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Abstract. Let M be a simply connected complete Kähler manifold and N

a closed complete totally geodesic complex submanifold of M such that every
minimal geodesic in N is minimal in M . Let Uν be the unit normal bundle
of N in M . We prove that if a distance function ρ is differentiable at v ∈ Uν ,
then ρ is also differentiable at −v.

1. Introduction

Let N be a closed submanifold of a complete Riemannian manifold M and
π : Uν �→ N the unit normal bundle of N in M . For v ∈ TpM , p ∈ M , throughout
this paper, let γv(t) denote always the geodesic curve such that γv(0) = p and
γ′

v(0) = v. Define a function ρ : Uν �→ R by

ρ(v) := sup{t > 0 | d(N, γv(t)) = t} for v ∈ Uν ,

where d(N, γv(t)) denotes the distance between N and γv(t). For each positive
integer k ∈ N, define a function λk : Uν �→ R by

λk(v) := sup{t > 0 | γv|[0,t] has no k-th focal point of N}
for v ∈ Uν [2]. The followings are well known: ρ is continuous [10] and λ1 is smooth
where λ1 is finite [2]. Itoh and Tanaka [2] proved that the function ρ on Uν is locally
Lipschitz, where ρ is finite. So, by Rademacher’s theorem ([1], [6]), the function
min(ρ, r) is differentiable almost everywhere for each r > 0. Generally, it is well
known that ρ is differentiable at v ∈ Uν if γv(ρ(v)) is a normal cut point, i.e., there
exist exactly two N -segments through γv(ρ(v)) such that γv(ρ(v)) is not a focal
point along all of these two N -segments. Furthermore, in the case dim M = 2,
Tanaka [8] proved that a point v ∈ Uν with ρ(v) < ∞ is a differentiable point of
the function ρ if and only if γv(ρ(v)) is a 1-st focal point of N along γv or there exist
at most two N -segments through γv(ρ(v)). Here, a curve γ : [0, r] �→ M is called
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an N -segment if γ is a geodesic curve such that γ′(0) ∈ Uν and d(N, γ(t)) = t for
t ∈ [0, r]. This fact is obviously very nice but didn’t have any information about
the n-dimensional manifold M with n � 3. So, we plan to consider the manifold
M such that it has some good conditions. Then we have

Main Theorem. Let M be a simply connected complete Kähler manifold and
N a closed complete totally geodesic complex submanifold of M such that every
minimal geodesic in N is minimal in M . Let Uν be the unit normal bundle of N
in M . If ρ is differentiable at v ∈ Uν , then ρ is also differentiable at −v.

2. Proof of the Main Theorem

Now, we need the following theorem

Ambrose Theorem. Let M and M̃ be m-dimensional complete Riemannian
manifolds and I : TpM �→ Tp̃M̃ a linear isometry. Suppose that M is simply
connected and for any once broken geodesic γ : [0, l] �→ M in M

It

(
R(u, v)w

)
= R̃

(
It(u), It(v)

)
It(w)

for any u, v, w ∈ Tγ(t)M , 0 � t � l, where R and R̃ denote the curvature tensors
of M and M̃ , respectively. For any minimal geodesic γ : [0, l] �→ M with γ(0) =
p, define a geodesic γ̃ by γ̃(t) := γI(γ′(0))(t) and define a map Φ : M �→ M̃ by
Φ(γ(t)) := γ̃(t). Then Φ is well defined and a C∞ Riemannian covering. In
particular, if M̃ is also simply connected, then M and M̃ are isometric [7].

In our case, since M is complete Kähler, let g and I denote the corresponding
Kähler metric and the corresponding complex structure, respectively. Let ∇ and R
be the Levi–Civita connection and the curvature tensor of the metric g, respectively.
For each p ∈ M , we know that I|TpM : TpM �→ TpM is a linear isometry, where
I|TpM means the restriction of the complex structure I to the tangent space TpM .
We see ∇I = 0. Furthermore [5], R(I, I) = R( , ) and I ◦ R = R ◦ I. For any
minimal geodesic γ : [0, l] �→ M with γ(0) = p, define a map Φp : M �→ M by

Φp(γ(t)) := γI(γ′(0))(t) for t ∈ [0, l].

Then, by Ambrose Theorem, Φp is an isometry for each p ∈ M .

Proposition 1. Φp(N) = N for each p ∈ N .

Proof. Firstly, we claim Φp(N) ⊃ N . For any q ∈ N , there exists a minimal
geodesic curve γ : [0, 1] �→ N such that γ(0) = p and γ(1) = q. By the hypothesis,
γ is also a minimal geodesic curve in M . Since Φp is isometric and N is complex,
Φk

p ◦ γ is minimal in N for each k ∈ {1, 2, 3, 4}. Hence,

q = (Φ4
p ◦ γ)(1) = Φp

(
Φ3

p(γ(1))
) ∈ Φp(N).

Secondly, we claim Φp(N) ⊂ N . For any q ∈ Φp(N), by definition, there exists
a point q̃ ∈ N such that Φp(q̃) = q. Choose a minimal geodesic curve γ : [0, 1] �→ N
such that γ(0) = p and γ(1) = q̃. Then, γ is also minimal in M . As the above,
Φp ◦ γ is minimal in N . Thus, (Φp ◦ γ)(1) = q ∈ N. This completes the proof. �
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Proof of the Main Theorem. Since (M, I) is a complex manifold, there
exists an atlas {(zα, Uα) | α ∈ A} of M , being a subfamily of the maximal atlas of
M , such that

(i) {Uα | α ∈ A} is a locally finite open covering of M ,
(ii) there exists a partition of unity {ϕα : M �→ R | α ∈ A} such that suppϕα ⊂

Uα for all α ∈ A.
Let π : TM �→ M be the natural projection map, given by π(p, v) = p for

(p, v) ∈ TM . Conveniently, identify the tangent space TM with the holomorphic
tangent space T ′M [5]. Given a chart zα : Uα �→ C

m, α ∈ A, we can naturally have
the corresponding chart dzα : T ′Uα �→ C

m × C
m by

dzα(v) = (z1
α, z2

α, . . . , zm
α ; ξ1

α, ξ2
α, . . . , ξm

α ), where v =
m∑

k=1

ξk
α

∂
∂zk

α
∈ T ′

pUα with p ∈ Uα.

For v′, w′ ∈ T ′
v(TM) with v ∈ TUα(≡ T ′Uα) and α ∈ A let their coordinate

representations be (v′
α1, . . . , v

′
αm; ηα1, . . . , ηαm) and (w′

α1, . . . , w
′
αm; η′

α1, · · · , η′
αm).

Then we put
h(v′, w′) :=

∑
α∈A

v∈TUα

i∈{1,...,m}

ϕα(p)
(
v′

αiw
′
αi + ηαiη′

αi

)
,

where p = π(v). This defines a Hermitian metric on the complex manifold TM . Let
G be the Riemannian metric on TM which is naturally induced from the Hermitian
metric h.

Assume that ρ is differentiable at v ∈ Uν ∩TpM . By definition, the differential
dΦp of the map Φp has the following properties

(dΦp)p(v) = Iv and (dΦp)p(Iv) = I(Iv) = −v.

We know that ρ is differentiable at v ∈ Uν if and only if for any unit speed smooth
curve c : (−ε, ε) �→ Uν with c(0) = v and ε > 0 the following limit exists:

lim
t→0

ρ(c(t)) − ρ(c(0))
t

.

Take any unit speed smooth curve c̃ : (−ε, ε) �→ Uν with c̃(0) = Iv and suffi-
ciently small ε > 0. Let pt := π(−Ic̃(t)) for each t ∈ (−ε, ε). By Proposition 1,

d(N, γc̃(t)(s)) = d(Φpt
(N),Φpt

(γ−Ic̃(t)(s))) = d(N, γ−Ic̃(t)(s))

for all s ∈ [0, lt] with lt := sup{r > 0 | γ−Ic̃(t)|[0,r] is minimal} so that

ρ(c̃(t)) = sup{s > 0 | d(N, γ−Ic̃(t)(s)) = s} = ρ(−Ic̃(t))

for t ∈ (−ε, ε). Note that −Ic̃(t) is a unit speed smooth curve in Uν with the
property −Ic̃(0) = v. Thus, by the hypothesis, the following limit

lim
t→0

ρ(c̃(t)) − ρ(c̃(0))
t

= lim
t→0

ρ(−Ic̃(t)) − ρ(−Ic̃(0))
t

exists. Hence, ρ is differentiable at Iv. Furthermore, from this result, ρ is also
differentiable at I(Iv) = −v. Therefore, we complete the proof. �
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Remarks. 1. In particular, if ρ is differentiable at v ∈ Uν , then ρ is also
differentiable at w ∈ {v, Iv, I2v = −v, I3v = −Iv}.

2. Let 〈Φp〉 be the group generated by the element Φp. Then 〈Φp〉 is a cyclic
group of order 4. Let G :=

⋃
p∈M 〈Φp〉. Then G ⊂ iso(M), where iso(M) denotes

the group of all isometries of M
3. For each p ∈ M , let N = {p} as a 0-dimensional complex submanifold of M .

Then Uν = UpM , where UpM denotes the unit tangent vector space of M at p. If
ρ is differentiable at v ∈ Uν , then ρ is also differentiable at w ∈ {v, Iv,−v,−Iv}.

4. Consider the complex projective space P
n with the Fubini–Study metric [3].

Let P
k := {(z0 : · · · : zk : 0 : · · · : 0) | zi ∈ C, 0 � i � k} ⊂ P

n for k = 1, . . . , n − 1.
Then P

n is a simply connected complete Kähler amnifold and P
k is a closed complete

totally geodesic complex submanifold of P
n such that every minimal geodesic in P

k

is minimal in P
n [4]. Let Uν be the unit normal bundle of P

k in P
n. If ρ is

differentiable at v ∈ Uν , then ρ is also differentiable at w ∈ {v, Iv,−v,−Iv}.
5. Let (M, g) be a simply connected complete Riemannian manifold with a

hyperkähler structure (g, I, J,K) and N a closed complete totally geodesic tri-
analytic submanifold of M such that every minimal geodesic in N is minimal
in M ([3], [9]). If ρ is differentiable at v ∈ Uν , then ρ is also differentiable at
w ∈ {Riv | i ∈ {1, 2, 3, 4}, R ∈ S2}, where S2 := {aI + bJ + cK | a2 + b2 + c2 = 1}.

Now, we consider

Question 1. Let M be a simply connected complete Kähler manifold and N
a closed complete totally geodesic complex submanifold of M . Then, is it true that
every minimal geodesic in N is also minimal in M?

The author believes that it may be true, but can not prove it.

Question 2. Let (M, g, I) be a 2-dimensional simply connected complete
Kähler manifold and N a 1-dimensional closed complex submanifold of M . Let
Uν be the unit normal bundle of N in M . Then, at which v ∈ Uν is ρ : Uν �→ R

differentiable?

Note that if v ∈ TpN with g(v, v) = 1 and u ∈ TpM ∩ Uν for p ∈ N , then we
easily get

TpM = R〈v, Iv, u, Iu〉 and TpM ∩ Uν = {au + bIu | a2 + b2 = 1}.
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