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ABSTRACT. We investigate the class of +1 polynomials evaluated at ¢ defined
as:

Alg) ={eo+e1g+ - +emq™ 1 e € {~1,1}}
and usually called spectrum, and show that, if ¢ is the root of the polynomial
" — gl — gkt gk k=1 4 ... 4 2 4+ 1 between 1 and 2, and
n > 2k + 3, then A(q) is discrete, which means that it does not have any
accumulation points.

1. Introduction

For a real number ¢ > 1 the spectrum of ¢ is the set of numbers p(q), where
p(x) ranges over all polynomial whose coefficients are from a finite set of integers.
Here we will consider two spectra

Ag) =={eo+e1q" + - +emg™ 6 € {=1,0,1}},
A(q) = {eo + (gt + ot emg™ 6 € {-1,1}}.
Further let us define

I(q) = inf{ly| : y € A(q),y # 0},
a(q) = inf{ly| : y € A(q),y # 0}.

It is well known that, if ¢ is a Pisot number, then A(q) and clearly A(q) are discrete,
as a consequence of the Lemma 1.51 in Garsia [5]. (Recall that ¢ > 1 is called Pisot
number if ¢ is an algebraic integer, such that all of the conjugates of ¢, are strictly
less than 1 in modulus.) For Pisot numbers satisfying ¢" —¢" =t —--- —q¢—1 =0,
Erdds, Jo6 and Jo6 determine that I(q) = 1/q (see [2]). Erdds and Komornik
in [3] proved that if ¢ € (1,2'/4] and if ¢ is not the second Pisot number, then
I(g) = 0. Whether A(q) can be discrete for any non-Pisot number is a major open
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question in this area. Peres and Solomyak in [7] proved that A(q) is dense for
almost every ¢ € (v/2,2) and asked the same question for A(q). In that case, the
question has been answered positively. Borwein and Hare [1] found examples of
q € (1,2) such that g is non-Pisot but A(g) is not dense. The smallest such number
found is &~ 1.72208, the root of #* — 23 — 22 — 2 + 1, a Salem number. (Recall
that ¢ > 1 is called Salem number if ¢ is a real algebraic integer, such that all of
the conjugates of ¢, are less than or equal to 1 in modulus. At least one of the
conjugates must be of modulus 1.) Hare in [6] proved that if ¢ > 1 is a root of the
polynomial 2z —2"~1 — ... —x + 1, then A(q) is discrete. The main result here is
the improvement of the Hare’s theorem:

THEOREM 1. If n > 2k + 3,k > 0 are integers and q is the greatest real root
of the polynomial ™ — a™ 1 — .- — 2Pt ok p okl 4o g 1 1, then A(q) is
discrete.

REMARK 1.1. If n = 2k + 3 then the polynomial can be factored:

g2R 3 g 2k42 kbl ok g kel
_ (l‘k+1 o Z‘k _ .’L‘k_l L 1)($k+2 _ 1)
and the greatest real root of the polynomial is a Pisot number which satisfies
(xF+1 — gk — xF=1... 1) = 0. Clearly, in this case the theorem is still valid. This

seems to be the limiting case after which the theorem stops to be a valid one.

2. Algorithm and the proof

To prove Theorem 1 we will use a variant of the recursive algorithm of Feng
and Wen [4]. We have to modify it to satisfy the hypothesis of the theorem.

For each real number z, denote by T'(z) the set {xgz £ 1} N[0,1/(¢ — 1)].
Let Ay = {1}, recursively we can determine A; = T(1). Suppose that we have
determined the set A,, with A, # A,,_1, then we obtain the set A, 11 by

o U, )

If A, = A,—1, then the algorithm terminates and we get A,, = A(¢)N[0,1/(g—1)].
We can also conclude that the spectra A(q) are discrete.

PrOOF OF THEOREM 1. To see that A(q) is discrete, simply consider the al-
gorithm and notice that it must terminate. The following observations are needed.

1. g"tl —gh —gF 1 —...—g—1>0forn> 2k +3.
2. ¢q" —qm - g+ 1> q_% for all positive integer m < n — (k + 1).
3. qn—l_qn—l—l_”._qk—l-i-l_’_qk—l_;'_“__;'_q_l<_q%17 f0r0<l<k:

Thus at each step of the algorithm there is only one choice, and the algorithm must
terminate after n steps. It remains to prove these observations.
1. We have supposed that n > 2k + 3 and the following equality is true:

qn_qn—l_'_._qk+1+qk+qk_1+...+q+1:0,
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Adding and subtracting ¢?**3 at the left side gives
(qn _qnfl . _q2k+4 _2q2k+3) + (qk+2 o 1)(qk+l _qk . qkfl g — 1) —0.
We will show that the first summand ¢" — ¢" ' — - - - — ¢?F+% — 2¢%%+3 is negative,
so we must have (¢"*2 —1)(¢* ' —¢* —¢*1 —---—q¢—1) > 0. Here (¢**2—-1) >0
finally implies: ¢*t' —¢* —¢* 1 —... —¢—1>0.

It remains to prove that in fact ¢ — ¢* ' — .- — ¢2t* — 2¢2F1+3 is negative.

As we can take the factor ¢*3 outside parentheses ¢>**3(¢! —¢'=! — ... — ¢ —2),

where [ = n — (2k + 3), it is sufficient to prove

LEMMA 2.1. ¢! —¢'=' — ... — ¢ — 2 is negative for all positive integers | and for
all g € (1,2).

PROOF. The expression in the lemma can be rearranged:

l

l -1 l g -1 l ( 1 )
—1- - N=¢ -1- = -1D(1-—).
q (¢ ++qtl)=gq 1 (¢ —1) =

Now it is clear, as the first factor is positive and the second one is negative, that
the product is negative. O

2. a) Consider first the case m < n — (k + 2). We need the sequence ¢ — 1,
P —qg—1,...,¢q 2 _gn=(+3) _ ... _ g — 1. We prove that all the members of
the sequence are nonnegative. It is sufficient to show the sequence is decreasing and
the last member of it is nonnegative. As the difference of the consequent numbers

qm—l_qm—2_._._q_1_(qm_qm—l_“__q_l):qm—1(2_q) >0,
the sequence is decreasing. We assumed that
qn_qn—l_._._qk+2:qk‘+1_qk__“_q_l
and by dividing this equality by ¢**? we get:
k+1 k
- - A A
qn (k+2)_qn (k‘+3)__q_1: qk+2 20’

using observation 1, thus the last number of the sequence is nonnegative. We have
just proved the next

LEMMA 2.2. If the assumptions of Theorem 1 are true and m < n — (k + 2),
then ¢m —q¢™ 1 —...—qg—12>0.

Finally by adding 2 to each side we get ¢"" —¢"" " — -+ —q+12> 2> 3.
The last inequality, that is 2 > ﬁ, follows, as the smallest number of this form is
approximately 1.62.
b) Now consider the case m = n — (k4 1). We have to prove that
1
2.1 e gl > ——.
(2.1) q ¢+1> =

Multiplying each side by ¢**! one gets an equivalent inequality
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or .
2qk+1_qk_'”_q_1>q )
qg—1
Multiplying this by ¢ — 1 we get
s RS S e S S T R
and finally
(2.2) 2" — 4" 11 > 0.

Therefore we have to analyze P(x) = 22%+2 —4x%+1 4+ 1. Let us find its approximate
values for x = 1,2,2 — 2= % *+2) ' We can calculate

2- 111 -2)+1=-1<0, 2-281(2-2)+1=1>0,
2(2 _ 27(k+2))k+1(2 _ 27(141‘#2) _ 2) + 1 — _(1 _ 27(1€+3))]€+1 + 1 > 0
We conclude that P(z) has a root ¢t € (1,2). Analyzing the sign of the first

derivative of P(z) on [1,2] we can see it first decreases, at © = 2 — I%&-Q it has

minimum, and then increases. Therefore t; € (2 — 1%2’ 2) and the polynomial is
increasing on this interval. So, if we prove that ¢ = ¢, > t, it would imply
P(q) > P(tr) = 0 and therefore the inequality (2.2) is true. Then the inequality
(2.1) also follows. So let us prove the next

LEMMA 2.3. Ifn > 2k + 4 and let us denote by ¢ = gy, 1 the greatest real root
of the polynomial

Pn,k(x):xn*fﬂn717'~'7ajk+1+xk+xk71+...+x+17

and t = t, € (1,2) the root of the polynomial Pi(z) = 222 — 42kt 4+ 1, then
t<gq.

PROOF. First consider the case n = 2k + 4. The supposition
(2.3) P2 gkt 1 =0,

gives 2tF+2 —4¢1F+1 12 > 0. Multiplying this by —1/2 we get 0 > —tF3 4 2¢F+2 1
and also 0 > —tF*3 4 (2¢62 4 1) — 2. The equality (2.3) gives 2tF+2 4 1 = 4¢F+1,
If we replace it in the last inequality we obtain

(2.4) 0> 3 gl 9o

The equality (2.3) also gives —1 = 2tF+2 — 4¢F+1 Multiplying this by t*+3 gives
—tht3 = 24245 _ 442k+4 If we replace it in the inequality (2.4) we obtain

0 > 262FF5 — 4g2h 4 4 gehtl 9,
Dividing each side of the last inequality by 2 and using n = 2k + 4 we obtain
0> " — 2t g2tk 1 >t g (1 — 1) 4 2(¢F T — 1)
StM(t—1) — (- D"+t P D) 20— (T ).
Dividing by the positive number ¢ — 1 gives us

0>t — (" T4 t" 2 D) F 28 P 1)
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0> ¢" — "t — P g e L
As qp 1 is the greatest real root of the polynomial, and we have:
0=¢"—¢" "= ="+ +F T+ g+,
0<2m—2nh ookt g ok p okl 1 o1 =22 1,

we conclude that ¢, < goptar < 2.

Now consider the case n > 2k + 4. We claim that, if k is fixed, the sequence
Gn,k increases with n and it is bounded by 2. Indeed,

gt =g = e a1 =gk 247,

= (@ —2) <0,
gives qn k. < qn+1,k, and
gntl _gn . _oktl Lok Lok=l 4o _9kt2_ 15

gives gn.;; < 2. Finally we conclude that t;, < g, for all n > 2k 4 4. O

3. We will need the following

1 1
LEMMA 2.4. If—il <qx+1<0, and g € (1,2), then =7 <z <0.
q—

PRrROOF. The inequality gz + 1 < 0 implies z < —% < 0 and the other one

*ﬁ < qx + 1 gives 7(;71 —1 < gz and qu—l < qz. Dividing each side by g,
1

finaly we get 1 < O

Let us introduce the following finite sequence of the numbers:

g1 =" TR g,
o =q" =" gt 1,
g1 = ¢V =" g
an:qn_qn—l_“__qk+1_~_qk+_“_’_q+1.

It is easy to verify that ;41 = g +1, i =n—-—k—-1n—Fk,...,n— 1.
The hypothesis of the theorem gives a,, = 0, so we can use the previous lemma
recursively and obtain

1

_(]—71 < Qp—1 <O7
1

_(]—71 < Qp—2 <O,

1
——— < Op_p—1 < 0.
q—1
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Finally, we have for 0 <1 < k

1
qn—l_qn—l—l_._._qk—l-i—l +qk_l++q_1:anfl_2< _2<_71
q—
. . 1 .
The last inequality —2 < —g=1 Is true because ¢ > 1,62. O
References

[1] P. Borwein and K. Hare, Some computations on the spectra of Pisot and Salem numbers,
Math. Comp. 71 (238) (2002), 767-780.

[2] P. Erdés, I. Joé and M. Jod, On a problem of Tamas Varga, Bull. Soc. Math. France 20 (1992),
507-521.

[3] P. Erd8s and V. Komornik, Developments in non-integer bases, Acta Math. Hungar. 79 (1-2)
(1998), 57-83.

[4] D.-J. Feng and Z.-Y. Wen, A property of Pisot numbers, J. Number Theory 20(2) (2002),
305-316.

[6] A.M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102
(1962), 409-432.

[6] K.G. Hare, Pisot numbers and the spectra of Real numbers, Ph.d. thesis, Simon Fraser Uni-
versity, 2002, June.

[7] Y. Peres and B. Solomyak, Approzimation by polynomials with coefficients £1, J. Number
Theory 84 (2) (2000), 185-198.

Katedra matematike RGF-a (Received 28 01 2008)
Univerzitet u Beogradu

Beograd, Dusina 7

Serbia

dstankov@rgf.bg.ac.yu



