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Abstract. We study the asymptotic behaviour of solutions of the Cauchy

problem u′ =
(∑n

j=1(Aj + A−1
j ) − 2nI

)
u, u(0) = x as t → ∞, for invertible

isometries A1, . . . , An.

1. Introduction

Let E be a complex Banach space, L(E) the Banach algebra of all bounded
linear operators on E, and let A1, . . . , An ∈ L(E) be invertible, pairwise commuting,
and such that ‖Ak‖ = ‖A−1

k ‖ = 1 (k = 1, . . . , n). Let T1, . . . , Tn ∈ L(E) be defined
by Tk = Ak + A−1

k − 2I, and let T = T1 + · · · + Tn. The aim of this paper is to
clear the asymptotic behaviour of the Cauchy problem

(1.1) u′(t) = Tu(t), u(0) = u0

that is of t �→ exp(tT )u0 for t → ∞. Such problems occur in a natural way
by semidiscretization of the parabolic Cauchy problem vt = ∆v, v(0, x) = v0(x):
For example, if v0 : R

n → R is bounded, the longitudinal line method, see for
example[4], with step size 1 leads to a linear Cauchy problem of type (1.1) in
l∞(Zn) with

Akx = (x(j1, j2, . . . , jk−1, jk + 1, jk+1, . . . , jn))j∈Zn .

The corresponding problem for the heat equation was studied in [1].

2. Notations and preliminaries

For A ∈ L(E) let N(A), A(E), σ(A) and r(A) denote the kernel, the range,
the spectrum and the spectral radius of A, respectively. Let D denote the complex
unit circle {z ∈ C : |z| < 1}.

Proposition 2.1. Let A ∈ L(E), 0 /∈ σ(A) and ‖A‖ = ‖A−1‖ = 1. Then:
(1) A is an isometry;
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(2) ‖An‖ = ‖A‖n = 1 (n ∈ N), hence A is normaloid;
(3) r(A) = 1 and σ(A) ⊆ ∂D;
(4) N(A − I) ∩ (A − I)(E) = {0};
(5) (A − I)(E) = (A−1 − I)(E);
(6) N(A − I) = N((A − I)2);
(7) N(A − I) ⊕ (A − I)(E) is closed;
(8) if (A − I)(E) is closed then E = N(A − I) ⊕ (A − I)(E).

Proof. (1) and (2) are obvious.

(3) From (2) we get r(A) = 1. Next, it is clear that σ(A)∪ σ(A−1) ⊆ D. Since
σ(A) = {z ∈ C : z−1 ∈ σ(A−1)}, we conclude σ(A) ⊆ ∂D.

(4) Let x ∈ N(A − I) ∩ (A − I)(E), let ε > 0 and choose z ∈ E such that
‖x−(A−I)z‖ < ε. According to [2, Satz 102.3], we have ‖x‖ � ‖x−(A−I)z‖ < ε,
hence x = 0.

(5) Follows from (A − I)x = (I − A−1)(Ax).

(6) Follows from [2, Satz 102.3].

(7) Choose a sequence (xn) in N(A − I) ⊕ (A − I)(E) with xn → x0 and
corresponding decompositions xn = yn + zn. According to [2, Satz 102.3] we have

‖yn − ym‖ � ‖xn − xm‖ (n,m ∈ N),

hence (yn) is convergent to a vector y0 ∈ N(A − I). Thus

zn = xn − yn → x0 − y0 ∈ (A − I)(E),

and therefore x0 ∈ N(A − I) ⊕ (A − I)(E).

(8) Follows from [2, Satz 72.4 and 102.4]. �

Proposition 2.2. Let A ∈ L(E) be as in Proposition 2.1, let T = A+A−1−2I,
and let c : [0,∞) → R denote the function

c(t) = exp(−t)
(

1 +
∞∑

n=0

tn

n!

∣∣∣1 − t

n + 1

∣∣∣).

We have

(1) ‖ exp(tT )‖ � 1 (t � 0);
(2) t �→ √

tc(t) is bounded on [0,∞) and

‖ exp(tT )(A − I)x‖ � c(t)‖x‖ (t � 0, x ∈ E);

(3) limt→∞ exp(tT )y = 0 (y ∈ (A − I)(E));
(4) if y ∈ E then

lim
t→∞ exp(tT )y = 0 ⇐⇒ y ∈ (A − I)(E);

(5) N(A − I) = {x ∈ E : exp(tT )x = x (t � 0)}.
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Proof. (1) For each t � 0 we have

‖ exp(tT )‖ = ‖ exp(−2t) exp(tA) exp(tA−1)‖
� exp(−2t) exp(t‖A‖) exp(t‖A−1‖) = 1.

(2) Since T = (A−1 − I) + (A − I) we have

exp(tT )(A − I) = exp(t(A−1 − I)) exp(t(A − I))(A − I) (t ∈ R),

and

exp(t(A − I))(A − I)x = exp(−t)
∞∑

n=0

tn

n!
(An+1 − An)x

= exp(−t)
( ∞∑

n=0

tn

n!

(
1 − t

n + 1

))
An+1x − exp(−t)x.

Hence, since ‖A‖ = 1,

‖ exp(tT )(A − I)x‖ � ‖ exp(t(A−1 − I))‖ ‖ exp(t(A − I))(A − I)x‖ � c(t)‖x‖
(t � 0, x ∈ E).

To see that t �→ √
tc(t) is bounded on [0,∞) let N ∈ N and N � t � N + 1. Then

∞∑
n=0

tn

n!

∣∣∣1 − t

n + 1

∣∣∣ = N−1∑
n=0

tn

n!

( t

n + 1
− 1
)

+
∞∑

n=N

tn

n!

(
1 − t

n + 1

)
= 2

tN

N !
− 1,

and therefore
√

t c(t) =
√

t exp(−t)
(

1 +
∞∑

n=0

tn

n!

∣∣∣1 − t

n + 1

∣∣∣)

�
√

N + 1 exp(−N)
(

1 + 2
(N + 1)N

N !
− 1
)

=
2(N + 1)N+1/2 exp(−N)

N !
,

which is bounded according to Stirling’s formula.
(3) Follows from (2).
(4) The implication ⇐ follows from (3). Now suppose that exp(tT )y → 0 as

t → ∞. Since

exp(tT )y = y +
∞∑

n=1

tn

n!
Tny = y + (A − I)

∞∑
n=1

tn

n!
(A − I)n−1(I − A−1)ny

we conclude y ∈ (A − I)(E).
(5) The inclusion

N(A − I) ⊆ {x ∈ E : exp(tT )x = x (t � 0)}
is obvious. Now suppose that x ∈ E and exp(tT )x = x (t � 0). By differentiation
0 = T exp(tT )x (t � 0), thus A−1(A − I)2x = Tx = 0. Part (6) of Proposition 2.1
now shows that x ∈ N(A − I). �
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3. The asymptotic behaviour of exp (tT )

Theorem 3.1. Let A and T be as in Proposition 2.1. For x ∈ E the following
assertions are equivalent:

(1) limt→∞ exp(tT )x exists in E [resp. limt→∞ exp(tT )x = 0];
(2) x ∈ N(A − I) ⊕ (A − I)(E) [resp. x ∈ (A − I)(E)];
(3) the sequence (

x + Ax + · · · + Amx

m + 1

)
m∈N

is convergent [resp. is convergent with limit 0].

Proof. That (2) implies (1) follows from Proposition 2.2.
Now, assume that (1) holds, and let z = limt→∞ exp(tT )x. As in the proof of

part (4) of Proposition 2.2

exp(tT )x = x + (A − I)
∞∑

n=1

tn

n!
(A − I)n−1(I − A−1)nx,

hence x − z ∈ (A − I)(E). [In particular, if z = 0 then x ∈ (A − I)(E).] From
part (3) of Proposition 2.2 we obtain

(A − I)z = lim
t→∞ exp(tT )(A − I)x = 0,

and therefore x = z + (x − z) ∈ N(A − I) ⊕ (A − I)(E).
The equivalence of (2) and (3) is proved in [3, Ch.2, Theorem 1.3]. �

According to part (8) of Proposition 2.1 the following corollary shows, that
limt→∞ exp(tT )x exists for each x ∈ E if T (E) is closed:

Corollary 3.1. We have
(1) T (E) = (A − I)2(E) ⊆ (A − I)(E) ⊆ T (E);
(2) T (E) = T (E) ⇐⇒ (A − I)2(E) = (A − I)(E)

⇐⇒ (A − I)(E) = (A − I)(E).

Proof. (1) Part (5) of Proposition 2.1 gives

T (E) = (A − I)2(E) ⊆ (A − I)(E).

As in the proof of Theorem 3.1 we obtain (A− I)(E) ⊆ T (E). Now, (2) follows by
[2, Satz 102.4]. �

4. The general case

Now, let A1, . . . , An, T1, . . . , Tn and T be as in section 1. Moreover we introduce
the following subspaces of E:

X1 =
n⋂

j=1

N(Aj − I), X2 =
n∑

j=1

(Aj − I)(E), X = X1 + X2.

Theorem 4.1. Under the assumptions above
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(1) X2 = {x ∈ E : limt→∞ exp(tT )x = 0};
(2) X1 = {x ∈ E : exp(tT )x = x (t � 0)};
(3) X = {x ∈ E : limt→∞ exp(tT )x exists in E};
(4) X1 ∩ X2 = {0}, and X is closed.

Proof. (1) Let x ∈ X2. Then x = limm→∞ xm, where xm ∈∑n
j=1(Aj−I)(E).

By part (1) and part (3) of Proposition 2.2 we obtain

lim
t→∞ exp(tT )xm = 0 (m ∈ N).

Let ε > 0, and choose N ∈ N such that ‖x − xN‖ < ε/2. Next, choose t0 ∈ [0,∞)
such that ‖ exp(tT )xN‖ < ε/2 (t � t0). Then

‖ exp(tT )x‖ = ‖ exp(tT )(x − xN ) + exp(tT )xN‖
� ‖x − xN‖ + ‖ exp(tT )xN‖ < ε (t � t0).

Thus limt→∞ exp(tT )x = 0.
Now suppose that x ∈ E and limt→∞ exp(tT )x = 0. Set

h(t) =
∞∑

n=1

tn

n!
Tnx.

Since Tj = (Aj − I)(I − A−1
j ) (j = 1, . . . , n), we have

Tx =
n∑

j=1

(Aj − I)(I − A−1
j )x ∈

n∑
j=1

(Aj − I)(E),

hence

h(t) ∈
n∑

j=1

(Aj − I)(E).

Thus, exp(tT )x = x + h(t) and limt→∞ exp(tT )x = 0 imply x ∈ X2.
(2) The inclusion ⊆ is obvious. For the reversed inclusion let x ∈ E be such

that exp(tT )x = x (t � 0). Then by part (1) we obtain

(Aj − I)x = exp(tT )(Aj − I)x → 0 (t → ∞) (j = 1, . . . , n),

hence x ∈ X1.
(3) Here, the inclusion ⊆ follows from parts (1) and (2) directly. Now, assume

that x ∈ E is such that limt→∞ exp(tT )x = z. As in the proof of part (1)

exp(tT )x = x + h(t), h(t) ∈ X2.

Therefore x − z ∈ X2. From part (1) we derive

(Aj − I)z = lim
t→∞ exp(tT )(Aj − I)x = 0 (j = 1, . . . , n).

Thus z ∈ X1, and so x = z + (x − z) ∈ X1 ⊕ X2 = X.
(4) Let x ∈ X1 ∩ X2. Then, by parts (1) and (2), we have

exp(tT )x = x (t � 0), exp(tT )x → 0 (t → ∞),
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thus x = 0. Next, if (xm) is a sequence in X with limit x0, then there exist
sequences (ym) and (zm) in X1 and X2, respectively, with xm = ym + zm. From
part (1) and part (2) we obtain

exp(tT )(xm − xk) → ym − yk (t → ∞).

Since ‖ exp(tT )(xm − xk)‖ � ‖xm − xk‖ (t � 0), we have ‖ym − yk‖ � ‖xm − xk‖,
thus (ym) is convergent. Let y0 = limm→∞ ym. Then zm = xm − ym → x0 − y0.
Hence we have y0 ∈ X1, x0 − y0 ∈ X2, and therefore x0 ∈ X1 ⊕ X2 = X. �

The following result provides sufficient conditions for the convergence of
exp(tT )x.

Theorem 4.2. Let (k1, . . . , kn) ∈ N
n
0 , and set B = Ak1

1 . . . Akn
n . We have

(1)
⋂n

j=1

(
N(Aj − I) ⊕ (Aj − I)(E)

) ⊆ X;
(2) (B − I)(E) ⊆ X2;
(3) if x ∈ E and if the sequences(

x + Ajx + · · · + Am
j x

m + 1

)
m∈N

are convergent (j = 1, . . . , n), then limt→∞ exp(tT )x exists in E;
(4) if x ∈ E and if the sequence(

x + Bx + · · · + Bmx

m + 1

)
m∈N

is convergent to 0 in E, then limt→∞ exp(tT )x = 0.

Proof. According to Theorem 3.1 we see that (3) follows from (1), and (4)
follows from (2).

For the proof of (1) we use induction. If n = 1 the result follows by Theorem 3.1.
Suppose that n ∈ N and that (1) holds. In the case of n + 1 operators T1, . . . , Tn+1

we write T0 = T1 + · · · + Tn, so T = T0 + Tn+1. Let

x ∈
n+1⋂
j=1

(
N(Aj − I) ⊕ (Aj − I)(E)

)
.

Then

x ∈
n⋂

j=1

(
N(Aj − I) ⊕ (Aj − I)(E)

)
, x ∈ N(An+1 − I) ⊕ (An+1 − I)(E),

and therefore the limits limt→∞ exp(tT0)x and limt→∞ exp(tTn+1)x exist in E.
From

‖ exp(tT )x − exp(sT )x‖ = ‖ exp(tT0) exp(tTn+1)x − exp(sT0) exp(sTn+1)x‖
= ‖ exp(tT0)(exp(tTn+1) − exp(sTn+1))x + exp(sTn+1)(exp(tT0) − exp(sT0))x‖
� ‖ exp(tTn+1)x − exp(sTn+1)x‖ + ‖ exp(tT0)x − exp(sT0)x‖

we see that limt→∞ exp(tT )x exists.
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Next, we prove (2) for (k1, . . . , kn) ∈ N
n, without loss of generality. Let p(z) =

zk1
1 . . . zkn

n − 1 (z = (z1, . . . , zn)), and note that there are polynomials q1, . . . , qn ∈
C[z1, . . . , zn] such that

p(z) = (z1 − 1)q1(z) + · · · + (zn − 1)qn(z).

Hence

(B − I)x ∈
n∑

j=1

(Aj − I)(E) (x ∈ E),

and therefore (B − I)(E) ⊆ X2. �

5. Example

Let us return to the semidiscretization of vt = ∆v in R
2, that is we consider

E = l∞(Z2) and

A1x = (x(i + 1, j))(i,j)∈Z2 , A2x = (x(i, j + 1))(i,j)∈Z2 .

Let k1, k2 ∈ N, and assume that x ∈ l∞(Z2) is such that the sequence((
x(i, j) + x(i + k1, j + k2) + · · · + x(i + mk1, j + mk2)

m + 1

)
(i,j)∈Z2

)
m∈N

tends to 0 as m → ∞ in l∞(Z2). Then

exp(tT )x → 0 (t → ∞)

(apply part (4) of Theorem 4.2 with B = Ak1
1 Ak2

2 ).
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