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Abstract. Let ∆(T ) and E(T ) be the error terms in the classical Dirichlet
divisor problem and in the asymptotic formula for the mean square of the
Riemann zeta function in the critical strip, respectively. We show that ∆(T )
and E(T ) are asymptotic integral transforms of each other. We then use this
integral representation of ∆(T ) to give a new proof of a result of M. Jutila.

1. Introduction and statement of results

Let ζ(s) be the Riemann zeta function, and let d(n) denote the number of
positive divisors of n. The error terms ∆(T ) and E(T ) in the classical Dirichlet
divisor problem and in the asymptotic formula for the mean square of ζ(s) on the
critical line Re s = 1/2 are defined by

∆(T ) =
∑
k<T

d(k) +
1
2
d(T ) − T log T − (2γ − 1)T − 1

4

with the convention that d(T ) = 0 if T is not an integer and

E(T ) =
∫ T

0

|ζ(1/2 + it)|2 dt − T log
T

2π
− (2γ − 1)T,

respectively. The properties of ∆(T ) and E(T ) have been the subject of numerous
papers. (For example, [2], [3], [4], [5], [7], [8], [9], [10], [13], [14], [16], [17], [18]
and [19]. For a general overview of the subject see the book [6] or the survey article
[15].)

Two of the most frequently used tools in the study of ∆(T ) and E(T ) are the
following two remarkable formulas due to Voronoi [20] and Atkinson [1], respec-
tively.
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Lemma 1.1 (Voronoi). We have

∆(T ) =
T 1/4

π
√

2

∑
k�K

d(k)
k3/4

cos{4π(kT )1/2 − π/4} + O
(T 1/2+ε

K1/2

)
+ O(T ε)

for any K > 0.

Lemma 1.2 (Atkinson). Let 0 < A < A′ be constants, and suppose that AT �
K � A′T . Put

(1.1) K ′ = K ′(T ) =
T

2π
+

K

2
−
√

KT

2π
+

K2

4
.

Then E(T ) = Σ1 + Σ2 + O((log T )2), where

Σ1 =
1√
2

∑
k�K

(−1)kd(k)
(kT

2π
+

k2

4

)−1/4{
sinh−1

(πk

2T

)1/2}−1

cos 2πθk(T/(2π))

with

θk(T ) = 2T sinh−1

√
k

2
√

T
+

√
kT +

k2

4
− 1

8
,

and

Σ2 = 2
∑

k�K′

d(k)√
k

(
log

T

2πk

)−1

sin ρk(T ) with ρk(T ) = T log
T

2πk
− T − π

4
.

We note that the contribution to E(T ) is mainly from the first sum Σ1. For in-
stance, on the Lindelöf Hypothesis, the second sum Σ2 can be shown to be bounded
by T ε. In applications we can usually employ averaging techniques to show that
the contribution from Σ2 is less significant than that from Σ1. Thus, to study the
properties of E(T ), one would generally focus on Σ1.

Using the Taylor expansions

2πθk(T/(2π)) = 4π
(kT

2π

)1/2

− π

4
+ O(k3/2T−1/2)

1√
2

(kT

2π
+

k2

4

)−1/4
{

sinh−1
(πk

2T

)1/2
}−1

=
√

2
( T

2π

)1/4

k−3/4 + O(T−3/4k1/4)

it can be seen that, aside from the alternating factor (−1)k, the first o(T 1/3) terms
in Σ1 are asymptotically equal to the corresponding terms in Voronoi’s formula for
2π∆(T/(2π)). This analogy between ∆(T ) and E(T ) motivates the work of Jutila
[8], [9] and [13]. Jutila introduced a new function

∆∗(T ) = −∆(T ) + 2∆(2T ) − 1
2
∆(4T ).

This function can be interpreted as the error term in the approximation of the sum-
matory function of a certain arithmetic function, and there is a formula analogous
to Voronoi’s formula for ∆∗(T ), namely,

∆∗(T ) =
T 1/4

π
√

2

∑
k�K

(−1)k d(k)
k3/4

cos
(
4π

√
kT − π/4

)
+ O(T 1/2+εK−1/2 + T ε).
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Since this formula also contains the alternating factor (−1)k, the magnitude of the
function ∆∗(T ) is more comparable to that of E(T ) than that of ∆(T ). In fact,
Jutila [9] showed that∫ T+H

T

(
E(u) − 2π∆∗(u/(2π))

)2
du � HT 1/3+ε + T 1+ε

for 2 � H � T , while the corresponding integrals for E(T )2 and ∆(u)2 (and hence
∆∗(u)2) are known to be bounded by HT 1/2+ε+T 1+ε. Using this similarity between
2π∆∗(T/(2π)) and E(T ), Jutila [8] further proved that the truth of the conjecture
∆(T ) � T 1/4+ε implies the bound E(T ) � T 5/16+ε, and later [13] improved this
conditional bound to T 3/10+ε.

The main purpose of the present paper is to provide a different perspective on
the connection between ∆(T ) and E(T ). We will show that these two functions are
in fact asymptotic integral transforms of each other.

Theorem 1.1. Define two functions f(u) and g(u) by

f(u) = fT (u) =
log(u/T )√
T (u/T − 1)

exp
{
−2πi

(
u log

u

T
− u + T − 1

8

)}

g(u) = gT (u) =
T/u − 1√
u log(T/u)

exp
{

2πi
(
T log

T

u
− T + u − 1

8

)}
.

Let ε > 0, 0 < A < 1 and B > 0 be constants, and put B′ = 1+
√

B + B2/4+B/2.
For T −AT � u � T +AT let E1(2πu) denote the main sum in Atkinson’s formula

E1(2πu) =
∑

k�BT

d(k) cos {2πθk(u)}
ak(u)

,

where

θk(u) = 2u sinh−1

√
k

2
√

u
+

√
ku +

k2

4
− k

2
− 1

8
,

ak(u) = (4ku + k2)1/4 sinh−1

√
k

2
√

u
.

Set T1 = T − AT , T2 = T + AT , T3 = T/B′, T4 = B′T . Then we have

∆(T ) =
1
2π

∫ T2

T1

E1(2πu)f(u) du + O(T ε),

E1(2πT ) = 2π

∫ T4

T3

∆(u)g(u) du + O(T ε),

where the O-constants depend only on ε, A and B.

The underlying idea of our approach evolves from the fact that the function
χ(1 − s) is in fact the Mellin transform of 2 cos(2πx), where

χ(s) =
(2π)s

2Γ(s) cos(πs/2)

(
= 2sπs−1 sin

πs

2
Γ(1 − s)

)
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is the function in the functional equation ζ(s) = χ(s)ζ(1 − s) for ζ(s). Thus, by
the Mellin inversion formula, we have

1
2πi

∫ σ+i∞

σ−i∞
χ(1 − s)x−s ds = 2 cos(2πx)

whenever the integral converges absolutely. Moreover, for the truncated integral

1
2πi

∫ σ+2πiT

σ

χ(1 − s)x−s ds =
∫ T

0

χ(1 − σ − 2πit)x−σ−2πit dt,

using the asymptotic expansion

χ(1 − σ − 2πit) = tσ−1/2 exp{2πi(t log t − t − 1/8)} (1 + O
(
(1 + |t|)−1

))
and the stationary phase method (see Lemma 2.1 below), we see that∫ T

0

χ(1 − σ − 2πit)x−σ−2πit dt = exp{−2πix} ×
{

1 + Aσ,T (x), if x � T,

Aσ,T (x), if x > T,

where Aσ,T (x) is differentiable for x �= T and satisfies

lim
x→T−

Aσ,T (x) = −1
2

+ Oσ

(
1
/√

T
)
,

lim
x→T+

Aσ,T (x) =
1
2

+ Oσ

(
1
/√

T
)
,

Aσ,T (x) �σ

(
T

x

)σ

min
(

1,
1√

T | log(T/x)|

)
.

In particular, if we write ζ(s)2 as

ζ(s)2 =
∑

k�2T

d(k)k−s + B(s, T ),

then we have∫ T

0

|ζ(1/2 + 2πit)|2 dt =
∫ T

0

ζ(1/2 + 2πit)2χ(1/2 − 2πit) dt

=
∑
k�T

d(k) +
∑

k�2T

d(k)A1/2,T (k) + C1(T ),

where C1(T ) may be thought of as a secondary error term. Thus, integrating by
parts on the second sum yields∫ T

0

|ζ(1/2 + 2πit)|2 dt = T (log T + 2γ − 1) +
∫ T−

0

∆(u)A′
1/2,T (u) du

+
∫ 2T

T+

∆(u)A′
1/2,T (u) du + C2(T ).

This shows that E(2πT ) is representable asymptotically as an integral transform
of ∆(u). Conversely, we can express ∆(T ) asymptotically in terms of the “inverse”
integral transform of E(2πu), and hence to study the properties of ∆(T ) we may
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employ this integral representation of ∆(T ), instead of the usual Voronoi’s formula.
As an illustration we will give a new proof of a result of Jutila [10].

Theorem 1.2 (Jutila). Suppose that HU � T 1+ε and U �
√

T/2. We have∫ T+H

T

(∆(u + U) − ∆(u))2 du � HU log3

√
T

U
.

The problem of estimating integrals of (∆(u + U) − ∆(u))2 over an interval is
closely related to that of sign changes of ∆(u) (see [4]).

There are other possible applications of our main result. For instance, we may
use our integral representation of ∆(T ) to show that

∫ T+H

T
∆(u)4 du � T ε(HT +

H1/5T 8/5) holds for all H � T . However, this result is inferior to that obtainable
by the method of Ivić [5]. It seems to us that in order to achieve a stronger result,
properties that are specifically related to d(n), or equivalently, to the Riemann zeta
function, must be utilized. Another natural question to ask is whether our result
will yield a good bound for |E(2πT )− 2π∆(T )|, or a result that connects a bound
for ∆(T ) with that for E(T ). We are unable to give an affirmative answer at present
either.

As usual, the notations f(x) � g(x) and f(x) = O(g(x)) mean that there is a
positive constant c such that |f(x)| � c|g(x)| for x in the range under consideration.
When limx→a f(x)/g(x) = 0, we use the notation f(x) = o(g(x)). The letter ε will
always denote a small, but fixed positive number, though the number may not be
the same at each occurrence. For example, we may write T ε log T � T ε.

Acknowledgments. The author wishes to thank Prof. A. Hildebrand of the
University of Illinois and Prof. K.-M. Tsang of the University of Hong Kong for
providing valuable comments and suggestions. The author would also like to thank
Professor A. Ivić for his interest in the work.

2. Proof of Theorem 1.1

We first quote an analytic lemma regarding exponential integrals. The first
part of the lemma is due to Atkinson, and the second part is due to Jutila [12].

Lemma 2.1. Let µ(x) be a positive differentiable function in the interval [a, b].
Suppose that f(z) and g(z) are functions satisfying the following conditions:

(1) the function f(x) is real and f ′′(x) > 0 for x ∈ [a, b];
(2) f(z) and g(z) are analytic for all z in the domain⋃

x∈[a,b]

{z : |z − x| � µ(x)} ;

(3) there exist positive functions F (x) and G(x) such that for x ∈ [a, b] and
|z − x| � µ(x) we have

F (x) � 1, |g(z)| � G(x),

|f ′(z)| � F (x)µ(x)−1, f ′′(x) � F (x)µ(x)−2;
(4) µ′(x) � 1.
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Let HJ(x) denote the function HJ (x) = G(x)
(|f ′(x)| + |f ′′(x)|1/2

)−J−1
. Assume

that f ′(x) has a zero c in the interval [a, b]. We then have∫ b

a

g(x) exp{2πif(x)} dx =
eπi/4g(c)√|f ′′(c)| exp{2πif(c)}

+ O

(∫ b

a

G(x) exp{−CF (x)} dx

)
+ O

(
G(c)µ(c)F (c)−3/2

)
+ O(H0(a)) + O(H0(b)),

where C is a positive number determined by the O-constants in condition (3).
Furthermore, if U is a positive number and J is a positive integer such that

JU < (b − a)/2, a + JU < c < b − JU and U � µ(c)F (c)−1/2, we have

U−J

∫ U

0

du1 · · ·
∫ U

0

duJ

∫ b−u1−···−uJ

a+u1+···+uJ

g(x) exp{2πif(x)} dx

=
eπi/4g(c)√|f ′′(c)| exp{2πif(c)} + O

(∫ b

a

(
1 +

(µ(x)
U

)J)
G(x) exp{−CF (x)} dx

)

+ O
(
G(c)µ(c)F (c)−3/2

)
+ O(HJ (a)) + O(HJ (b)).

In the case when f ′(x) does not vanish in [a, b], the above estimates hold without
the terms involved with c. Moreover, if the condition f ′′(x) > 0 is replaced by
f ′′(x) < 0, then the factor eπi/4 in the main terms is replaced by e−πi/4.

The next lemma constitutes the essential part of the proof of Theorem 1.1.

Lemma 2.2. (i) Let A < 1 be a positive constant, and T and K be positive
numbers with K � AT . Let T1 denote T −√

KT , and T2 denote T +
√

KT . Set

θ(u) = θk(u) = 2u sinh−1

√
k

2
√

u
+
√

ku + k2/4 − k

2
− 1

8
,

f(u) = fT (u) =
log(u/T )√
T (u/T − 1)

exp
{
−2πi

(
u log

u

T
− u + T − 1

8

)}
,

and a(u) = ak(u) =
(
4ku + k2

)1/4 sinh−1

√
k

2
√

u
. Then we have, for 0 < k � K,

∫ T2

T1

cos{2πθ(u)}
a(u)

f(u) du =
√

2T 1/4

k3/4
cos
{

4π(kT )1/2 − π/4
}

+ O(δ(k, T )),

where

δ(k, T ) =
1

T 1/4k3/4

(
1 + min

(√
T ,

T

|√KT −√
kT |

))
.

If k > K, then the estimate holds without the leading term.
(ii) Conversely, let K be a positive number, and set

T3 = T −
√

KT + K2/4 + K/2, T4 = T +
√

KT + K2/4 + K/2,
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and

g(u) = gT (u) =
T/u − 1√
u log(T/u)

exp
{

2πi
(
T log

T

u
− T + u − 1

8

)}
.

Then we have, for k � K,

√
2
∫ T4

T3

u1/4

k3/4
cos
{

4π(ku)1/2 − π/4
}

g(u) du =
cos {2πθ(T )}

a(T )
+ O(η(k, T )),

where

η(k, T ) =
1

T 1/4k3/4

(
1 + min

(√
T ,

T

|T3 − T +
√

kT + k2/4 − k/2|

)

+ min
(√

T ,
T

|T4 − T −√kT + k2/4 − k/2|

))
.

When k > K, the estimate holds without the main term.

Proof. To prove the first part of the lemma, we first write the cosine function
as a sum of two exponentials, and then evaluate two branches separately. Let Ik

denote the integral

Ik =
1
2

∫ T2

T1

exp{2πiθ(u)}
a(u)

f(u) du,

and set h(u) = θ(u) − (u log(u/T ) − u + T − 1/8
)
. Let uk be the solution of the

equation h′(u) = 0. Since

(2.1) h′(u) = 2 sinh−1

√
k

2
√

u
− log

u

T
,

we have √
T

uk
=
√

1 +
k

4uk
−

√
k

2
√

uk

,

and thus

(2.2) uk = T +
√

kT .

Note that when k � K, the stationary point uk lies in the interval [T1, T2]. We now
apply the first part of Lemma 2.1 with

f(u) = h(u), g(u) =
log(u/T )

a(u)
√

T (u/T − 1)
,

µ(u) = T
(
1 −

√
A
)
/2, F (u) = T, G(u) = 1/T 1/4k3/4,

a = T1, b = T2, c = uk.

Since f ′′(u) is of constant sign and |f ′′(u)| � 1/T , we have

|f ′(b)| = |f ′(b) − f ′(c)| � |b − c|/T =
∣∣√KT −

√
kT
∣∣/T,

and the same lower bound holds for |f ′(a)|. Thus, Lemma 2.1 yields
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(2.3) Ik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−πi/4

2
√

T |h′′(uk)|
log(uk/T )
uk/T − 1

exp{2πih(uk)}
a(uk)

+ O(δ(k, T )),
if 0 < k � K,

O(δ(k, T )), if k > K,

since

(2.4) h′′(uk) =
2√

1 + k/(4uk)

(
−

√
k

4u
3/2
k

)
− 1

uk
< 0.

We now show that the main term in (2.3) is actually equal to

T 1/4

√
2k3/4

exp
{
4πi(kT )1/2 − πi/4

}
.

By (2.1) and the definition of uk, we have

(2.5) sinh−1

√
k

2
√

uk
= log

√
uk/T .

It follows that, by (2.2),

h(uk) =
√

kuk + k2/4 + (uk − T ) − k/2

=
√

kT + k3/2T 1/2 + k2/4 +
√

kT − k/2 = 2
√

kT .

Moreover, from (2.2) we have
uk

T
− 1 =

1
T

√
kT =

√
k/T ,

(
4kuk + k2

)1/4
=
(
4kT + 4k3/2T 1/2 + k2

)1/4 =
(
2
√

kT + k
)1/2

,

and hence, by (2.5), a(uk) = 1
2 log(uk/T )

(
2
√

kT + k
)1/2

. By (2.4), we have

h′′(uk) = − 1
uk

( √
k√

4uk + k
+ 1
)

= − 1
T +

√
kT

( √
k√

4T + 4(kT )1/2 + k
+ 1
)

= − 1
T +

√
kT

(
2
√

k + 2
√

T√
k + 2

√
T

)
= − 2√

kT + 2T
.

Inserting these expressions into (2.3), we obtain, for k � K,

Ik =

(√
kT + 2T

)1/2

23/2
√

T

√
T√
k

2(
2
√

kT + k
)1/2

exp
{
4πi(kT )1/2 − πi/4

}
+ O(δ(k, T ))

=
T 1/4

√
2k3/4

exp
{
4πi(kT )1/2 − πi/4

}
+ O(δ(k, T )).
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For the other integral

1
2

∫ T2

T1

exp{−2πiθ(u)}
a(u)

f(u) du,

we can show that the function −θ(u) − (u log(u/T ) − u + T − 1/8) has a root at
u = T −√

kT , and Lemma 2.1 yields

1
2

∫ T2

T1

exp{−2πiθ(u)}
a(u)

f(u) du =
T 1/4

√
2k3/4

exp{−4πi(kT )1/2 + πi/4} + O(δ(k, T ))

for 0 < k � K and ∫ T2

T1

exp{−2πiθ(u)}
a(u)

f(u) du � δ(k, T )

for k > K. The first part of the lemma follows by combining these estimates with
(2.3).

The proof of the second part is analogous, and the calculation is essentially the
same as that in the proof of Theorem 7.2 of [6] and that in the proof of Theorem 1
of [11]. For completeness we sketch the proof as follows. We consider the integral

Jk =
1√
2

∫ T2

T1

u1/4

k3/4
exp

{
4πi(ku)1/2 − πi/4

}
g(u) du.

Let h(u) denote h(u) = 2(ku)1/2 + T log(T/u) − T + u − 1/4. We have

h′(u) =
(ku)1/2

u
− T

u
+ 1

h′′(u) = −
√

k

2u3/2
+

T

u2
.(2.6)

Thus, if uk is the real root of the equation h′(u) = 0, then we have

(2.7)

√
k√
T

=
√

T

uk
−
√

uk

T
.

It follows that

(2.8) log
√

T

uk
= sinh−1

√
k

2
√

T
,

(2.9) uk = T −
√

kT + k2/4 +
k

2
,

and h′′(uk) > 0. By Lemma 2.1, if k � K, then we have

Jk =
1√
2uk

eπi/4√|h′′(uk)|
u

1/4
k

k3/4

T/uk − 1
log(T/uk)

exp{2πih(uk)} + O(η(k, T )).

In light of (2.7), (2.8) and (2.9) we see that

T/uk − 1

u
1/4
k k3/4 log(T/uk)

=
1

2u
3/4
k k1/4 sinh−1(

√
k/(2

√
T ))
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and

h(uk) = 2(kuk)1/2 +
(
T log(T/uk) − T + uk

)− 1/4

= (kuk)1/2 + 2T sinh−1

√
k

2
√

T

=
√

k
(−√

k
/
2 +

√
T + k/4

)
+ 2T sinh−1

√
k

2
√

T
− 1/4

= 2T sinh−1

√
k

2
√

T
+
√

kT + k2/4 − k

2
− 1/4 = θ(T ) − 1/8

Furthermore, by (2.6) and (2.7), we have

h′′(uk) = −
√

k

2u
3/2
k

+
T

u2
k

=
(
−1

2

√
k

T
+
√

T

uk

)
T 1/2

u
3/2
k

=
1
2

(√
T

uk
+
√

uk

T

)
T 1/2

u
3/2
k

=
T 1/2

u
3/2
k

√
1
4

(√
T

uk
−
√

uk

T

)2

+ 1

= u
−3/2
k

√
T + k/4.

Hence, for k � K, the integral Jk can be estimated as

Jk =
1√
2uk

eπi/4√|h′′(uk)|
u

1/4
k

k3/4

T/uk − 1
log(T/uk)

exp{2πih(uk)} + O(η(k, T ))

=
u

3/4
k√

2(T + k/4)1/4

exp{2πiθ(T )}
2u

3/4
k k1/4 sinh−1

(√
k
/(

2
√

T
)) + O(η(k, T ))

=
exp{2πiθ(T )}

2a(T )
+ O(η(k, T )).

For the case where k � K, the same lemma implies that Jk � η(k, T ). Similarly,
we can show that

1√
2

∫ T2

T1

u1/4

k3/4
exp
{−4πi(ku)1/2 + πi/4

}
g(u) du

=

⎧⎨
⎩

exp{−2πiθ(T )}
2a(T )

+ O(η(k, T )), if k � K,

O(η(k, T )), if k > K.

combining this with estimates for Jk the second part of the lemma follows, and the
proof of the lemma is complete. �

Proof of Theorem 1.1. The proof of Theorem 1.1 is a straightforward ap-
plication of Lemma 2.2. By Lemma 2.2, we have
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1
2π

∫ T2

T1

E1(2πu)f(u) du

=
T 1/4

π
√

2

∑
k�min(A2T,BT )

d(k)
k3/4

cos
{
4π(kT )1/2 − π/4

}
+ O

( ∑
k�BT

δ(k, T )
)

In light of Voronoi’s formula (Lemma 1.1) the main term in the last expression is
∆(T ) + O(T ε), while the O-term is bounded by

� 1
T 1/4

∑
k�BT

d(k)
k3/4

+
1

T 1/4

∑
k�A2T/2

d(k)
k3/4

+ T 1/4
∑

|k−A2T |�AT 1/2

d(k)
k3/4

+ T 3/4
∑

AT 1/2�|k−A2T |�A2T/2

d(k)
k3/4

∣∣√KT −√
kT
∣∣ + T 1/4

∑
k�3A2T/2

d(k)
k5/4

.

Using the bound d(k) � kε for any fixed ε > 0 we see that the last expression is
bounded by T ε, and thus

1
2π

∫ T2

T1

E1(2πu)f(u) du = ∆(T ) + O(T ε).

This proves the first part of the theorem.
The proof of the other part of the theorem is very similar, and the details are

omitted. However, we note that we need the following form of Voronoi’s formula

∆(T ) =
T 1/4

π
√

2

∑
k�K

d(k)
k3/4

cos
{
4π(kT )1/2 − π/4

}

− 3
32
√

2π2
T−1/4

∑
k�K

d(k)
k5/4

sin
{
4π(kT )1/2 − π/4

}
+ O(T−3/4)

in order to show that the error term is of order T ε. �

3. A new proof of Theorem 1.2

In this section we will give a new proof of Theorem 1.2 using the integral
representation of ∆(T ) obtained in the previous section. We shall provide details
only when our arguments differ from the usual methods, and sketch the proof when
the arguments are identical or similar to that in literature. We first prove a lemma
that generalizes the Halász–Montgomery inequality.

Lemma 3.1. Let the inner product of two complex-valued functions ξ(u) and
φ(u) be defined by (ξ, φ) =

∫
ξφ du, and let ‖ξ‖ denote ‖ξ‖ =

(∫ |ξ|2 du
)1/2

. Suppose
that ξλ(u) = ξ(u, λ) and φλ,r(u) = φr(u, λ), r = 1, 2, . . . , R, are integrable with
respect to λ for 0 � λ � L. We have∑

r�R

∣∣∣∣ 1L
∫ L

0

(ξλ, φλ,r) dλ

∣∣∣∣
2

� 1
L

∫ L

0

‖ξλ‖2 dλ × max
r�R

∑
s�R

∣∣∣∣ 1L
∫ L

0

(φλ,r, φλ,s) dλ

∣∣∣∣
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Proof. For any complex scalars cr we have∑
r�R

cr

L

∫ L

0

(ξλ, φλ,r) dλ =
1
L

∫ L

0

(
ξλ,
∑

crφλ,r

)
dλ

� 1
L

∫ L

0

‖ξλ‖
∥∥∥∑ crφλ,r

∥∥∥ dλ

�
(

1
L

∫ L

0

‖ξλ‖2dλ

)1/2( 1
L

∫ L

0

∥∥∥∑ crφλ,r

∥∥∥2

dλ

)1/2

Expanding ‖∑ crφλ,r‖2 and noting that |crcs| � (|cr|2 + |cs|2)/2 we obtain∫ L

0

∥∥∥∑ crφλ,r

∥∥∥2

dλ �
∑

r,s�R

|crcs|
∣∣∣∣
∫ L

0

(φλ,r, φλ,s) dλ

∣∣∣∣
� 1

2

∑
r,s�R

(|cr|2 + |cs|2
)∣∣∣∣
∫ L

0

(φλ,r, φλ,s) dλ

∣∣∣∣
� max

r

∑
s

∣∣∣∣
∫ L

0

(φλ,r, φλ,s) dλ

∣∣∣∣×∑
r�R

|cr|2.

Choosing

cr =
1
L

∫ L

0

(ξλ, φλ,r) dλ,

the claimed inequality follows immediately. �

Proof of Theorem 1.2. Let

S(u,K1,K2) = u1/4
∑

K1<k�K2

d(k)
k3/4

cos{4π(ku)1/2 − π/4}

denote the partial sum in Voronoi’s formula, and set

SU (u,K1,K2) = S(u + U,K1,K2) − S(u,K1,K2).

In view of Voronoi’s formula, to prove the theorem it suffices to consider the integral∫ T+H

T

SU (u, 0, T )2 du.

Assume that U �
√

T/2. Let m be the integer such that 2m < T 1/3U−2/3 � 2m+1,
and let M denote 2m. We have trivially

cos
{
4π
√

k(u + U) − π/4
}− cos

{
4π

√
ku − π/4

}�
√

kU√
T

,

and thus∫ T+H

T

SU (u, 0,M)2 du � H

(
T 1/4

∑
k�M

d(k)
k3/4

√
kU√
T

)2

� HU log2
(√

T/U
)
,

which is contained in the claimed bound.
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We next consider the case when M3 < k � T . Using standard arguments (see,
for example, [6, p.363]) we see that∫ T+H

T

SU (u,M3, T )2 du � HT 1/2
∑

k�M3

d(k)2

k3/2
+ T 1+ε � HU log3

√
T

U
+ T 1+ε.

Thus it remains to deal with the cases when M < k � M3. We write SU (u,M,M3)
as
∑

K SU (u,K, 2K), where K runs over integers of the form 2mM . When K1 �
K2/4, we have∫ T+H

T

SU (u,K1, 2K1)SU (u,K2, 2K2) du � T 1+εK
1/4
1 K

−1/4
2 .

When K1 = K2/2, we use the inequality 2|ab| � |a|2 + |b|2, and obtain∫ T+H

T

SU (u,M,M3)2 du �
∑
K

∫ T+H

T

SU (u,K, 2K)2 du + T 1+ε.

Thus, the proof of the result will be complete if we can show that

(3.1)
∫ T+H

T

SU (u,K, 2K)2 du � HU2
√

K√
T

log3 K

for K �
√

T
/
U .

Let Th ∈ [T + h, T + h + 1] denote a point with

|SU (Th,K, 2K)| = max
T+h�u�T+h+1

|SU (u,K, 2K)|.

We then have ∫ T+H

T

SU (u,K, 2K)2 du �
H∑

h=0

|SU (Th,K, 2K)|2.

For h � H we denote by T ′
h and T ′′

h the points Th − 4
√

KT and Th + 4
√

KT ,
respectively. Set L =

√
KT . Applying the second part of Lemma 2.1 and following

the calculation in Lemma 2.2 we obtain

SU (Th,K, 2K) =
1
L

∫ L

0

∫ T ′′
h −λ

T ′
h+λ

Σ(u,K) (f(u, Th + U) − f(u, Th)) du dλ

+ O

(
T 1/4

K9/4

∑
K<k�2K

d(k)
)

,

where

Σ(u,K) =
∑

K<k�2K

d(k) cos{2πθk(u)}√
2ak(u)

,

f(u, v) =
log(u/v)√
v(u/v − 1)

exp
{−2πi(u log(u/v) − u + v − 1/8)

}
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with

θk(u) = 2u sinh−1

√
k

2
√

u
+
√

ku + k2/4 − k

2
− 1

8
,

ak(u) = (4ku + k2)1/4 sinh−1

√
k

2
√

u
.

Setting fU (u, v) = f(u, v + U) − f(u, v), we obtain
H∑

h=0

SU (Th,K, 2K)2 �
H∑

h=0

∣∣∣∣ 1L
∫ L

0

∫ T ′′
h −λ

T ′
h+λ

Σ(u,K)fU (u, Th) du dλ

∣∣∣∣
2

+HT 1/2K−5/2 log2 K

Since K � T 1/3U−2/3, the term HT 1/2K−5/2 log2 K is bounded by HU log2
(√

T/U
)
.

We now apply Lemma 3.1 with

ξλ(u) = Σ(u,K),

φλ,h(u) =

{
fU (u, Th), when T ′

h + λ � u � T ′′
h − λ,

0, else,

and the inner product (ξ, φ) given by

(ξ, φ) =
∫ T+H+5L

T−5L

ξ(u)φ(u) du.

It follows from Lemma 3.1 that

(3.2)
H∑

h=0

S(Th,K, 2K)2 � 1
L

∫ L

0

‖ξλ‖2 dλ × max
r�R

∑
s�R

∣∣∣∣∣ 1L
∫ L

0

(φλ,r, φλ,s) dλ

∣∣∣∣∣
Using standard arguments ([6, p. 363]) again we see that

(3.3) ‖ξλ‖2 � HT 1/2K−1/2 log3 K + T 1+ε.

Moreover, we have

fU (u, Th) � U max
T ′

h�u�T ′′
h +L+U

∂

∂u
f(u, Th) � U

√
K

T

for all T1h � u � T ′′
h + L, and thus

1
L

∫ L

0

(φλ,h1 , φλ,h2) dλ �
√

TK

(
U
√

K

T

)2

=
U2K3/2

T 3/2

for all h1, h2 � H. On the other hand, integrating by parts, we see that the main
contribution to the integral L−1

∫ L

0
(φλ,h1 , φλ,h2) dλ can be written as a sum of

quantities of the form

c1

{
g(Th1 + U, Th2 + U, t + c2L) − g(Th1 , Th2 + U, t + c2L)

−g(Th1 + U, Th2 , t + c2L) + g(Th1 , Th2 , t + c2L)
}
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where t is

T ′′
h1,h2

= min(T ′′
h1

, T ′′
h2

) or T ′
h1,h2

= max(T ′
h1

, T ′
h2

),

c2 is 0 or 1 for t = T ′
h1,h2

, 0 or −1 for t = T ′′
h1,h2

, and c1 is 1 or −1, depending on t
and c2, and

g(u, v, t) = − log(t/u) log(t/v)
4π2

√
uv log2(u/v)(t/u − 1)(t/v − 1)

.

It follows that, for |h1 − h2| �
√

T/K,

1
L

∫ L

0

(φλ,h1 , φλ,h2) dλ � 1
LT log2(Th1/Th2)

(
U
√

K√
T

)2

� U2
√

K√
T |h1 − h2|2

,

and thus ∑
h2�H

1
L

∫ L

0

(φλ,h1 , φλ,h2) dλ � U2K

T

for all h1 � H. Inserting this estimate and (3.3) into (3.2), we hence obtain (3.1).
This completes the proof of Theorem 1.2. �
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