

where n(r) and A(r) are defined above.

< n(r) < CoA(r), (r € (ro,1)),

PRrROOF. Let ¢ be a quadratic differential given on a compact Riemann surface
N ~D/T, g € Q(N), and let ¢ € @ be its lift to D. Let R C D be the fundamental
domain for T" containing 0. Since N is compact, @ has only finitely many zeros, say
m, on N. Hence ¢ has m zeros on R. Since ¢ is the lift of a quadratic differential,
it satisfies

9(2) = p(1(2))(V'(2))* (v€T, 2 € R).
For any v € T and for all z € D, +/(2) # 0, and so for any v € T, the number of
zeros of ¢ in y(R) is m. Note that m depends only on the topology of N (which
here in the compact case, is the genus of N).

If p(r) is the number of distinct elements of I' which map R completely inside
the closed disk of radius r, centre at the origin, and if ¢(r) is the number of distinct
elements of I' which map R partially inside the closed disk of radius r, centre at
the origin, then

(2.1) mp(r) < n(r) < mq(r).
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If the hyperbolic area of R is «a, then since the group T is discrete, there exists
ro € (0,1) and constants Cy,Cy depending only on I' such that

p(r) 2 C1A(r)/a, and ¢(r) < C2A(r)/a

for 7o < r < 1. Combining these with (2.1) then gives the result. O

To find growth conditions on n(r) for arbitrary ¢ € @, it is useful to consider
Jensen’s formula.

PROPOSITION 2.2 (Jensen’s formula). Let ¢ be analytic in D, ¢(0) # 0, r €
(0,1) and Q1,Q2,...,0n(y) the zeros of ¢ listed according to multiplicities in the
closed disk of radius r, centred at the origin. Then

n(r)
1 2
. = — 1 1 1
@D 1) =5 [ loglp(re®)lds = logl(0 |+Zog(| ot

See [3] for a proof. If ¢ € Q, then |p(2)| < 4/l¢|l/(1 — |2])?, and so

1 el ., el .
(2.3) ) < %/0 log 72 b = log o 2 5 =2 T (1)

Note that J'(r) = % and A(r) ~ J'(r) as r — 1. Now if ¢ has no zeros of
modulus 1, then since the zeros of ¢ cannot have a cluster point, 3§ > 0 such that
¢ has no zeros on the annulus {z : 71 —§ < |z| < r1 + 46} and n(r) is constant on the
interval (11 — d,71 + 6). Jensen’s formula (2.2) then implies that I is differentiable
at 1, with derivative n(r1)/r. However, if ¢ has a zero of modulus 5, then n(r) is
discontinuous on every interval of the form (r2 —d,r2+9), and [ is not differentiable
at ro. However, defining h(r) = n(r)/r if ¢ has no zero of modulus r and h(r) takes

the value lim+, n(t) /t otherwise, it is clear that

(2.4) () = I(rs) + / ") dt

and so h is the distributional derivative of I.

THEOREM 2.3. There ezists a universal constant Cs such that for all ¢ € @Q,
there exists r4 € (0,1) depending on ¢ such that

n(r) < CsA(r)log A(r), (r € (ra,1)).

PRroOOF. Rescaling ¢ will not affect the result, so without loss of generality, we
can assume ¢(0) = 1. If however ¢ has a zero of order k at 0, then let $ = np/2*,
where 7 is chosen so that $(0) = 1. The expression |§|p~2 = |pp/2*|p~2 can only
possibly be unbounded at 0 since ¢ € @, but this is not the case since $(0) = 1,
which means ¢ € @) and satisfies the normalization given above.

If the theorem can be proved for @, then it will also hold for ¢, since @ has
a zero of order sg at zg # 0 if and only if ¢ has a zero of order sg at zg. Letting
ny(r) denote n(r) for a particular ¢ € @, we get ng(r) = n,(r) — k for r € (0,1).
Then if the theorem is true for @, nz(r) < C3A(r)log A(r) for r € (ry,1). Thus
n,(r) < k+ C3A(r)log A(r) for r € (r4,1). Since A(r)log A(r) dominates k as
r — 1, there exists rj € (r4,1) so that n,(r) < C3A(r)log A(r) for r € (r}, 1).



190 FLETCHER AND MARKOVIC

So, without loss of generality, ¢(0) = 1. Now, for a given r € (0,1), let s € (0,1)
be such that A(s) = 2A(r). Using (1.3),

s 22 L ose [ 2
1—82 1-—172 =T 14727

(2.5)  J(s) =log (14!(2”)2 ~ log A(s)? = 2log A(s) = 2log 2A(r) ~ 2log A(r)

as r = 1. Now, Jensen’s formula gives

n(s) n(r) r 5
)= 2 os (577) > Z(10g<| |)“°g\/;>

From (2.3),

Fori=1,...,n(r), we have r/|a;| > 1, so

n(r) 2
2.6 I(s) > 2
(2.6 > 2 iog (12

A Taylor expansion shows that

2
2. 1 — | ~1-
NEE.

as T — 1. Recall that A(r) ~ (1 —7)"! as r — 1 and I(s) < J(s), then combining
(2.5), (2.6) and (2.7) gives n(r) < C3A(r)log A(r) asr — 1. L.e., A7y such that for
all r € (r4,1), the above holds. O

The following theorem shows that the upper bound for growth given in the
previous theorem cannot be maintained.

THEOREM 2.4. Let ¢ € Q, then there erists an increasing sequence (t,) with
tn, — 1 such that
4
1—t,

PROOF. Assume ¢(0) = 1. As in the proof of Theorem 2.3, if ¢ has a zero of
order k at 0, then we can replace ¢ by $ = np/z* € Q where 7 is a constant chosen
so that @(0) = 1. Then if the theorem is true for @, since ng(r) = n,(r) —k (recall
the notation given in the proof of Theorem 2.3), then n,(¢,) < k+4/(1 —t,), and
the constant k term is dominated by 4/(1 —t,,) as n — o0, so can be neglected.

So without loss of generality, ¢(0) = 1. Assume for a contradiction, that no
such sequence exists then there exists r5 € (0,1) such that n(r) > 4(1 —r)~! for
r € (r5,1). Recall n(r) = h(r) almost everywhere. Then by (2.4),

4
I(r) = I(rs) /h (rs) + /I—_tdt 04(7«5)+210g(1”“’Jl)2

where Cjy is some constant depending only on r5. Using the definition of J(r) in
(2.3) then shows that for r close enough to 1, I(r) > J(r), which is a contradiction
and gives (2.8). O

(2.8) n(tn) <
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The argument in the proof shows that the constant 4 above could be replaced
by any constant larger than 2. We can say a bit more by using the above argument
and that I(r) < J(r).

COROLLARY 2.5. For ¢ € Q, there does not exist r¢ € (0,1) such that for all

r € (16,1)
/ (ht) — J'(£))dt > 0
Te

So if the uniform limit n(w,) = C3A(w,) log A(w,) is achieved for a sequence
(wp), then h(w,) — J'(w,) — oo, and the corollary implies there must also be a
sequence (x,) where h(zy,) — J'(z,) = —oo. Thus, in some sense, on average n(r)
cannot exceed J'(r) ~ A(r) asr — 1.

CONJECTURE 2.6. For ¢ € @, there exist constants Cs and r7; depending on ¢
such that n(r) < CsA(r), (r € (r7,1)).

3. Uniform control of zeros

The example in Section 1 shows that we do not have uniform control over the
zeros in disks of hyperbolic radius 1 of elements of ). However, there is an open
and dense subset of () where we do have uniform control over zeros. For ¢ € @, let

lellmy (z) = sup |p(w)]p™*(w)
Dy (2)

we

and recall Iy (2) = {w € D : dp(w, z) < 1}. Define
(3-1) M :={p € Q:3¢>0,Vz € Dglp, ) > q}-

Clearly M C Q. If p ¢ M, there exists a sequence (z,) C D with |z,| — 1 such
that ||¢||p, (z,) — 0. The aim of the rest of this article is the following theorem.

THEOREM. M is an open and dense subset of Q.

M is non-empty, since if ¢ is a quadratic differential on a compact Riemann
surface N ~ D/T and ¢ € Q(N), then the lift ¢ of ¢ to D is in @, and satisfies
p2(1(2))]p(1(2))| = p~(2)|p(2)| for all v € T. Now, [|¢|lp, () > ¢ > 0 for some ¢

and all z in a fundamental region R C D of I'. Since D = |J v(R), we have ¢ € M.
yer

To see M # @, consider the little Bers space
Qo= {p€Q: lim p*(2)|p(2)| = 0}.
|z|—1

All polynomials and functions bounded in D, for example, are contained in Q.
Take ¢ € Qo and any sequence (2,) with |z,| = 1, then [|¢||p, (z,) — 0 and so
MNQo=0.

Take any ¢ € Qo and ¢ € M. Then it is clear that ¢ + ¢ € M. However,
(¥ + @) — ¢ is a linear combination of two elements of M which is in Q¢ and hence
not in M. This shows that M is not a linear space.
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LEMMA 3.1. Let (p,)52; be any sequence of functions in Q satisfying ||en| <1
for all n. Then there exists a subsequence (yy,) which converges locally uniformly
(i.e., uniformly on compact sets) to some ¢ € Q and ||| < 1.

ProOOF. Let K C D be a compact set, and define
lenllx == sup p~2(2)|n(2)]-
zeK

Now ||l¢nll €1, s0 ||¢nl|lx < 1 for all n. This implies that for all n,

[on(2)] < sup
sup |pn(z sup ———
z€EK " \zeK 1- |z|27

where the right-hand side is a constant depending only on K. This means that {¢y, :
n =1,2,...} is a normal family and has a convergent subsequence (¢,;), which
converges locally uniformly to some analytic function ¢. So ¢,; — ¢ uniformly
on every compact set K, which also means ||l¢n; ||k = ll¢llk- Thus ||l¢l|lx < 1,
and since ||| = sup ||¢||x, where the supremum is taken over all compact sets K
contained in I, then we get ||¢|| < 1. O

PROPOSITION 3.2. For any ¢ € M, there exists a constant Cg depending only
on @ such that for all z € D, the number of zeros of ¢ in Dy (z), denoted n(D (z)),
is bounded by Cs.

PROOF. Assume the result is false, then there exists a sequence (z,,) C D such
that n(D; (2,)) > n. Let A, be the Mdbius transformation A, (z) = % Then

under the transformation rule (1.1), (¢ 0 A,,)(A%)? € Q. We also have
(90 An)(A7)%l = sup P2 (2) (A (2)) (A7 (2))]

= supp 2 (An()le(4n ()] =
z€eD
by transformation rule (1.2). So {(p o 4,)(4L)? : n = 1,2,...} is a sequence
of elements of @ with [[(¢ o A,,)(AL)?|| = ||¢|| for all n. Rescaling if necessary,
Lemma 3.1 implies a subsequence (¢ o Ay, )(AL,)? converges locally uniformly to

some ¢ € Q, with [[¢[| < [|¢]|-
The number of zeros of (o Ay, )(A},.)* on Iy (0) is unbounded as i — oo, which

means the zeros of 1 must have a cluster point on the compact set Dy (0) and so ¥
is identically zero.

Now, p~2 is bounded on D (0), which means, by using transformation rules
(1.1) and (1.2), we have |(p=2¢p) o A,,,| = 0 uniformly on Dy (0). This is equivalent
to [|¢llpy (z,,) — 0, contradicting the fact that ¢ € M. O

COROLLARY 3.3. For any ¢ € M, there exist constants C; and rg € (0,1)
depending on ¢ such that n(r) < CrA(r), r € (rs,1).

PROOF. By the preceding proposition, for any z € D, we have n(D; (2)) < Cé.
There exists a compact Riemann surface N ~ D/T such that a fundamental region
R is completely contained in Dy (0). As was shown in Proposition 2.1, the number
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of distinct copies of R under the covering group I which are partially contained in
the closed disk of euclidean radius r centred at 0 grows at most linearly with A(r).
In the notation of Proposition 2.1, there exists rg € (0,1) such that

q(r) < CoA(r)/a, € (rs,1).
This means that the number of disks of hyperbolic radius 1 needed to cover the disk
of euclidean radius r, centred at 0, is at most CyA(r)/a, for r € (rg,1). Thus for
r € (rg,1), n(r) is less than the maximum number of zeros in one disk of hyperbolic

radius 1 multiplied by the maximum number of such disks covering the euclidean
disk of radius r, centred at 0. So, n(r) < C6C2A(r)/a, r € (rs,1). O

CONJECTURE 3.4. For any ¢ € M, there exist constants C; and rg € (0,1)
depending on ¢ such that n(r) > C,A(r), r € (rg, 1).

THEOREM 3.5. M is open in Q.

PROOF. Let ¢ € M and |[|¢||p, () > ¢ for all z € D. Let € > 0 satisfy the
properties § := ¢ —e > 0, and 0 ¢ A, where A, := {¢p € Q : [|v) — ¢|| < €}. Let
Y € A, then for any z € D, [|(¢ — ¢)||p, (-) < €. The triangle inequality gives

1llpy (z) > 1Dy () —€ > g —€=38>0.
If ¢' = 0, then [|¢)||p, () > ¢' > 0 for all z € D, hence 1) € M and so M is open. O

PROPOSITION 3.6. Every element of Qo can be approzimated by elements of
M.

Incidentally, for any ¢ € Qo and ¢ € ) with
limsup p~2(2) ()] = 6 > 0,

|z]—=1
then ¥ — ¢ € Q and
lim sup p=(2)| (¥ — ) (2)] = 6 > 0,

|z|—=1

which means we cannot approximate elements of () by elements of Q.

PROOF. Let ¢ € Qo and ¥ € @ be the lift of a quadratic differential from
a compact Riemann surface. Given any ¢ > 0, it will be shown that ¢ + ¢ is
in M. Now, p2(2)|p(2)| = 0 as |z| = 1, so Ir such that for |z| > 7, we have

lellpy 2y < [1£9lpy (2)/4- Then

(@ + )y () > > Cg >0

where Cg is some constant depending only on ¢ and ). So it is only necessary to
take care of the compact subset {|z| < r} of D. However, {|z| < 7} is covered
by finitely many Dy (z,), and so {||(¢ + t¥)||p, (-,)} is a finite set of non-negative
numbers, none of which can be zero since ¢ # t1) (because M N Qy = @), hence
there exists a constant ¢ such that [|(¢ + t)||p, () > ¢

So for any sequence (t,) converging to zero, we have ¢ + t,1 € M and ||(¢ +

tnp) — ¢ll = 0. O

1]y (z)
2
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This method of proof cannot be extended to arbitrary ¢ € @, since there is the
problem of cancellation when adding ¢ to . The next section uses the methods
of linear functionals to show that M is indeed dense in Q).

4. Linear functionals

The Bergman space A'(D) is the Banach space of functions f holomorphic in
D satisfying

(4.1) umzémmw<w

We have the inclusion A'(D) C L!(D), and the Hahn-Banach theorem states that
any linear functional A : A'(D) — C can be extended to A : L'(D) — C where
IAl = ||A]l. The Riesz representation of linear functionals on L!(ID) gives the
existence of a unique p € L (D) such that

X(f) = /D uf dz dy

for all f € L'(D). Such a non-zero p cannot give a zero functional on L!(D), but
the restriction to A'(ID) may give a zero functional.

It is known, eg from [2], that the Banach dual of A'(D) can be identified with
Q, and for any linear functional X : A'(D) — C, there exists a unique ¢ € @ such
that

N = [ ooty
for all f € A'(D). Denote the linear functional given by ¢ € Q by Ag, SO
(4.2) A= [ oot dedy. (7€ 4 D)).
LEMMA 4.1. For any linear functional A, : A'(D) — C, there exists a constant

Cy such that
llell/Co < Al < llll, where Al = lsup1 [Ap()]-

Proor. Using (4.1) and (4.2),

Ao ()] < sup (Ip7*(2)p(2)]) / |f|dzdy = ||<P||/ |f| dz dy
z€D D D
s0 || Ap]l < |l¢l]- The proof of the other inequality can be found in [2]. O

LEMMA 4.2. Let pn, ¥ € Q, |lpnll < 1 and ¢, — ¢ locally uniformly. Then
for any f € AY(D), X, (f) =* Ay (f) in the weak-star sense.

ProOF. Let f € A'(D) and a = [, p~?|f|dzdy < co. Given € >0, let K C D
be compact and [j, , |f|dzdy < e/4. Since ¢, — 9 locally uniformly, there exists
a constant N (K) such that for n > N(K),

€
3161113|90n(z) - ¥(2)| < %
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Now for n > N(K),

Pelh=2thl= | [ p2<m—w)fdmdy\

< / (@ — DlIf| de dy + / 2[5 — DIl | do dy
K DNK

< (sup ) —E(z)l) [ ol dwdy +lgw =0 [ Ifldedy
zeK K DNK

.

2

since [|[@nl] = ||l¢nll € 1 and also ||¢]| < 1, by Lemma 3.1. O

_ — €
< gpat (lenll + ¥l 7 < e

LEMMA 4.3. ¢ € M if and only if there is no sequence (z,) C D for which
lleln, (z) Il = 0.

Proo¥F. Follows directly from the definition of M. O
Define for w € D, the Mdbius transformation
4w

4.3 Ap(z) = .
(43) () 1+wz

Lemma 4.3 shows that if ¢ ¢ M, then there is a sequence (z,) C D such
that [|¢[|p, (z,) = 0. Since ¢ € Q \ M, then we have (¢ o A )(4, )* € Q and
(po A )(AL )? = 0 locally uniformly on I (recall Lemma 3.1 and the proof of

Proposition 3.2). Lemma 4.2 now gives that the linear functional A(yoa, )(ar )2
converges to the zero linear functional in the weak-star sense.

We will now start to construct the sort of linear functionals that will be needed.
Let

(4.4) Qo,r:={2€D:dp(2,0) <R}, (R<o0)

denote the hyperbolic disk centred at 0 with hyperbolic radius R and define

(4.5) 1(0,R) = 1o r>

the indicator function of g r. By the mean value property for analytic functions,

for any f € A'(D),

/ Ho f dedy = / oy da dy = Crof(0)
D

Qo,r

for some constant C1o depending on 9 g. We can clearly findf € A!(D) such that
f(0) #0, s0 [}, po,r) f dz dy is a non-zero linear functional on A'(D). Hence there
is a unique ¢(o,) € @ such that

/DM(O,R)fda:dyZ/Dp_zw(o,g)fdwdy.

PROPOSITION 4.4. ¢(o,r) € Qo.
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ProOF. For any sequence (z,), let A, be the Mdbius transformations defined
in (4.3). Then the sequence of functions (o gy o A.,)A, /A, converges locally
uniformly to zero, and so the corresponding linear functionals

VUR

AZ
M) = [ (0.0 0 A2) = f dody
D Zn

on A'(D) converge, in the weak-star sense, to zero. This also means that

2 Al
/ ((p ©(0,R) © Azn)—A," ) fdxdy
D Zn

must converge weak-star to the zero linear functional as n — 0o, and hence ¢ (o r) €
Qo since (z,) was arbitrary. O

Let QF = {z € D : dy(2,w) < R}, for R < o0 and w € D (compare with (4.4)),
denote the hyperbolic disk centred at w with hyperbolic radius R, we can pullback
via Ay (z) and the pullback relation (f(,,r) © Ag)AL JAL = Ko,r) to define p(,, g)
analogously to j(, gy in (4.5) above.

Define a grid on D in the following way: let S, S2,dots be concentric circles
with centre at the origin and the hyperbolic radius of S, is n/10. On each S,
construct points (¢,,,) such that to is real and positive, ¢; is anticlockwise along
Sy from to with dp(to,t1) = 1/10 and continue anticlockwise around S, with
dn(titiv1) = 1/10 until dp(tm,t0) < 1/10. Let (uy,) denote this grid. Clearly
for any z € D, there exist n such that dp(un,2) < 1.

THEOREM 4.5. M is dense in Q).

PROOF. Let € > 0 and ¢ € ). Without loss of generality assume ||p|| = 1. Let
0 < ¢ < €/10 and define

(4.6) Es; :={z€D:p72(2)|p(2)| < d}.

Recall the grid (u,) defined on D. Now define linear functionals u,, given by u, =
€fi(u,,,1/100)5 if D1 /100 (un) C Es and py, = 0 otherwise. Then define pu5 = > 07 | fin,.
Consider the linear functional

A (f) = /D (0% + o) f da dy.

This is a non-zero linear functional on A'(D) by construction, and so there exists
e € @ such that

(f) = /D p e f dady.

We will show that ¢, € M and [|pe — ¢|| < Cye, where Cy is the constant from
Lemma 4.1, which will prove the theorem. O

First assume ¢, ¢ M, so there is a sequence of Mdbius transformations A,
associated to a sequence (z) (see (4.3)) such that (p~2p. 0 A, )AL /A, — 0
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locally uniformly. So for any f € A(DD),

Therefore AN such that for n > N,

! !

A A
/ (0727) 0 As,) 22 f dwdy + / (45 0 As,) 22 f durdy
Dy (0) Al Dy (0) Al

< 0.

!

A
> ¢ for some z € Dy (0), then ‘(Né OAZH)A—,Z"(z) =0

!

It (79) 0 4.0 520

by definition, whichz;vould contradict the above inequality and this im})lies that
[((p~2%) 0 Az, )AL/ AL | < 5 on Dy (0). However then sup [(5 o A., )AL, /AL | =
on Dy (0) by the construction of y15. So the supremum of |((p™2¢+pus)oA,, )AL /AL |
on Iy (0) is greater than €/2 > §, which is a contradiction, so there is no such se-
quence A, with (¢ 0 A, )(A% )? — 0 locally uniformly and hence ¢, € M.

Now consider the linear functional

o = A)(F) = Mgy () = /D s de dy

for f € AL(D).
O, = A () < sup |1l / \fldzdy
z€D D

Therefore, ||[A,. — Ay|| < € by the construction of ps. Lemma 4.1 then gives
[loe — ¢l| < Coe, which completes the proof.
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