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ABSTRACT. We give two remarks on the Lindelof hypothesis. The first remark
is that the Lindelof hypothesis can be reformulated in the setting of functional
analysis. As the second remark we give an estimate for a function related to
the Riemann zeta-function under the Lindel6f hypothesis.

1. Introduction

The purpose of this paper is to give two remarks on the Lindelof hypothesis.
The first remark is that the Lindel6f hypothesis can be reformulated in the setting
of functional analysis. As the second remark we give an estimate for a function
related to the Riemann zeta-function under the Lindel6f hypothesis.

We write the complex variable s as s = o + it, where o and t¢ are real, and
denote the Riemann zeta-function by ((s). The function ((s) is holomorphic for
all s except s = 1, where there is a simple pole, and is expressed by the Dirichlet
series
1

s)=2
n=1
for o > 1. The Lindeldf hypothesis is that ((3 + it) = O([t|*) for every positive €.
For o > 1, let us consider the operator ¢¢ from L' to C defined by

(1) pclf) = 3"~ Flogn), fel,
n=1

where fmeans the Fourier transform of f. ¢ is obviously a bounded linear func-
tional on L'. We can identify this functional as the Riemann zeta-function in the
following sense. It is well-known that the space L°°, the set of essentially bounded
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measurable functions on R, is identical to (L')*, the dual space of L!, in the sense
of mapping ® € L> — ¢ € (L')* defined by

o) = [ ewrwa, sert
Hence, since the t-variable function (o + it), ¢ > 1, belongs to L>°, the Riemann
zeta-function is identified as the functional

o= [ T orinftyd, el

and the right-hand side is equal to ¢¢(f) defined by (1).

We want to consider the t-variable function ((o + it), o < 1, as a bounded
linear functional on some space which has a form similar to (1). Since the t-variable
function ((o +1it), o < 1, is not bounded on R (see Theorem 8.12. of [5]), we need
to consider a larger space than L* to treat this case, that is, consider a space of
bounded linear functionals on a subspace contained in L*.

In Helson [4] he has generalized the concept of Dirichlet series in terms of a
Banach algebra A, which is a dense subalgebra of L! satisfying some axioms, and
its dual A* (for more details, see the original paper [4]). He called that ¢ € A* has
the Dirichlet series Y an/n' (a, € C), if

Sp(f) = Zanf(logn)

for every f in Ao, where Ag is the set of all f in A whose Fourier transform f is
compactly supported.

We want to regard ((s) as a Dirichlet series in the sense of Helson with respect
to a Banach algebra; however, there is a difficulty because of the existence of a
simple pole at s = 1. Hence, instead of ((s), we treat the function (;(s) defined by
Gi1(s) = (1 — 217%)¢(s), which is holomorphic for all s. It is easy to see that (;(s)
has the expression

2 Gl =y T

for ¢ > 0. The Lindelsf hypothesis is equivalent that (3(1/2 + it) = O(|¢|).

We regard (i(s) as a Dirichlet series with respect to the following Banach
algebra introduced by Beurling [1]. For a non-negative real number «, define the
weight function pa by pa(t) = (1 + [t[)*. Let L, be the space of measurable
functions f on R for which the norm defined by

oo
£, = [ 1 @palat
—0o0
is finite. It is known that L;a is a Banach algebra under addition and convolution
which is dense in L. Moreover, it is known that L;a satisfies the conditions of the
axioms in [4] (see Lemma in [4, p. 68]).
We will prove the following reformulation of the Lindelof hypothesis.
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THEOREM 1. A necessary and sufficient condition for the Lindeldf hypothesis
is that, for any positive integer k, there exists a functional @y, belonging to (Lfl)1 /k)*
such that @i has the Dirichlet series > oo | (—1)"+1/nt/2+it,

In the last section we will consider to approximate the function (i (s) by trigono-
metric polynomials in the norm of Lg‘l’/k under the Lindel6f hypothesis.

I would like to express my sincere gratitude to Professor Kohji Matsumoto for
his advice and encouragement.

2. Preliminaries

First of all, we recall the definition of Fourier transform fof fin L'
Foo= [ swe v,

where A is real. Next, we mention some properties for L})a. Let L7° be the space
of measurable functions ® on R for which the norm defined by

|2(2)]
Pa (t)

is finite. Then the following result can be shown in a standard way.

[l pa,00 = esssup
te

LEMMA 2.1. The space Ly is the dual of L;a in the sense that each bounded
linear functional ¢ on L}Ja has the form

)= [ ewrwa ser,
where @ is an element of Ly°, determined uniquely by ¢, and

0#feL} ||f||pa P

Let (L, )o be the set of all f in L} whose Fourier transform f is compactly
supported. It is known that, for any real Ay and any positive ¢, there exists an f
in (L} )o such that f(Xo) # 0 and f(X) = 0 for all X ¢ (Ag — £, A9 +¢). It is also
known that (L} )o is dense in L} . For the proof of these facts, see Lemmas 4
and 5 of Wermer [6] (see also Lemma in [4, p. 68]). The following result has been
obtained in [4], but I present the proof here for the convenience of readers.

LEMMA 2.2. Let ¢ € (L} )* has the Dirichlet series Y~ an/n' and 1 €
(L}JQ)* has the Dirichlet series Y oo, by/n'. Then ¢ = v if and only if a,, = b,
for all n.

Proor. Let us define the operator T, from L;a to C by

To(f) = anf(logn)
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whose domain is (L, )o. Noting that T,,(f) = ¢(f) for every f in (L )o, we see
that T, is linear and bounded. Since the domain (L1 )o is dense in L s Ty is
uniquely extended to a bounded linear operator on L and this equals to ©.
Suppose a, = by, for all n. Then T, = T}, and herclxce we have ¢ = 1.
Suppose ¢ = 9. Then it follows that, for all f in (L} )o,

Z an f(logn) = Z by f(logn).

For any n, choose an f in (L} )o such that f(log n) # 0 and f(log m) = 0 for all
m # n. Then we have a,, = b,,. [l

3. A sufficient condition for the Lindel6f hypothesis

In this section we prove that the condition stated in Theorem 1 is sufficient for
the Lindelof hypothesis.

Let us assume that, for any positive integer k, there exists a functional ¢y
belonging to (L, ,)* such that ¢ has the Dirichlet series S0 (1)t /2t
that is

e(h) =3 C0 Fogm)

for every f in <L/1)1/k) . By Lemma 2.1, the left-hand side is uniquely expressed in

the following form:

an= [ zwsoa. rei,,.

— 00

where 7, is in L . We expect that Zi(t) is equal to {1(1/2 + it). In fact, the

P1/k"
equality Z(t) = (1(1/2+4t) derives the statement that ¢1(1/2+it) belongs to LZ? |
and, consequently, the truth of the Lindel6f hypothesis. Thus, we shall concentrate
on the proof of the equality Zj(t) = (1(1/2 + it) in the later part of this section.
Let N be a positive integer. Applying the partial summation formula to the
expression (2), we get

o (D Py
() =S G (i) [
n=1 N<n<u
and hence
N
(=p)"+! 1+t
(3) Cl( —Ht) Z pi/2rit | S Y1120
n=1

where C is an absolute constant. From (3) it follows that ||(1(1/2+it)]]p,,00 < 00.
Hence we can define the bounded linear functional 1 on L; , by

v = [ a3+ ses,

_1)n+1

LEMMA 3.1. ¢ € (L}, )* has the Dirichlet series ngl pyeE
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This lemma can be easily proved by (3) and the Lebesgue convergence theorem.

It is obvious that || f||,, . < IIfll,, for fin L} , and hence L} C L} L et Uy

be the restriction to L}Jl of . Let us denote the norm of ¢y by M . Then we have
[or(f)] < M|\ |, , and hence ¢, belongs to (L}, )*. From the assumption that oy,
has the Dirichlet series Y 77, (—1)"! /n'/2** and the inclusion (L} )o C (Lp, . )os
it follows that vy, € (Lzl)* has the Dirichlet series of the same form. Hence, by
Lemmas 2.2 and 3.1, we see that 1, equals to ¥, and hence Zy(t) = (1(1/2 + it)
by Lemma 2.1. This completes the proof.

4. A necessary condition for the Lindel6f hypothesis

In this section we prove that the condition stated in Theorem 1 is necessary for
the Lindel6f hypothesis. I learned the following simple argument from Professor
Shigeki Egami. I would like to express my thanks to Prof. Egami for telling me the
argument.

Let us assume the Lindel6f hypothesis. Then, for every positive integer k, we

can define the functional ¢y on Lp Uk by

0 or(f) = [ a(z+it)fwa. ferh,,

From the assumption it follows that (i(s) = O(|t|'/*) for o > 1/2. By the
functional equation of ((s), we see that, for o < 0, {1(s) is a function of polynomial
order of [t| and, by the Phragmén—Lindel6f principle, there exists a positive constant
c such that

(5) Gi(s) = O(t|*)
holds for s with o > 1/2 — ¢/k. By Cauchy’s formula, we have

G =5 | alw) g,

270 S w—s|=c/(2k) (W — 8)?

Hence we have by (5)

/ 1/k
0 o)< max (G ()] < (L+ )

1
for s with o > ,,i

2k
It is obvious that, for Rew > 1,
n+1l

M [ atw+ins@a =3 L fogn

holds for every f in (L},I/k)o.

because f has compact support. The left-hand side of (7) is holomorphic for w
with Rew > 1/2 by (6) and the integral condition of f. Hence (7) is valid for w
with Rew > 1/2. Therefore the functional ¢y € (L}, /k) defined by (4) has the

Dirichlet series S_(—1)"*1/n!/2+i This completes the proof.

The right-hand side of (7) is holomorphic for all w,
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5. An approximation for (;(s)

In the previous section we have seen under the Lindel6f hypothesis that, for
any positive integer k and any o with 1/2 < ¢ < 1, there exists a functional ¢y, , on

Lél/k which has the Dirichlet series > (—1)"*!/n°+i* By Theorem 2 of Helson [4]
the set of functionals on L})] A which have the Dirichlet series Y. ° | ap e~ ilogn)t,

a, € C, is identical to the weak* closure of span of {1,,}°° | in (L} , where 1, is

)
P1/k
defined by ¥, (f) = f(log n), f € Lp .- Hence @p o is in the weak* closure of span
of {¢,}32, in (L})Uk) . The main result of Helson [4] (Theorem 5 of [4]) which is
proved by means of functional analysis is applicable to say that, for ¢ > 1/2, ¢y,
actually belongs to the norm closure of span of {1,,}52 ;. In this final section we
remark that this fact is also derived by a function theoretic method.

It has been proved in Hardy and Littlewood [3] that a necessary and sufficient
condition for the Lindeldf hypothesis is that

(8) —/|< +it)| e ~ Zd"(), T = oo

holds for every positive integer k and every o with o > 1/2, where dy(n) denotes
the number of expressing n as a product of k factors. We prove the following by
using this fact and modifying the method in Carlson [2].

THEOREM 2. Let us assume the Lindeldf hypothesis. Fiz a b with b > 1/2, and
let s be in the half plane o > b. Then, for any positive €, we have

o F L o )«

n=1

Proor. Put 6 = o — b. The following equality is a special case of that in (7)

of [2]:
- EEE (- (R)) = L T Y

Replacing w by b+ i(v + t) on the right-hand side of the above, we have

zN: yn+1 (£>25 B / C1b+zv+t))N”dU
N - wN? 62 + 0?2

n=1

7TN Ul + 1),

where I1 means the quantity integrated over the interval (—1—2|¢| —¢, 1+ 2[¢| —¢)
and I> means the quantity integrated outside that interval.
To estimate Iy we use the inequality

9) C(b+it)] < Ca ([t/2)M*
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for |t| > 1, where C5 is a constant depending only on b. This is well-known as a con-
sequence of the functional equation for ((s) and the Phragmén-Lindelof principle.
From (9) it follows that

—1-2|t|—t o] (|’U+t|/2)1/4
| < 3C (/ +/ )4(1{)
| ? 0 12|t 62 + v?

For v with v < —1 — 2|t| — ¢ or v > 1 + 2|t| — ¢ the inequality |v| > |¢| holds, and
hence |v + t|/2 < |v|. Therefore we have

o0 00 pl/4 S
(10)  |L| < 3C, (/ +/ >7dv<602/ o=y
) 62 + 02
1+2[t[+t 142[t[—t 1+t

8C5
(1+[e)3+
Next, we estimate I; by using (8). From (8) it follows that

1 T ok 1/(2k)
(11) sup —/ |G (b + it)| " da < oc.
T>1 2T T

By using Holder’s inequality and (11), we have

1+2t|—t 1-1/(2k) 142t —t . 2k 1/(2k)
(12) 10| < (/ dv ) (/ |C1(b+ i(v+1))] dv>

2 2 2 2
—1-gft)-t 0%+ —1-2/t|—t 0% +v

” © 1-1/(2k) 1+2]t] ok 1/(2k)
<d” —_— b+i d
(/_OO 02 + U2> </—1—2|t (6 + o) v)

< Ca(1+ [tV

where ('3 is a positive constant depending only on k, b, and o.
Therefore, by (10) and (12), we obtain the inequality in the statement of this
theorem. =
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