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ON THE DIFFERENTIABILITY
OF A DISTANCE FUNCTION
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ABSTRACT. Let M be a simply connected complete Kéhler manifold and N
a closed complete totally geodesic complex submanifold of M such that every
minimal geodesic in N is minimal in M. Let U, be the unit normal bundle
of N in M. We prove that if a distance function p is differentiable at v € U,,
then p is also differentiable at —wv.

1. Introduction

Let N be a closed submanifold of a complete Riemannian manifold M and
7 : U, — N the unit normal bundle of N in M. For v € T, M, p € M, throughout
this paper, let v,(t) denote always the geodesic curve such that +,(0) = p and
v, (0) = v. Define a function p : U, — R by

p(v) :=sup{t > 0| d(N,v,(¢)) =t} forvelU,,

where d(N,~,(t)) denotes the distance between N and ~,(t). For each positive
integer k € N, define a function Ag : U, — R by

Ak (v) :=sup{t > 0 | 7y|[o,4 has no k-th focal point of N}

for v € U, [2]. The followings are well known: p is continuous [10] and A; is smooth
where Ay is finite [2]. Itoh and Tanaka [2] proved that the function p on U, is locally
Lipschitz, where p is finite. So, by Rademacher’s theorem ([1], [6]), the function
min(p,r) is differentiable almost everywhere for each r > 0. Generally, it is well
known that p is differentiable at v € U, if v, (p(v)) is a normal cut point, i.e., there
exist exactly two N-segments through v, (p(v)) such that v,(p(v)) is not a focal
point along all of these two N-segments. Furthermore, in the case dim M = 2,
Tanaka [8] proved that a point v € U, with p(v) < oo is a differentiable point of
the function p if and only if , (p(v)) is a 1-st focal point of N along =, or there exist
at most two N-segments through v, (p(v)). Here, a curve v : [0,7] — M is called
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an N-segment if v is a geodesic curve such that v'(0) € U, and d(N,~(t)) =t for
t € [0,r]. This fact is obviously very nice but didn’t have any information about
the n-dimensional manifold M with n > 3. So, we plan to consider the manifold
M such that it has some good conditions. Then we have

MAIN THEOREM. Let M be a simply connected complete Kahler manifold and
N a closed complete totally geodesic complex submanifold of M such that every
minimal geodesic in N is minimal in M. Let U, be the unit normal bundle of N
in M. If p is differentiable at v € U,, then p is also differentiable at —v.

2. Proof of the Main Theorem
Now, we need the following theorem

AMBROSE THEOREM. Let ]\iand M be m-dimensional complete Riemannian
manifolds and I : T,M — T5M a linear isometry. Suppose that M is simply
connected and for any once broken geodesic v : [0,1] — M in M

L (R(u, v)w) = R(I;(u), I;(v)) I;(w)

for any u,v,w € T, ,yM, 0 <t < I, where R and R denote the curvature tensors

of M and M, respectively. For any minimal geodesic 7 : [0,]] — M with v(0) =
p, define a geodesic 7 by Y(t) := Yi(y(0))(t) and define a map ® : M — M by
D(v(t)) :== (t). Then & is well defined and a C*° Riemannian covering. In

particular, if M is also simply connected, then M and M are isometric [7].

In our case, since M is complete Kahler, let g and I denote the corresponding
Kahler metric and the corresponding complex structure, respectively. Let V and R
be the Levi—Civita connection and the curvature tensor of the metric g, respectively.
For each p € M, we know that 1 |T,, M TpyM — T,M is a linear isometry, where
I|7,nr means the restriction of the complex structure I to the tangent space T, M.
We see VI = 0. Furthermore [5], R(I,I) = R(, ) and I o R = Ro I. For any
minimal geodesic v : [0,{] — M with v(0) = p, define a map &, : M — M by

D, ((t)) := V(0 ()  for t €[0,1].
Then, by Ambrose Theorem, ®,, is an isometry for each p € M.

PROPOSITION 1. ®,(N) =N for eachp € N.

PRrROOF. Firstly, we claim ®,(N) D N. For any ¢ € N, there exists a minimal
geodesic curve 7 : [0,1] — N such that v(0) = p and (1) = ¢. By the hypothesis,
«y is also a minimal geodesic curve in M. Since ®, is isometric and N is complex,
®F o0 is minimal in N for each k € {1,2,3,4}. Hence,

¢ = (25 07)(1) = 0, (25(7(1))) € Dp(N).
Secondly, we claim ®,(N) C N. For any g € ®,(N), by definition, there exists
a point ¢ € N such that ®,(g) = g. Choose a minimal geodesic curve v : [0,1] — N
such that v(0) = p and (1) = ¢. Then, ~ is also minimal in M. As the above,
®,, 0 is minimal in N. Thus, (®, 0 ¥)(1) = ¢ € N. This completes the proof. [
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PROOF OF THE MAIN THEOREM. Since (M,I) is a complex manifold, there
exists an atlas {(zq, Uy ) | @ € A} of M, being a subfamily of the maximal atlas of
M, such that

(i) {Uqy | @ € A} is a locally finite open covering of M,

(ii) there exists a partition of unity {4 : M — R | @ € A} such that supp ¢, C
U, for all o € A.

Let # : TM +— M be the natural projection map, given by = (p,v) = p for
(p,v) € TM. Conveniently, identify the tangent space TM with the holomorphic
tangent space T'M [5]. Given a chart z, : U, — C™, @ € A, we can naturally have
the corresponding chart dz, : T'U, — C™ x C™ by

m
dzo(v) = (21,22, ..., 2™ €L €2, ... €™), where v = Z{ﬁ% € T,U, with p € U,.
k=1 o
For v',w' € T)(TM) with v € TU,(= T'U,) and o € A let their coordinate
representations be (v, ..., 00,0ty -y Dam) and (whq, ... wh, inhi,  nhm)-
Then we put
h(v',w') = Z 0o (D) (Vaiwh; + Naih; )
a€cA
veTU,
i€{l,....m}

where p = m(v). This defines a Hermitian metric on the complex manifold TM. Let
G be the Riemannian metric on T'M which is naturally induced from the Hermitian
metric h.
Assume that p is differentiable at v € U, NT,M. By definition, the differential
d®, of the map ®, has the following properties
(d®,)p(v) =Tv and (d®,),(Iv) = I(Iv) = —v.

We know that p is differentiable at v € U, if and only if for any unit speed smooth
curve ¢ : (—¢,€) — U, with ¢(0) = v and € > 0 the following limit exists:

L plelt) — ple(0))
t—0 t
Take any unit speed smooth curve ¢ : (—¢,€) — U, with ¢(0) = Iv and suffi-
ciently small € > 0. Let p; := w(—1I¢(t)) for each t € (—¢,€). By Proposition 1,
d(N,vz(t) (5)) = d(Pp, (N), Pp, (Y-12(1) (5))) = AN, Y—15(1) ()

for all s € [0, 1;] with I; := sup{r > 0 [ Y_r&#)[0,r) is minimal} so that

p(@(t)) = sup{s > 0| d(N. 1 reqr (5)) = s} = p(~T&(¢))

for t € (—e,¢e). Note that —I¢(t) is a unit speed smooth curve in U, with the
property —I¢(0) = v. Thus, by the hypothesis, the following limit

Lo PED) = pE(0) | p(=TE(1) = p(~TE(0))

t—0 t t—0 t

exists. Hence, p is differentiable at Iv. Furthermore, from this result, p is also
differentiable at I(Iv) = —v. Therefore, we complete the proof. O
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REMARKS. 1. In particular, if p is differentiable at v € U,, then p is also
differentiable at w € {v, Iv, [?v = —v, [3v = —Iv}.

2. Let (®,) be the group generated by the element ®,. Then (®,) is a cyclic
group of order 4. Let G := [,/ (®p). Then G C iso(M), where iso(M) denotes
the group of all isometries of M

3. For each p € M, let N = {p} as a O-dimensional complex submanifold of M.
Then U, = U,M, where U,M denotes the unit tangent vector space of M at p. If
p is differentiable at v € U, then p is also differentiable at w € {v, Iv, —v, —Iv}.

4. Consider the complex projective space P with the Fubini-Study metric [3].
Let P :={(29:-:2,:0:---:0) | 2, €C,0<i<k}CPfork=1,...,n— 1.
Then P is a simply connected complete Kihler amnifold and P* is a closed complete
totally geodesic complex submanifold of P" such that every minimal geodesic in P*
is minimal in P" [4]. Let U, be the unit normal bundle of P¥ in P". If p is
differentiable at v € U, then p is also differentiable at w € {v, v, —v, —Iv}.

5. Let (M,g) be a simply connected complete Riemannian manifold with a
hyperkahler structure (g,I,J, K) and N a closed complete totally geodesic tri-
analytic submanifold of M such that every minimal geodesic in N is minimal
in M (3], [9]). If p is differentiable at v € U,, then p is also differentiable at
we {Rw|ie{1,2,3,4}, R e S?}, where S? := {al +bJ +cK | a®? +b* +c? = 1}.

Now, we consider

QUESTION 1. Let M be a simply connected complete Kdhler manifold and N
a closed complete totally geodesic complex submanifold of M. Then, is it true that
every minimal geodesic in N is also minimal in M?

The author believes that it may be true, but can not prove it.

QUESTION 2. Let (M,g,I) be a 2-dimensional simply connected complete
Kaéahler manifold and N a 1-dimensional closed complex submanifold of M. Let
U, be the unit normal bundle of N in M. Then, at which v € U, is p : U, — R
differentiable?

Note that if v € T, N with g(v,v) =1 and u € T,M N U, for p € N, then we
easily get

T,M =R{v, Iv,u,Iu) and T,MNU, = {au+blu|a®+b*=1}.
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