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Abstract. In the classical sense, the set B consists of all integers which
can be written as a sum of two perfect squares. In other words, these
are the values attained by norms of integral ideals over the Gaussian field
Q(i). G. J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established
bounds for the number of pairs (n, n+ h), resp., triples (n, n+ 1, n+ 2) of
B-numbers up to a large real parameter x. The present article generalizes
these investigations into two directions: The result obtained deals with ar-
bitrary M -tuples of arithmetic progressions of positive integers, excluding
the trivial case that one of them is a constant multiple of one of the oth-
ers. Furthermore, the estimate applies to the case of an arbitrary normal
extension K of the rational field instead of Q(i).

1. Introduction. Already E. Landau’s in his classic monograph [4] provided
a proof of the result that the set B of all positive integers which can be written
as a sum of two squares of integers is distributed fairly regularly: It satisfies the
asymptotic formula

(1.1)
∑

16n6x, n∈B
1 ∼ c x√

log x
(c > 0) .

Almost six decades later, G. J. Rieger [9] was the first to deal with the question of
“B-twins”: How frequently does it happen that both n and n + 1 belong to the
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set B? A bit more general, he was able to show that, for any positive integer h and
large real x,

(1.2)
∑

16n6x
n∈B, n+h∈B

1 �
∏
p|h

p≡3 (mod 4)

(
1 +

1
p

) x

log x
.

Later on, C. Hooley [2] and K.-H. Indlekofer [3], independently and at about the
same time, showed that this bound is essentially best possible. In 1987, T. Cochrane
and R. E. Dressler [1] extended the question to triples of B-numbers. Replacing
Rieger’s sieve technique by a more recent variant of Selberg’s method, they suc-
ceeded in proving that

(1.3)
∑

16n6x
n∈B, n+1∈B, n+2∈B

1 � x

(log x)3/2
.

2. Statement of result. In this article we intend to generalize these estimates
in two different directions: Firstly, instead of pairs or triples we consider M -tuples
of arithmetic progressions (am n+ bm), m = 1, . . . ,M > 2, where am ∈ Z+, bm ∈ Z
throughout. Secondly, we deal with an arbitrary number field K which is supposed
to be a normal extension of the rationals of degree [K : Q] = N > 2. Denoting by
OK the ring of algebraic integers in K, we put

bK(n) :=
{

1 if there exists an integral ideal A in OK of norm N (A) = n,

0 else.

Our target is then the estimation of the sum

(2.1) S(x) = S(a1, b1, . . . , aM , bM ; x) :=
∑

16n6x

M∏
m=1

bK(am n+ bm) .

Of course, the classic case reported in section 1 is contained in this, by the special
choice K = Q(i), the Gaussian field.

Theorem. Suppose that (am, bm) ∈ Z+ × Z for m = 1, . . . ,M , and, further-
more,

M∏
m,k=1
m6=k

(ambk − akbm) 6= 0 .

Then, for large real x,

S(a1, b1, . . . , aM , bM ; x)� γ(a1, b1, . . . , aM , bM )
x

(log x)M(1−1/N)
,

with
γ(a1, b1, . . . , aM , bM ) =

∏

p∈P′

(
1 +

M

p

)
,

the finite set of primes P′ = P′(a1, b1, . . . , aM , bM ) to be defined below in (4.6). The
�-constant depends on M and the field K, but not on a1, b1, . . . , aM , bM .
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3. Some auxiliary results. Notation. Variables of summation automati-
cally range over all integers satisfying the conditions indicated. p denotes rational
primes throughout, and P is the set of all rational primes. P stands for prime ideals
in OK . For any subset P◦ ⊆ P, we denote by D(P◦) the set of all positive inte-
gers whose prime divisors all belong to P◦. The constants implied in the symbols
O(·), �, �, etc., may depend throughout on the field K and on M , but not on
a1, b1, . . . , aM , bM .

Lemma 1. For each prime power pα, α > 1, let Ω(pα) be a set of distinct
residue classes c modulo pα. Define further

Ω(pα) =
{
n ∈ Z+ : n ∈

⋃

c∈Ω(pα)

c

}
,

and let

θ(pα) := 1−
α∑

j=1

#Ω(pj)
pj

> 0 , θ(1) := 1 .

Suppose that Ω(pα)∩Ω(pα
′
) = ∅ for all primes p and positive integers α 6= α′. For

real x > 0, let finally

A(x) =
{
n ∈ Z+ : n 6 x & n /∈

⋃

p∈P, α∈Z+

Ω(pα)
}
.

Then, for arbitrary real Y > 1,

#A(x) 6 x+ Y 2

VY
,

where
VY :=

∑

0<d<Y

∏

pα ‖ d

( 1
θ(pα)

− 1
θ(pα−1)

)
.

Proof. This is a deep sieve theorem due to A. Selberg [10]. It can be found in
Y. Motohashi [5, p. 11], and also in T. Cochrane and R. E. Dressler [1].

Lemma 2. Let (cn)n∈Z+ be a sequence of nonnegative reals, and suppose that
the Dirichlet series

f(s) =
∞∑
n=1

cn n
−s

converges for Re(s) > 1. Assume further that, for some real constants A and β > 0,

f(s) = (A+ o(1))(s− 1)−β ,

as s→ 1+. Then, for x→∞,
∑

16n6x

cn
n

=
( A

Γ(1 + β)
+ o(1)

)
(log x)β .

Proof. This is a standard Tauberian theorem. For the present formulation,
cf. Cochrane and Dressler [1, Lemma B].
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4. Proof of the Theorem. We recall the decomposition laws in a normal
extension K over Q of degree N > 2 (cf. W. Narkiewicz [6, Theorem 7.10]): Every
rational prime p which does not divide the field discriminant disc(K) belongs to
one of the classes

Pr =
{
p ∈ P : (p) = P1 · · ·PN/r, N (P1) = · · · = N (PN/r) = pr

}
,

where r ranges over the divisors of N , and P1, . . . ,PN/r are distinct. As an easy
consequence, if p ∈ Pr, α ∈ Z+,

(4.1) bK(pα) =
{

1, if r|α,
0, else.

In order to apply Lemma 1, we need a bit of preparation. Let

P∗r =
{
p ∈ Pr : p -

M∏
m=1

am

M∏
m,k=1
m 6=k

(ambk − akbm), p 6= M − 1
}
,

P∗ =
⋃

r|N, r>1

P∗r .

Then we choose

Ω(pα) :=
M⋃
m=1

{
am

(−1)(jpα−1 − bm) : j = 1, . . . , p− 1
}
,

if p ∈ P∗r and r - (α−1), while Ω(pα) := ∅ in all other cases. Here · denotes residue
classes modulo pα, in particular am (−1) is the class which satisfies am am

(−1) = 1̄
mod pα. We summarize the relevant properties of these sets Ω(pα), and of the
corresponding sets Ω(pα) (see Lemma 1), as follows.

Proposition. Suppose throughout that p ∈ P∗ and α ∈ Z+.
(i) If p ∈ P∗r, r - (α− 1), then Ω(pα) contains exactly M(p− 1) elements.
(ii) If a positive integer k lies in some Ω(pα), it follows that there exists an

m ∈ {1, . . . ,M} such that pα−1 ‖ (am k + bm).
(iii) It is impossible that there exist m,n ∈ {1, . . . ,M}, m 6= n, and a positive

integer k, such that some p ∈ P∗ divides both amk + bm and ank + bn.
(iv) If k ∈ Ω(pα), it follows that

pα−1 ‖
M∏
m=1

(am k + bm) .

Consequently, Ω(pα) ∩ Ω(pα
′
) = ∅ for any positive integers α 6= α′.
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(v) If k ∈ Ω(pα), then

M∏
m=1

bK(am k + bm) = 0 .

As a consequence,
S(x) 6 #A(x) ,

where S(x) and A(x) have been defined in (2.1) and Lemma 1, respectively.

Proof of the Proposition. (i) Assume that two of these residue classes would be
equal, say, am (−1)(u pα−1 − bm) and an

(−1)(v pα−1 − bn), where u, v ∈ {1, . . . , p−
1}, m,n ∈ {1, . . . ,M}. Multiplying by am an, we could conclude that

an(u pα−1 − bm) ≡ am(v pα−1 − bn) mod pα ,

or, equivalently, that

(4.2) (an u− am v)pα−1 ≡ an bm − am bn mod pα .

Hence p |(an bm − am bn), which is only possible if m = n. This in turn simplifies
(4.2) to

am(u− v)pα−1 ≡ 0 mod pα ,

thus also u = v. �
(ii) If k ∈ Ω(pα), there exist j ∈ {1, . . . , p−1}, m ∈ {1, . . . ,M}, and an integer

q, such that
am k = j pα−1 − bm + q pα .

From this the assertion is obvious. �
(iii) Assuming the contrary, we would infer that p divides

(am k + bm)bn − (an k + bn)bm = (am bn − an bm)k ,

hence p |k, thus p divides also bm and bn, which contradicts p ∈ P∗. �
(iv) This is immediate from (ii) and (iii). �
(v) By (ii), pα−1 ‖ (am k + bm) for some m ∈ {1, . . . ,M}. Recalling that r -

(α−1) (otherwise Ω(pα) would be empty), along with (4.1) and the multiplicativity
of bK(·), it is clear that bK(amk+ bm) = 0. The last inequality is obvious from the
relevant definitions. �

We are now ready to apply Lemma 1. Choosing Y =
√
x and appealing to part

(v) of the Proposition, we see that

(4.3) S(x) 6 2x
VY

.
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To derive a lower bound for VY , observe that Ω(p) = ∅ for every prime p, and
#Ω(p2) = M(p−1) for each p ∈ P∗. Further, if p /∈ P∗, then Ω(pj) = ∅ throughout.
Therefore, if p ∈ P∗, then θ(p) = 1 and

θ(p2) = 1− 1
p2

#Ω(p2) = 1− M(p− 1)
p2

,

hence

(4.4)
1

θ(p2)
− 1
θ(p)

=
M(p− 1)

p2 −M(p− 1)
> M

p
.

Furthermore, for any α > 2,

θ(pα) > 1−M(p− 1)
∑

26j6α
p−j > 1− M

p
> 0 ,

since M(p− 1) 6 p2 − 1 according to clause (i) of the Proposition, and M = p+ 1
is impossible for p ∈ P∗. Thus actually θ(pα) > 0 for all primes p and all α ∈ Z+.
Thus all the terms in the sum VY are nonnegative, and restricting the summation
to the set

Q :=
{
d = d2

1 : d1 ∈ Z+ , µ(d1) 6= 0 , d1 ∈ D(P∗)
}
,

we conclude by (4.4) that

(4.5)

VY >
∑

0<d<Y, d∈Q

∏

p|d

( 1
θ(p2)

− 1
θ(p)

)
>

∑

0<d1<
√
Y , d1∈D(P∗)

µ2(d1)
∏

p|d1

M

p
=

=
∑

0<d1<
√
Y , d1∈D(P∗)

µ2(d1)
Mω(d1)

d1
,

where ω(d1) denotes the number of primes dividing d1. Our next step is to take
care of the primes excluded in the construction of P∗. We define
(4.6)

P′ = P′(a1, b1, . . . , aM , bM ) :=
{
p ∈

⋃
r|N
r>1

Pr : p |
M∏
m=1

am

M∏
m,k=1
m6=k

(ambk − akbm)
}

and

(4.7) γ = γ(a1, b1, . . . , aM , bM ) :=
∏

p∈P′

(
1 +

M

p

)
=

∑

k1∈D(P′)
µ2(k1)

Mω(k1)

k1
.

Putting finally
P∪ :=

⋃

r|N, r>1

Pr ,
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we readily infer from (4.5) and (4.7) that

(4.8) γ VY �
∑

k<
√
Y , k∈D(P∪)

µ2(k)
Mω(k)

k
.

We shall estimate this latter sum by the corresponding generating function

f(s) :=
∑

k∈D(P∪)

µ2(k)
Mω(k)

ks
=
∏

p∈P∪

(
1 +

M

ps

)
(Re(s) > 1) ,

applying Lemma 2. By h1(s), h2(s), . . . we will denote functions which are holo-
morphic and bounded, both from above and away from zero, in every half-plane
Re(s) > σ0 > 1/2. We first observe that

(4.9) f(s) = h1(s)
∏

p∈P∪

(
1− p−s)−M (Re(s) > 1) .

This follows by a standard argument which can be found exposed neatly in G. Tenen-
baum [11, p. 200]. The next step is to consider the Euler product of the Dedekind
zeta-function ζK(s): For Re(s) > 1,

ζK(s) =
∏

P

(
1−N (P)−s

)−1 = h2(s)
∏

r|N

( ∏

p∈Pr

(
1− p−rs)−N/r

)
=

= h3(s)
∏

p∈P1

(
1− p−s)−N .

Therefore,
(
ζ(s)

)M
(
ζK(s)

)M/N
= h4(s)

∏

p∈P∪

(
1− p−s)−M (Re(s) > 1) .

Comparing this with (4.9), we arrive at

f(s) = h5(s)

(
ζ(s)

)M
(
ζK(s)

)M/N
.

From this it is evident that, as s→ 1+,

f(s) ∼ h5(1) ρ−M/N
K (s− 1)−M+M/N ,

where ρK denotes the residue of ζK(s) at s = 1. Lemma 2 now immediately implies
that ∑

k<
√
Y , k∈D(P∪)

µ2(k)
Mω(k)

k
� (log Y )M−M/N � (log x)M−M/N ,

in view of our earlier choice Y =
√
x. Combing this with (4.3) and (4.8), we

complete the proof of our Theorem. �
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5. Concluding remarks. 1. Taking more care and imposing special condi-
tions on the numbers a1, b1, . . . , aM , bM , one could improve slightly on the factor γ
in our estimate. (Observe that Rieger’s bound (1.2) is in fact a bit sharper than our
general result.) But it is easy to see that γ is rather small anyway: By elementary
facts about the Euler totient function (see K. Prachar [8, p. 24–28]),

γ(a1, b1, . . . , aM , bM )�
∏

p∈P′

(
1− 1

p

)−M
� (log log x)M ,

under the very mild restriction that, for some constant c > 0,

max
m=1,...,M

(
am, |bm|

)� exp((log x)c) .

2. As far as the asymptotics (1.1) is concerned, the generalization to an ar-
bitrary normal extension K of Q can be found in W. Narkiewicz’ monograph [6,
p. 361, Prop. 7.11], where it is attributed to E. Wirsing. For this question, the case
of non-normal extensions K has been dealt with by R. W. K. Odoni [7]. It may
be interesting to extend our present problem to the non-normal case as well. We
might return to this at a later occasion.
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