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ON A CLASS OF NONCONVEX PROBLEMS
WHERE ALL LOCAL MINIMA ARE GLOBAL

Leo Liberti

Communicated by Gradimir Milovanovié

ABSTRACT. We characterize a class of optimization problems having convex
objective function and nonconvex feasible region with the property that all
local minima are global.

1. Introduction
The nonlinear optimization problem we address in this paper is of the form

mingeV f(l‘)
g(z) =0
h(z) <0

where z € R”, f : V — R with V C R”, and g, h are systems of equations and
inequalities, respectively. We are interested in finding the global minimum Z.

Most Branch-and-Bound algorithms designed to solve this kind of problems
need to compute the lower bound to the objective function value in each Branch-
and-Bound region. The lower bound is calculated by solving a convex relaxation
of the original problem, the reason for this being that in a convex problem all local
minima are global ones; hence a local solver can be used to obtain a guaranteed
lower bound to the objective function value of the original problem in the region of
interest [SP99, Lib04, Lib05].

However, the notion of globality of all local minima applies to many problem
instances [Bon98], apart from the class of convex problems. This suggests the
use of nonconvex relaxations (having the same local-to-global minimality property)
which may be much tighter than an ordinary convex relaxations, and thus speed
up considerably the global optimization software acting on the nonlinear problem.

Here, we follow a topological approach. We prove that certain convex functions
defined on nonconvex sets satisfying a special set of conditions have the desired
property. There is some relation between this work and [Rap91].
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2. Convexity over Path-connected Sets

Let F be any set and G be a totally ordered set. We refer to elements of F™ as
vectors or points (and write them as z) and to elements of G as scalars or numbers
(and write them simply as x). If we refer to a function with a vector notation, as in
v, it means that the function returns a vector of some kind. Conversely, referring
to a function with a scalar notation, as in f, points out the fact that f returns a
scalar.

Since in what follows both F and G are assumed to have the same topological
properties as the real numbers, for simplicity we shall use R instead of F and G.

A path between two points z,y in R™ is a continuous function ~ : [0,1] — R"
such that v(0) = z and ~(1) = y. We shall sometimes refer to a path v (without
the Vector_notation), meaning the set

y={u€V|3aec0,1](u="(a))}

Basically, «y is the set of all points on the path. A subset U € R" is path-connected
if for any two points in U there is a path between them which is also contained in
U. A subpath § of a path « is a path-connected subset of 7. A segment between
two points z,y is a path o such that, for all a € [0, 1],

ola) =az+ (1 -a)y.

A segment is sometimes also called a straight path.

A set U C R" is conver if for any two points x,y in U the segment ¢ between
them is a subset of U. A function f : R” — R is said to be convez over a path
connecting two points  and y if and only if

Vo€ [0,1] (f(v(a) < af(z) + (1 —a)f(y)).

A function f : R™ — R is said to be conver over a subset U C R"™ if and only if
U is convex and for each segment o C U connecting two points z and y in U, f is
convex on o.

DEFINITION 2.1. A function f : R™ — R is said to be superconver over a subset
U C R™ if and only if: (i) U is a path-connected set; (ii) for any segment o C U,
f is convex on o; and (iii) for each pair of points z,y € U there is a path vy C U
between x and y such that f is convex over 7. a

Convex functions have the useful property that all local minima are also global
on the convex set they are defined over. We shall show in the next section that
superconvex functions also share this property, with the notable difference that the
only condition on U is that it is path-connected (and thus, possibly nonconvex).

ExamMpLE 2.1. One example of a nonconvex optimization problem which is
superconvex is the following (see Fig. 1):
ming , 22 + 9
y<V1—2a2
y=4/7-22— 15
1

<r<1,0<y<L
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The feasible region U defined by the constraints is nonconvex, but it is easy to check
that 22 4 42 is convex on all segments in U and for each pair of points in U there is
a path in U such that the function is convex over that path. As a consequence, all
minima of 22+ y? over U are global. In particular, there is only one local minimum
at « = 0,y = 2/5, which is also global. On the other hand, the convex envelope of
U is

ming 22 + y?

y < V1—a?

_1<m<150<y<17

that has minimum at x = 0,y = 0. Thus, superconvexity is a useful concept in
that in some instances it is a weaker condition than convexity.

2,

FIGURE 1. Example of a superconvex optimization problem which
is not convex.

PROPOSITION 2.1. Let f : R™ — R be superconvex over U C R™. For each
convex subset V.C U, f is conver over V.

PRroOF. This is trivial, as any segment in V is also a segment in U. O

PROPOSITION 2.2. Let f : R™ — R a function which is non-constant over a
subset U C R™. Then there exists at least one path v C U such that f is not convex
over 7.
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PROOF. Since f is not constant, there are at least two points, z and y in U
such that f(z) # f(y). Assume, without loss of generality, that f(z) < f(y). Let
o be the segment connecting x to y, and 7 be the inverse segment connecting y to

x. Consider the path

(a) = a(2a) a€l0,1/2)
¥ = (20— 1) a€(1/2,1]

Since for oo = 1/2 we have

f((1/2)) = f(y) > fz) = F(7(0)) = F(z(1)),

f is clearly not convex over ~. O

Whilst the technique employed to prove the last proposition may seem to point
out to a rather unlikely case instead of a general rule, it is true that for any “rea-
sonable” function there are in fact many paths on which the function is not convex.

This may seem irrelevant since we put no condition on the function in the
statement of the proposition above, nor on the set over which it is defined. The
point we wish to stress is that even though a function may be convex on a set U,
it is very likely that there will be a path connecting two points in U such that
the curve is not convex on that path. The main implication of this point is the
following:

It is not true that if f is convex over U then, for any path-
connected subset V of U, f is superconvex on V.

This, to practical purposes, is probably the weakest point of the whole concept
of superconvexity, for its main purpose is to be a parallel notion to that of convexity,
without requiring the underlying set to be convex. It now turns out that even
though a function is convex over a set, we cannot be sure of its superconvexity over
the subsets. It is therefore essential that we check that, for any given f, the path-
connected subset V' C U we want f to be superconvex over satisfies the conditions
imposed by the definition, i.e., that f is convex on any segment in V and that for
any two points in V there is a path 7 connecting them such that f is convex over
5.

Fig. 2 gives a hint as to which are the typical situations where this may happen:
although the surface is convex on the (convex) set U, it is evidently non-convex
over the path p.

3. The Notion of Minimum
First we need to recall some basic definitions from topology.

DEFINITION 3.1. Let U be a non-empty subset of R™.

(1) We say z is an interior point of U if and only if there is an open subset
W of R™ such that x € W and W C U. We call the set of all interior
points of U the interior of U and we refer to it as I(U).
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FIGURE 2. Example of a convex function which is not superconvex.

(2) We say z is a border point of U if and only if z is not an interior point
and there is an open subset W of R™ such that W NU # (). We call the
set, of all border points of U the border of U and we refer to it as OU.

(3) We say z is a limit point of U if and only if for all open subsets W C R
there is y € W NU such that y # .

(4) The closure U of U is the set I(U) U dU.

DEFINITION 3.2. A subset U C R™ is bounded if and only if, for any open set
V such that 0 € V, there is a number a > 0 such that U C {az | z € V'}.

Note that the above definition only makes sense when U is a subset of a topo-
logical linear space, i.e. a topological space which is also a vector space where vector
addition and scalar multiplication are continuous under the topology. It turns out
that R™ is a topological linear space.

LEMMA 3.1. Let f : R™ — R be a continuous function. For any bounded subset
U CR" we have f(U) = f(U).

PrROOF. Let t € f(U) and claim t € f(U). Since t € f(U), there is x € U such

that f(xz) = t. In case x € U, then trivially t € f(U) C f(U), so assume z ¢ U.
Then z must be a limit point of U, hence there is a sequence (x,) C U which
converges to z. Since f is continuous the sequence (f(x,,)) converges to f(z) = t.
Now, for all integers n we have z,, € U and hence f(z,,) € f(U). We conclude that

t is a limit point for f(U), and t € f(U) as claimed.



106 LIBERTI

Now let t € f(U), and claim ¢t € f(U). As before, in case t € f(U) the claim is
trivially true, for there is z € U such that f(z) =t and since U C U, 2 € U whence
the claim. So assume ¢ ¢ f(U), so that ¢ must be a limit point of f(U). Hence
there is a sequence (t,,) C f(U) which converges to t, and a sequence (z,,) C U such
that for all n, f(z,) = t,. By the Bolzano-Weierstrass theorem, every bounded
sequence has a convergent subsequence; and since U is bounded, the sequence (z,,)
is also bounded. So let M C N be an index subset such that the subsequence
(z,, | m € M) converges to x € U. But as (t,) is a convergent sequence, all of
its subsequences must converge to the same limit ¢. In particular its subsequence
{f(z,,)) converges to t, and by continuity of f we get f(z) =t € f(U). O

One important issue when dealing with convexity is that of continuity. It is a
well known fact that if a function is convex on a set, then it is also continuous on
that set.

THEOREM 3.1. Let f : R™ — R be conver on U C R™. Then f is continuous
on the interior I(U).

For the proof of this theorem we refer the reader to [BS79, Theorem 3.1.3,
p. 82]. Superconvexity has this interesting property, as well.

LEMMA 3.2. Let S be an open subset of R™. Then for all x € S there is e, > 0
such that

S = U B(Qagg)

z€S
where B(z,e;) is the open ball centred at x with radius &5.

PROOF. Since S is open and R"™ is a metric space with the usual metric, for
all z there is ¢; > 0 such that B(z,e,) C S. It is evident that

Sc | Bl e).
z€S
Now pick y € U,es B(z,ez). Then there must be w € S such that y € B(w,ey)-
But since B(w,e,) C S, also y € S, as claimed. O

THEOREM 3.2. Let f: R™ — R be superconver on U C R™. Then f is contin-
uous on the interior of U.

PrOOF. Since I(U) is open, by Lemma 3.2 it can be written as
1(U)= |J Bla e
zel(U)

By Proposition 2.1, for all z € I(U), f is convex on B(z,é¢,), hence by Theorem
3.1 f is continuous on B(z,¢,), hence f is continuous at every x € I(U), which
means that f is continuous on I(U). O

Note that in the last proof we have explicitly used the usual metric on R”,
whereas we had previously employed techniques involving only the usual topology
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on R™. This means that the previous proof may not apply so generally as the most
of the other proofs given throughout this paper.
We now turn our attention to the definition of a local minimum.

DEFINITION 3.3. Let T be a non-empty subset of R. We say m € R is a lower
bound (respectively upper bound) for T if and only if for all 2 € T we have > m
(resp. x < m). m € R is a strict lower bound (respectively strict upper bound) for
T if and only if for all € T we have x > m (resp. z < m).

Let T be any non-empty subset of R that has a lower bound. It is a well known
theorem of basic analysis that T has a greatest lower bound [Spi92].

DEFINITION 3.4. Let T be a non-empty subset of R. We say that m € R is a
lower extremum (resp. upper extremum) for T if and only if m is a lower bound
(resp. upper bound) for T and m € T. m € R is strict lower extremum (resp. strict
upper extremum) for T if and only if m is a strict lower bound (resp. strict upper
bound) for 7" and m € T

DEFINITION 3.5. Let f: R™ — R and let U C R™. We say that f attains a local
minimum (resp. local mazimum) at x over U if and only if there is a non-empty
open subset V C U such that 2 € V and f(z) is a lower extremum (resp. upper
extremum) for f(V). f attains a strict local minimum (resp. strict local mazimum)
at z if and only if there is a non-empty open subset V' C U such that z € V and
f(x) is a strict lower extremum (resp. strict upper extremum) for f(V).

Note that in our definition the point z at which f attains the local maximum
or the local minimum over U need not be in U: it suffices that it be in the closure
U.

THEOREM 3.3. Let f : R™ — R be continuous and bounded below over a bounded
subset U C R™. Then f attains a local minimum over U.

PrROOF. We know that the set f(U) has greatest lower bound ¢ and that ¢ €
fu )_ Since f is continuous, by Lemma 3.1 we gather ¢ € f(U), so there must be
z € U such that f(z) = ¢t. We claim that f attains a local minimum at z over U.

Let V = I(U), then z € V and f(z) is a lower extremum for f(V). O

4. The Main Result
We will first present a classic result.

THEOREM 4.1. Let f: R™ — R be convexr over U. Then f cannot attain more
than one strict local minimum over U.

Provided U is bounded, by Theorems 3.1, 3.3 and 4.1 a convex function f on
U attains exactly one strict local minimum in U.

We now build up the proof to the result which is the aim of this paper: that if
f is superconvex over U, f cannot attain more than one strict local minimum over

U.
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LEMMA 4.1. Let z # y are two strict local minima for f : R" — R over a

path-connected set U C R™. Then for any path ~ between x and y such that v C U
there is a v € v such that

f(v) >max{f(z), f(y)}.

PROOF. First we show that z and y are two strict local minima for f over ~.
Since z is a strict local minimum for f over U, let V be an open set such that
xz € V and f(z) is a strict lower extremum for f(V). Let 71 be the subpath of
given by V N ~. Consider the interior of 7. It is a non-empty open subset of v (it
is open in the topology induced by R™ on «), z is in its closure and f(z), being a
strict lower extremum for the whole of f(V) is obviously a strict lower extremum
for f(77). Hence z is a strict local minimum for f over v, and the same goes for y.
Now let

[z i@
|y i f@) < fy)-
Since w is a strict local minimum, there is a non-empty open subset v; C « such

that w € 77 and f(w) is a strict lower extremum of f(77). Since 7 is a path and
one of its endpoints is w, we can choose v = 71(1/2) so that

f(@) > f(w) > max{7(0),7(1)},

as claimed. O

1=

LEMMA 4.2. For any a,b € R, for all « € [0, 1] we have
aa + (1 — a)b < max{a, b}.

PROOF. Suppose a € (0,1). If a > b we have

a>b
(I-a)az(l-a)d
azaa+(l—a)d

as claimed. The case b > a is similar. If « = 0 we have b < max{a, b} and if @ =1
we get a < max{a,b}. Both cases are trivially true. O

THEOREM 4.2. Let f : R™ — R be superconvex over U C R™. If x is a strict
local minimum for f over U, then it is the only one.

PROOF. Suppose, to get a contradiction, that there is y # z € U which is also
a strict local minimum for f over U. Since f is superconvex, there is a path ~
between z and y such that f is convex on v. By applying Lemma 4.1 we find a
v € v such that f(v) > max{f(z), f(v)}, say v = v(ap). By definition of convexity
on a path, we get that - B

Va € [0,1] (f(v(a)) < af(z) + (1 - a)f(y))-

In particular, for a = ag, we get

f(@) = f(x(a)) < aof(z) + (1 —a0)f(y),
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then we apply Lemma 4.2 to get
f(v) < max{f(z), f(y)}.

which contradicts Lemma 4.1. Hence the result. O

5. Conclusion

We have shown that every superconvex function attains one strict local min-
imum over its definition set, hence that minimum is also the global minimum.
Superconvex functions may therefore be globally minimized by using a local opti-
mization software rather than a global one. Since there are superconvex functions
which are not convex, this fact can be used to calculate tighter guaranteed lower
bounds to nonlinear problems for use with Branch-and-Bound type algorithms.
The results obtained in this paper, however, are only theoretical in nature, and
at this stage we are not able to provide an automatic procedure for constructing
superconvex relaxations of arbitrary functions.
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