
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 82(96) (2007), 85–91 DOI 102298/PIM0796085G

INTERSECTION TYPES FOR λGtz-CALCULUS

Silvia Ghilezan and Jelena Ivetić

Abstract. We introduce an intersection type assignment system for Espirito-

Santo’s λGtz-calculus, a term calculus embodying the Curry–Howard corre-
spondence for the intuitionistic sequent calculus. We investigate basic prop-
erties of this intersection type system. Our main result is Subject reduction
property.

1. Introduction

Recently, several extensions of λ-calculus were developed in order to extend
the Curry-Howard correspondence to intuitionistic sequent calculus. Herbelin [9]
proposed the first “sequent” λ-calculus, named λ̄, for which bijective correspon-
dence between normal simply typed terms and cut-free proofs of the appropriate
restriction of the Gentzen’s LJ was obtained. However, this bijection failed to ex-
tend to sequent calculus with cuts. After that, intuitionistic sequent λ-calculi were
proposed by Barendregt and Ghilezan [1], Dyckhoff and Pinto [4], Espirito-Santo
and Pinto [5], among others. One of the most recently proposed systems is λGtz-
calculus, developed by Espirito-Santo [6], whose simply typed version corresponds
to the sequent calculus for intuitionistic implicational logic.

Intersection type assignment systems were introduced by Coppo and Dezani [2].
These systems characterize exactly the strongly normalizing λ-terms (proved in
Pottinger [13], Ghilezan [7], Krivine [10]) and that property couldn’t be obtained
with basic simply typed λ-calculus. Since then, intersection types were introduced
in several extensions of λ-calculus, like in Lengrand’s et al. [11] calculus with
explicit substitutions, Matthes’s [12] calculus with generalized applications and
Dougherty’s et al. [3] calculus for classical logic, each time in order to characterize
strong normalization.

In this paper, we introduce intersection type assignment to slightly modified
Espirito-Santo’s intuitionistic sequent λGtz-calculus. The paper is organized as fol-
lows. In Section 2 untyped λGtz-calculus is introduced. In Section 3 we propose a
new, intersection type assignment system named λGtz∩ and investigate some basic
properties of this system. In Section 4 Subject reduction property is proved and

2000 Mathematics Subject Classification: Primary 03B40; Secondary 68N18.

85



86 GHILEZAN AND IVETIĆ

Section 5 proposes some future work toward characterization of strong normaliza-
tion in this calculus, which is our main goal.

2. Syntax of λGtz

The abstract syntax of λGtz is given by:

(Terms) t, u, v ::= x |λx.t | tk
(Contexts) k ::= [x]t |u :: k

We distinguish terms, which could be variables, abstraction or application (also
called cut) and contexts, which are either a selection or linear left introduction
(usually called cons). The intuition is that a context is actually a list of arguments,
since cut is of the form tk, i.e., a function applied to list. A list is made out of a
term by the selection operator, and new elements are added by cons. An empty
list is of the form [x]x (abbreviated with [ ]).

In λx.t and [x]t, t is the scope of the binders λx and [x], respectively. In order
to save parentheses, we let the scope of binders extend to the right as much as
possible.

Definition 2.1. The set of free variables of a term or a context, Fv( ), is
defined with:

Fv(x) = {x}
Fv(λx.t) = Fv(t) � {x}

Fv(tk) = Fv(t) ∪ Fv(k)

Fv([x]t) = Fv(t) � {x}
Fv(t :: k) = Fv(t) ∪ Fv(k)

Remark 2.1. We can see that free variables in λGtz calculus are those that
are not bound neither by abstraction nor by selection operator and Barendregt’s
convention should be applied in both cases.

Reduction rules of λGtz are as follows:

(β) (λx.t)(u :: k) → t〈x := u〉k
(π) (tk)k′ → t(k@k′)

(σ) t[x]v → v〈x := t〉
(µ) [x]xk → k, if x /∈ k

where
• x〈x := u〉 = u; y〈x := u〉 = y;
• (λy.t)〈x := u〉 = λy.t〈x := u〉;
• (tk)〈x := u〉 = t〈x := u〉k〈x := u〉;
• ([y]v)〈x := u〉 = [y]v〈x := u〉;
• (v :: k)〈x := u〉 = v〈x := u〉 :: k〈x := u〉;
• (u :: k)@k′ = u :: (k@k′);
• ([x]v)@k′ = [x]vk′.



INTERSECTION TYPES FOR λGtz-CALCULUS 87

Normal forms of λGtz are:

(Terms) tnf , unf , vnf = xnf | λx.tnf | x(unf :: knf )

(Contexts) knf = [x]tnf | tnf :: knf

If application is seen as cut, then reductions aim at eliminating cuts, i.e., only
trivial cuts are allowed in normal forms.

3. Intersection types for λGtz

Definition 3.1. The set of types Types, ranged over by A,B,C, . . . , A1, . . . ,
is inductively defined by: A,B ::= p |A → B |A ∩ B, where p ranges over a denu-
merable set of type atoms.

Definition 3.2. (i) A basic type assignment is an expression of the form x : A,
where x is a term variable and A is a type.

(ii) A basis Γ is a set of basic type assignments, where all term variables are
different.

(iii) There are two kinds of type assignment: Γ � t : A for typing terms;
Γ;B � k : A for typing contexts.

The special place between the symbols ; and � is called the stoup. It was
proposed by Girard [8]. Stoup contains a selected formula, the one with which we
continue computation.

The following typing system for λGtz is named λGtz∩.

Γ, x :
⋂

Ai � x : Ai i � 1
(Ax)

Γ, x : A � t : B

Γ � λx.t : A → B
(→R)

Γ � u : Ai i = 1, . . . , n Γ;B � k : C

Γ;
⋂

Ai → B � u :: k : C
(→L)

Γ � t : A Γ;A � k : B

Γ � tk : B
(Cut)

Γ, x : A � v : B

Γ;A � [x]v : B
(Sel)

Proposition 3.1 (Admissible rule).
(i) If Γ, x : A � t : C, then Γ, x : A ∩ B � t : C.
(ii) If Γ, x : A;D � k : C, then Γ, x : A ∩ B;D � k : C.

Proof. By mutual induction on the structure of t and k. �
Proposition 3.2 (Basis expansion).
(i) Γ � t : A ⇔ Γ, x : B � t : A and x /∈ Fv(t).
(ii) Γ;C � k : A ⇔ Γ, x : B;C � k : A and x /∈ Fv(k).

Definition 3.3.

Γ1 ∩ Γ2 = {x : A|x : A ∈ Γ1 & x /∈ Γ2}
∪ {x : A|x : A ∈ Γ2 & x /∈ Γ1}
∪ {x : A ∩ B|x : A ∈ Γ1 & x : B ∈ Γ2}.

Proposition 3.3 (Bases intersection). (i) Γ1 � t : A ⇒ Γ1 ∩ Γ2 � t : A.
(ii) Γ1;B � k : A ⇒ Γ1 ∩ Γ2;B � k : A.



88 GHILEZAN AND IVETIĆ

Proposition 3.4 (Generation Lemma – GL).
(i) Γ � x : A if and only if x : A

⋂
Ai ∈ Γ, i = 1, . . . , n for some n � 0.

(ii) Γ � λx.t : A if and only if A ≡ ⋂
Bi → C and Γ, x :

⋂
Bi � t : C.

(iii) Γ;A � [x]t : B if and only if Γ, x : A � t : B.
(iv) Γ � tk : A if and only if there is a type B such that Γ � t : B and

Γ;B � k : A.
(v) Γ;T � t :: k : C if and only if T ≡ ⋂

Ai → B, and Γ;B � k : C and for
all i, Γ � t : Ai.

Example 3.1. In λ-calculus with intersection types, the term λx.xx has the
type (A∩(A → B)) → B. The corresponding term in λGtz-calculus is λx.x(x :: [y]y).
Although being a normal form this term is not typeable in the simply typed λGtz-
calculus. It is typeable in λGtz∩ in the following way:

(Ax)
x : A ∩ (A→B) � x : A→B

(Ax)
x : A ∩ (A→B) � x : A

(Ax)
x : A ∩ (A→B), y : B � y : B

(Sel)
x : A ∩ (A→B); B � [y]y : B

(→L)
x : A ∩ (A→B); A→B � x :: [y]y : B

(Cut)
x : A ∩ (A→B) � x(x :: [y]y) : B

(→R).
� λx.x(x :: [y]y) : (A ∩ (A→B))→B

4. Subject reduction

Now, in order to prove preservation of types under reductions, so called Subject
reduction property, we need to examine how meta-operators 〈 := 〉 and @ behave
under reductions.

Lemma 4.1 (Substitution lemma).
(i) If Γ, x :

⋂
Ai � t : B and Γ � u : Ai, for each i, then Γ � t〈x := u〉 : B.

(ii) If Γ, x :
⋂

Ai;C �k : B and Γ � u : Ai, for each i, then Γ �k〈x := u〉 : B.

Proof. By induction on the structure of a term or a context.
• Basic case. 1. t ≡ x. In this case x〈x := u〉 = u. Then Γ, x :

⋂
Ai � x :B,

by GL(i), implies that B ≡ Ai, for some i, so we are done by the second premise.
2. t ≡ y. In this case y〈x := u〉 = y, so from Γ, x : A � y : B and Proposi-
tion 3.2 we have that Γ � y : B.
• t ≡ λy.t′ From Γ, x :

⋂
Ai � λy.t′ : B and by GL(ii) we get that B ≡⋂

Cj → D and for some j Γ, x :
⋂

Ai, y : Cj � t′ : D. In the case of t′ by IH we
get Γ, y : Cj � t′〈x := u〉 : D for all i. Since (λy.t′)〈x := u〉 = λy.t′〈x := u〉, we are
done by Proposition 3.1 and →R.

• t ≡ t′k Γ, x :
⋂

Ai � t′k : B , using GL(iv), yields that there exists a type
C, for which Γ, x :

⋂
Ai � t′ : C and Γ, x :

⋂
Ai;C � k : B . Using IH for both t′

and k, we get:
Γ � t′〈x := u〉 : C Γ;C � k〈x := u〉 : B

Γ � t′〈x := u〉k〈x := u〉 : B,

what we had to prove, since (t′k)〈x := u〉 = t′〈x := u〉k〈x := u〉.



INTERSECTION TYPES FOR λGtz-CALCULUS 89

• k ≡ [y]v Γ, x :
⋂

Ai;C � [y]v : B, by GL(iii), yields Γ, x :
⋂

Ai, y : C � v : B.
By IH applied to v, we get:

Γ, y : C � v〈x := u〉 : B

Γ;C � [y]v〈x := u〉 : B,

and that is what we needed, since ([y]v)〈x := u〉 = [y]v〈x := u〉.
• k ≡ t :: k′ From Γ, x :

⋂
Ai;C � t :: k′ : B and GL(v) we have that

C ≡ ⋂
Dj → E, and Γ, x :

⋂
Ai;E � k′ : B and Γ, x :

⋂
Ai � t : Dj for each j. By

IH applied both to t and k′ we get:

Γ � t〈x := u〉 : Dj , ∀j Γ;E � k′〈x := u〉 : B

Γ;
⋂

Dj → E � t〈x := u〉 :: k′〈x := u〉 : B,

and since (t :: k′)〈x := u〉 = t〈x := u〉 :: k′〈x := u〉, the proof is completed. �

Lemma 4.2 (Append lemma). If Γ;C � k : B and Γ;B � k′ : A, then Γ;C �
k@k′ : A.

Proof. By induction on the structure of the context.
• Basic case of the context structure is selection. So, if k ≡ [x]v from Γ;C �

[x]v : B and GL(iii) we have that Γ, x : C � v : B. Without loss of generality
we can suppose that x /∈ Fv(k′) (because if it was free in it, we would have to
rename this variable in k where it is bound) and then we can expand the basis to
Γ, x : C;B � k′ : A. Now

Γ, x : C � v : B Γ, x : C;B � k′ : A

Γ, x : C � vk′ : A

Γ;C � [x]vk′ : A.

Since ([x]v)@k′ = [x]vk′, the proof is completed.
• k ≡ v :: k′′ Γ;C � v :: k′′ : B , by GL(v), yields that C ≡ ⋂

Di → E,
Γ � v : Di and Γ;E � k′′ : B. By applying IH to k′′ we get:

Γ � v :
⋂

Di Γ;E � k′′@k′ : A

Γ;C � v :: (k′′@k′) : A.

Since (v :: k′′)@k′ = v :: (k′′@k′) the proof is completed. �

We are now able to prove Subject reduction theorem, which claims that the
type of a term stays preserved under reduction.

Theorem 4.1 (Subject Reduction). If Γ � t : A and t → t′, then Γ � t′ : A.

Proof. We examine three different cases, according to the last applied reduc-
tion.

• (β): If Γ � (λx.t)(u :: k) : A, then we have to show that Γ � t〈x := u〉k : A.
From Γ � (λx.t)(u :: k) : A and GL(iv) we have that there is the type B

such that Γ � λx.t : B and Γ;B � u :: k : A. GL(v) implies that B ≡ ⋂
Ci → D,

Γ � u : Ci and Γ;D � k : A. On the other hand, from Γ � λx.t :
⋂

Ci → D we



90 GHILEZAN AND IVETIĆ

have from GL(ii) that Γ, x :
⋂

Ci � t : D. Applying Substitution lemma 4.1, we
get that Γ � t〈x := u〉 : D, so we are now done by (Cut) rule.

• (σ): If Γ � t[x]v : A, it should be shown that Γ � v〈x := t〉 : A.
From Γ � t[x]v : A and GL(iv) it follows that there exists the type B such that

Γ � t : B and Γ;B � [x]v : A. Further, by GL(iii) we have that Γ, x : B � v : A.
Now, all assumptions of Lemma 4.1 are accomplished, so by applying it we get
Γ � v〈x := t〉 : A.

• (π): If Γ � (tk)k′ : A, we have to show that Γ � t(k@k′) : A.
From Γ � (tk)k′ : A and GL(iv) we have that there is a type B such that

Γ � tk : B and Γ;B � k′ : A. Further, Γ � tk : B , by GL(iv), yields that there is
the type C such that Γ � t : C and Γ;C � k : B. Now from Γ;C � k : B and
Γ;B � k′ : A, using Lemma 4.2 we get Γ; C � k@k′ : A, so we may conclude:

Γ � t : C Γ;C � k@k′ : A

Γ � t(k@k′) : A.
�

The reduction µ is of different nature, since it reduces contexts instead of terms.
But it is possible to prove a similar result for this reduction rule.

Proposition 4.1. If Γ;
⋂

Bi � [x]xk : A, then Γ;Bi � k : A, for some i.

Proof. Assume Γ;
⋂

Bi � [x]xk : A. By GL(iv) we have Γ, x :
⋂

Bi � xk : A.
Now, by GL(iii), there is a type C such that Γ, x :

⋂
Bi � x : C and Γ;C � k : A.

Since x /∈ k, we are done by (Ax) and Proposition 3.2. �

5. Conclusion

We introduced an intersection type assignment system to an extension of the
λ-calculus which corresponds to sequent calculus for intuitionistic implicational
logic. For this system, we proved Subject reduction theorem. Our main goal,
characterization of strongly normalizing terms via intersection types, is still in the
domain of future work, as well as proving the confluence property for the system.

References

[1] H. Barendregt and S. Ghilezan, Lambda terms for natural deduction, sequent calculus and
cut elimination, J. Funct. Program. 10:1 (2000), 121–134.

[2] M. Coppo and M. and Dezani-Ciancaglini, A new type-assignment for lambda terms, Arch.
Math. Logik 19 (1978), 139–156.

[3] D. Dougherty, S. Ghilezan and P. Lescanne, Characterizing strong normalization in the
Curien–Herbelin symmetric lambda calculus: extending the Coppo–Dezani heritage, The-
oret. Comput. Sci. (2007), to appear

[4] R. Dyckhoff and L. Pinto, Cut-Elimination and a Permutation-Free Sequent Calculus for
Intuitionistic Logic, Stud. Log. 60:1 (1998), 107–118.

[5] J. Esṕırito Santo and L. Pinto, Permutative Conversions in Intuitionistic Multiary Sequent
Calculi with Cuts; in: Procedings of TLCA 2003, Lect. Notes Comput. Sci. 2071, 2003,
286–300.

[6] J. Esṕırito Santo, Private communication, 2006.
[7] S. Ghilezan, Strong normalization and typability with intersection types, Notre Dame J.

Formal Logic 37 (1996), 44–52.



INTERSECTION TYPES FOR λGtz-CALCULUS 91

[8] J.-Y. Girard, A New Constructive Logic: Classical Logic, Math. Struct. Comput. Sci. 1:3
(1991), 255–296.

[9] H. Herbelin, A lambda calculus structure isomorphic to Gentzen-style sequent calculus struc-
ture; in: Computer Science Logic, CSL 1994, Lect. Notes Comput. Sci. 933, Springer-Verlag,
1995, 61–75.

[10] J. L. Krivine, Lambda-calcul, types et modèles, Masson, Paris, 1990.
[11] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel,

Intersection types for explicit substitutions, Inf. Comput. 189:1 (2004), 17–42.
[12] R. Matthes, Characterizing Strongly Normalizing Terms of a Calculus with Generalized Ap-

plications via Intersection Types; in: ICALP Satellite Workshops 2000, 339–354.
[13] G. Pottinger, A type assignment for the strongly normalizable λ-terms; in: J. P. Seldin and

J.R. Hindley (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press, London, 1980, pp. 561–577

Fakultet tehnickih nauka

Univerzitet u Novom Sadu

Trg Dositeja Obradovica 6

21000 Novi Sad

Serbia

gsilvia@uns.ns.ac.yu

jelena@imft.ftn.ns.ac.yu


