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ABSTRACT. We introduce distribution groups and [By, ..., Bn,Co,...,Cn_1]-
groups with not necessarily densely defined generators and systematically an-
alyze relations between them.

1. Introduction

Distribution semigroups and their generators were introduced by Lions in the
pioneering paper [31] and almost four decades after that, Kunstmann [28] and
Wang [42] analyzed distribution semigroups with non-densely defined generators.
Balabane and Emami-Rad [4]-[5] were the first who defined smooth distribution
groups and applied them in the analysis of Schrédinger evolution equations in
LP(R™)-type spaces. On the other hand, global integrated groups were introduced
and investigated by El-Mennaoui in his doctoral dissertation [13]. We refer the
reader to [3]-[6], [12]-[13], [16], [18]-[20], [26] and, especially, to the paper [33]
where Miana analyzed global a-times integrated groups and smooth distribution
groups in the framework of fractional calculus. It is also meaningful to accent that
Keyantuo [20] briefly considered an abstract Laplacian in LP(R"™)-type spaces and
proved several relations between exponentially bounded integrated cosine functions
and global integrated groups. For further information, see [20, Theorem 1.2, Propo-
sitions 2.1-2.2, Theorem 2.6 and Proposition 4.2]. The class of (local) convoluted
C-groups extending the well known classes of integrated groups and regularized
groups has been recently introduced in [26].

In a series of papers, many authors relate global integrated groups to functional
calculi and proved, in such a way, different generalizations of Stone’s theorem. For
various aspects in this direction, we refer to [6], [8]-[12], [I4] and [16]. Further
on, Galé and Miana [18] have recently introduced one-parameter groups of regular
quasimultipliers within Esterle’s theory of quasimultipliers [15] and applied them
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in the study of regularized, distribution, integrated groups as well as holomorphic
semigroups and functional calculi.

Operator-valued distribution groups considered in this article do not fall under
the scope of [18] Definition 3.4] since our concept does not contain any density
and growth assumptions. The assertions which link distribution groups of [18] to
global integrated groups with the corresponding growth order established in [18]
Propositions 3.7-3.8] with the help of the Riesz functions and the Weyl homomor-
phisms are no longer applicable and this is the main reason why we analyze local
integrated groups. Furthermore, we focus our attention to the following system of
convolution type equations (the notions and terminology are explained below):

(1.1)  Gx('@I-6@A)=0®Ipy and (' @I —-6® A)*G =0 I,

where A is a closed linear operator acting on a Banach space F, ' @ I —d® A €
D'(L([D(A)],E)), G € D'(L(E, [D(A)])) and I denotes the inclusion D(A) — E.
Contrary to the case of distribution semigroups and distribution cosine functions
(cf. [28] Theorem 3.10, pp. 844-845] and [23] Theorem 3.3]), the uniqueness of solu-
tions of is not satisfied. Here we stress that every operator-valued distribution
G satisfying, for every ¢ € D and z € E:

(1.2) G eD(L(E)), G(p)r € D(A), AG(p)x = G(—¢')z, G(p)A S AG(yp),

can be viewed as an element of the space D'(L(E,[D(A)])) which solves
(cf. also [33]). It turns out that the introduced class of [By, ..., By, Co,...,Cph_1]-
groups presents a natural framework for investigation of equations involving oper-
ators satisfying . Roughly speaking, such a concept enables one to consider in
a unified treatment the notions of integrated groups and regularized groups ([9]—
[12]) as well as to get through to the new important relations between distribution
groups and local integrated groups.

The paper is organized as follows. In Section 2, we characterize the basic
structural properties of (degenerate) distribution groups, connect local integrated
groups to analytic integrated semigroups, global differentiable regularized groups
and establish a complex variable characterization of generators of local integrated
groups. In this section, it is also proved that every generator of a local integrated
group is also the generator of a distribution group. The third section is devoted to
the study of (exponentially bounded) [By,..., By, Co,...,Cy_1]-groups and their
subgenerators. The composition property of a [Bq,...,Bn,Co,...,Cnh_1]-group
is proved only in the case when a subgenerator of such a group commutes with
By,...,By,,Cy,...,C,h_1. The loss of commutativity is disagreeable and addition-
ally hinders our work. Section 4 is the systematic exposition of distribution groups.
Our main results are Theorem and Theorem concerning these theorems, we
would like to point out that the order of the operator-valued distribution G solv-
ing plays a crucial role. In such a way, we notice the remarkable differences
between once integrated groups and n-times integrated groups, where n € N and
n > 1. Theorem describes solutions of which fulfill the condition (DG)4
stated below. The fundamental relationship between distribution groups and local
integrated groups is established in Theorem V) and says that the generator A of
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a distribution group is also the generator of a local integrated group, if p(4) # 0. In
the present situation, the author does not know whether there exists a distribution
group whose generator possesses the empty resolvent set.

The analysis of ultradistribution and (Fourier) hyperfunction groups [25] is
an open problem since the argumentation presented in this paper becomes quite
inoperative and cannot be employed anymore.

By E and L(E) are denoted a complex Banach space and the Banach algebra of
bounded linear operators on E. For a closed linear operator A on E, D(A), N(A),
R(A), p(A) denote its domain, kernel, range and resolvent set, respectively, while
[D(A)] stands for the Banach space D(A) equipped with the graph norm. Put
Doo(A) :=y_g D(A™) and ||z, := 31 [|A’z||, n € N, z € D(A"). Further, let
us recall that A is stationary dense [27] if

n(A) :=inf {k € Ng : D(A™) C D(A™+1) for all m > k} < oc.

If Y is a subspace of E, denote by Ay the part of Ain Y, ie., Ay = {(z,y) € A:
x €Y, y € Y}. We assume henceforth C' € L(E) and C is injective.

Schwartz spaces of test functions on the real line R are denoted by D = C§°,
£ = C* and S. Their strong duals are D', £’ and &', respectively. By Dy we denote
the subspace of D which consists of the elements supported by [0, 00). Further on,
D'(L(E)) = L(D,L(E)), &'(L(E)) = L(§,L(FE)) and S'(L(E)) = L(S,L(F)) are
the spaces of continuous linear functions D — L(E), £ — L(E) and § — L(E), re-
spectively, equipped with the topology of uniform convergence on bounded subsets
of D, € and S, respectively; D} (L(E)), E(L(E)) and S{(L(E)) are the subspaces of
D'(L(E)), &'(L(E)) and S’(L(FE)), respectively, containing the elements supported
by [0,00). Let p € D satisfy ffooo p(t)dt =1 and supp p C [0,1]. By a regularizing
sequence we mean a sequence (p,,) in Dy obtained by p,(t) := np(nt), t € R, n € N.
If K CR, put Dk := {¢ € D : suppy C K}. In this paper, the convolution of
operator-valued distributions is taken in the sense of |28 Proposition 1.1]. Suppose
t € R. A distribution ¢; is defined by d:(¢) := ¢(t), ¢ € D. Further, if ¢ € D and
G € D'(L(E)), we define ¢(-) := ¢(—) and G(-) := G(). Clearly, (p * V) = @ *1
and (") = (—1)" (ga(”))v7 v, €D, neN.

Let a > 0 and b > 0. The exponential region F(a,b) is defined in [1] by

E(a,b) :=={A€C|ReA>b, |Im\| <e*F}.

Finally, if f : R — C and t € R, put 71 f(s) := f(s—1t), s € R.

2. Structural properties of distribution groups

We need the following definition of a C-distribution semigroup.

DEFINITION 2.1. [22] Let G € D{(L(E)) and CG = GC. If

(C.D.S.1) Glpx)C =G(p)G(¢), ¢ ¥ €D,
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where ¢ xq ¢(t) = fot ot —u)p(u) du, t € R, then G is called a pre-(C-DSG) and if,
additionally,

(C.D.S.2) N(©G) = [ N(G(») = {0},

»€Do
then G is called a C-distribution semigroup, (C-DSG) in short.

Let G be a (C-DSG) and let T € &). Define G(T') on a subspace of E by
y=G(T)z it G(T x p)x = G(p)y for all p € Dy.

Denote its domain by D(G(T)). By (C.D.S.2), G(T) is a function. Moreover,
G(T) is a closed linear operator. If ¢ € D, put ¢ (t) := p(t)H(t) and p_(¢t) =
e(t)H(—t), t € R, where H(-) is the Heaviside function. Then ¢4, p_ € £ and the
definitions of G(¢4) and G(p_) are clear. We know that G(¢) = 0, ¢ € D(_ g
and that G(¢1)C = G(p), p € D [22].

The infinitesimal generator of a (C-DSG) G is defined by A := G(=¢').

Finally, if C = I, then we also say that G is a distribution semigroup, (DSG)
shortly; if this is the case, then there is no risk for confusion and we also write G
for G.

DEFINITION 2.2. An element G € D'(L(E)) is called a pre-distribution group,
pre-(DG) in short, if the following condition holds:

(DG Glp ) = G(p)G(y) forall p,¢ € D.
If G additionally satisfies:
(DG)2 N(@) = (1] N(G(p)) = {0},
pED
then G is called a distribution group, (DG) shortly. A pre-(DG) G is dense iff:
(DG)3 The set R(G) := U R(G(p)) is dense in E.
€D

Suppose G € D'(L(E)) satisfies (DG)2 and T' € £'. We define G(T') by
G(T) := {(z,y) € E* | G(T * p)x = G(y)y for all p € D}.

Due to (DG)s, G(T) is a function and it is straightforward to see that G(T) is a
closed linear operator in FE.

The generator A of a (DG) G is defined by A := G(—¢'). Notice, if G is a (DG)
generated by A, then holds.

Further on, an element G € D'(L(E)) is called regular (representable) if the
following holds:

(DG)4 For every « € R(G), there is a function ¢ — u(t; z), t € R satisfying:
u(;2) € C(R: E), u(0;z) =2z and G(¢)x = / () u(t;z)dt, ¢ €D.

It is checked at once that the function u(-; ) is unique.
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ExampPLE 2.1. (i) Suppose +A are generators of C-distribution semigroups
Gi. Put G(p) == G4 (p) + G_(¢), ¢ € D. Then A and G fulfill (1.2)). Indeed,
G € D'(L(E)), G(p)A C AG(p), ¢ € D, AG4(p)x = G1(—¢')x — p(0)Cx and
—AG_(p)r = G_(—¢")x — ¢(0)Cx, ¢ € D, z € E (cf. [22]). _So, AG(p)z =
G — p0)Cr + G (@ + HO)Cr = Gl 4 G (e = Gl
x € E, ¢ € D. Furthermore, it can be proved the followmg G(gp*w)c = G(e)G(v),

p,v €D (cf. [22], [26] and [33]), Q) N(G(p)) = {0} and QD N(G(¢)) = {0}

(ii) Suppose G is a (DG), P € L(E), P? = P and GP = PG. Set Gp(p)x :=
G(p)Pz, o € D,z € E. Then Gp is a pre-(DG) and N(Gp) = (P)
(iii) Suppose A and G fulfill (T.2)). Define Gr (T € &) by Gr(p)z :== G(T*p)z,
p €D,z e E. Then ) holds for A and Gr.
(iv) [9, Example 16.3] Let £ := {f : R — C is continuous | lim||_« e f(z) =
o}, |Ifll = supzeR\ez2f(x)|, f € E and A := “ with maximal domain. Put
(S(t)f)(m) =e” f”+t)2f(m+t) z€R,tER, f€E. ThenS(t)f € E, |St)|| < €2,
fo s)fds € D(A) andAfO s)fds=St)f —S00)f,teR, feE. Let fe E
and ¢ € D be fixed. Set G(p)f = [ @(t)S(t)fdt. Clearly, G € D'(L(E)) and
the partial integration shows G(p)f € D(A), AG(y)f = G(—¢') f and

(G(p)Af — AG(p) f)(z) =2 / o(t) (@ +)e T fz 4 1) dt, xeR.
Consequently, A does not commute with G(-) and (1.2)) does not hold. Furthermore,
it can be checked directly that G fulfills (DG)z and that G is not regular.

(v) Let F denote the Fourier transform on the real line,
FONO =5 [ e, ek
— 00
Suppose that £ is a quasi-spectral distribution in the sense of [12] Definition 2.2]

and that € can be continuously extended to S. Put F(D) := {F(¢) : ¢ € D}
and G(p) := E(F 1)), ¢ € S, where F~! denotes the inverse Fourier transform.

Then G € S'(L(E)), G(px¢) = G()G(¢), ¢, € § and (e (p) N ( ) = {0}.
Suppose, additionally, that for every z € E and ¢ € S with ¢(0) =

(2.1) lim E(pn)x = x, where ¢, (t) = ¢(t/n), teR, neN.

Notice that (2.1)) implies that £ is a spectral distribution in the sense of [12] Defi-
nition 2.4] (cf. also [6] Deﬁnition 1.1]). We will show that (,cp, N(G(¢)) = {0}

Indeed, suppose p € D, [*_p(t)dt =1, suppp C [O 1] and G(¢ )a: =0, p € Dy, i.e.,
E(F )z =0, ¢ € Dy. Let (b( ) = = [T e®tp(€)dE, t € R. Then
¢ € S and ¢(0) = 1. Put p,(t) = np(nt) and gbn( ) =F" (pn)( ), teR neNlN
Clearly, ¢, (t) = ¢(t/n), t € R, n € N and implies x = lim,,—.c E(¢n)r =
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lim,, 00 E(F~(pn))z = 0. Analogously,
(DG); for G.

vep, N(G(¢)) = {0} and this implies

Further on, a closed linear operator A satisfying need not be the gen-
erator of a (DG) and this implies that relations between distribution groups and
convolution type equations are, at least, quite unclear.

The proofs of the following assertions are omitted.

LEMMA 2.1. Suppose G is a pre-(DG). Then G is a pre-(DG). If, in addition,
G is a (DG) generated by A, then G is a (DG) generated by —A.

PROPOSITION 2.1. [28] Let G be a pre-(DG), F := E/N(G) and q be the
corresponding canonical mapping q : E — E/N(G).

(a) Let H € L(D, L(F)) be defined by qG(p) := H(p)q for all p € D. Then
H is a (DG) in F.

() (R(G)) = R(G), where (R(G)) is the linear span of R(G).

(c) Assume that G is not dense. Set R:=R(G) and H := G|r. Then H is a
dense pre-(DG) in R. Moreover, if G is a (DG) generated by A, then H
is a (DG) in R generated by Ag.

(d) The adjoint G* of G is a pre-(DG) in E* with N(G*) = R(G) . (R(G)
is the polar of R(G).)

(e) If E is reflexive, then N(G) = R(G*) .

(f) G* is a (DG) in E* iff G is a dense pre-(DG). If E is reflexive, then G*
is a dense pre-(DG) in E* iff G is a (DG).

(h) M(G)N(R(G)) = {0}.

(j) Suppose x = G(p)y, for some ¢ € D andy € E. Set u(t;z) := G(rip)y,
t € R. Then u(0;z) = z, u(x) € C*(R : E), (Z—Zu(t;x) = A"u(t; x),
teR, n €Ny and Gz = [ _(t)u(t;z)dt, v € D. Hence, G is
reqular.

PROPOSITION 2.2. [28] Let G be a (DG) and let S, T € &', p € D and x € E.
Then:

(8) (Glp)r, G(Lx---* Trp)z) € GI)™, meN

(b) G(S)G(T) € G(S*T), D(G(S)G(T)) = D(G(S*T))n D(G(T)) and
G(S)+ G(T) CG(S+T). In general, G(S)G(T) # G(S+T).
(0) G)G(T) € G(T)G(p)-
(d) If G is dense, its generator is densely defined.
Suppose, for the time being, that D'(L(E)) > G fulfills (DG)s and (DG)y.
Then G is a pre-(DG) iff:

(2.2) U u(t; ) C R(G) and u(t + s; ) = u(t;u(s; ), t,s €R, x € R(G).

teR,
zeR(G)



DISTRIBUTION GROUPS 69

The necessity of (2.2 . ) follows directly from Proposition [2.1)j). To prove the suffi-
ciency, notice that

G(@*ip)x]o]o[go(ts) W(s) dslu(t; x) ds dt = // (t+ s;x)dsdt

/4,0 /w (s;u(t;x))dsdt = /gp(t)G(w)u(t;x)dt
—G(w) [ elt)ultio)dt = GW) Gler, =€ RO,

The denseness of R(G) in E automatically implies (DG);.

From now on, we employ the following definition of an a-times integrated C-
semigroup.

DEFINITION 2.3. Let A be a closed operator, 0 < 7 < oo and a > 0. If there
exists a strongly continuous operator family (S(t))ielo,r) such that S(t)A C AS(t),

tel0,7), S(t)C =CS(t), t€]0,7) fo s)xds € D(A), x € E, t €[0,7) and
t

A/S(s)xds =S(t)x — F(ofiil)
0

Cx, z€E, tel0,T1),

then (S(t))¢cjo,r) is called a (local, if 7 < 00) a-times integrated C-semigroup with a
subgenerator A. If 7 = oo, then we say that (S(t)):>0 is an exponentially bounded,
a-times integrated C-semigroup with a subgenerator A if, additionally, there exist
M > 0 and w € R such that |S(¥)|| < Me*t, t > 0.

We know (cf. [24] and [29]-[30]) that (S(t)):e[o,-) satisfies S(¢)S(s) = S(s)S(t),
0<t, s<7and
t+s t s

S(1)S(s)z = {O/—O/—O/}WS(T)OMT, T EE, 0<tstts<r

In general, a subgenerator of (S(t)):e[o,-) is not unique but, in the case C' = I, every
subgenerator is unique and coincides with the (integral) generator of (S(t))c(0,r),
defined by

{(x,y) € E?:S(t)x — T+l

¢
i )C’I/S(s)yds for alltE[O,T)}.
0

We refer the reader to [43]-[44] for the definition of a local regularized semigroup
and its generator. Suppose n € N and 7 € (0, 00); then it is well known [44] that a
closed linear operator A generates a local n-times integrated semigroup on [0, 7) if
and only if p(A) # 0 and A generates a local R(XA : A)™-semigroup on [0, 7), where
X € p(A).



70 KOSTIC

DEFINITION 2.4. [26] Let A and B be closed linear operators, T € (0, oo] and
a > 0. A strongly continuous operator family (S(t)):e(—r ) is called a (local, if
T < 00) a-times integrated group generated by A if:

(i) (S¢(t) := S(t))tecjo,r) and (S_(t) := S(~1t))tecjo,r) are (local) a-times inte-
grated semigroups generated by A and B, respectively, and

(ii) for every € E and t,s € (—7,7) with ¢t <0 < s:

tf %S( mdr—i—f %S(T)xdn t+s>0,
S(t)S(s)x==S5(s)S(t)x=< """

8 s—r)>1 r S
tf %S( xdr+f HWS(T):UCM t+s < 0.

LeEMMA 2.2, [26] (i) Let (S(t))ie(—r,r) be an a-times integrated group generated
by A, for some o > 0 and 7 € (0,00]. Put S(t) := S(—t), t € (—=7,7). Then
(S(t))te(,T’T) is an a-times integrated group gemerated by B.

(ii) Suppose 7 € (0,00], a > 0 and A is the generator of an a-times integrated
group (S(t))¢e(—r,r)- Then there exist a >0 and b > 0 so that:

(ii.1) E(a,b) C p(A) N p(B), R(A: A)S(t) = SE)R(\ : A), A € E(a,b), t €
(=7,0] and R(A: B)S(s) = S(s)R(A: B), A € E(a,b), s € [0,7).
(ii.2) S(t)A C AS(t), t € (—7,0] and S(s)B C BS(s), s € [0,7).

(iii) Suppose B > « > 0 and A is the generator of an a-times integrated group
(Sa(t))te(fr,‘r)' Put

t .
i %Sa(s)xds, te0,7), z€E
Sp(t) = q° -

f( o 9) Sa(=s)xds, te (—7,0), x€E.

Then (Ss(t))te(—r,r) is a B-times integrated group generated by A.

(iv) Let a > 0, 7 € (0,00] and let (S(t))ie(—r,r) be an a-times integrated group
generated by A. Then B = —A.

(v) Suppose 0 < 7 < 00, @ > 0 and £A generate a-times integrated semigroups
(S+(t))tejo,r)- Then A generates an a-times integrated group (S(t))ie(—rr) given
by: S(t) =: S+(t), t € [0,7), S(t) :=S_(—t), t € (—7,0).

(vi) Suppose 0 < 7 < o0 and a > 0. A strongly continuous operator fam-
ily (S(t))te(—r,r) is an a-times integrated group generated by A if and only if
(S+(t))tefo,r) are a-times integrated semigroups generated by +A.

PROPOSITION 2.3. Suppose £ A generate distribution semigroups G4+ and put
G(p) =Gi(p) +G_(p), p € D. Then G is a (DG) generated by A.

PRrROOF. By the standard arguments, we have that there exists n € N such that,
for every k € N, +A generate (2¥n)-times integrated semigroups (S:kf:(t))te[(),gkq—).
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Then one obtains

oo

Golple = (-1 [ @St ede and

0
oo
k

Gi(gp);(; e (—1)2 n/(p(an)(t)Si(t)!I}dt, (RS D(*OO,QIVT)'
0

In order to prove that G is a (DG) generated by A, suppose x € N(G). Then,
for every ¢ € Dy, G(¢)x = 0 and this implies G4 (p)x = 0, ¢ € Dy. Since
G4 is a (DSG) generated by A, we have x = 0 and (DG)3 holds for G. Note
that Lemma 2.2(vi) implies that, for every k € N, A generates a local (2¥n)-times
integrated group (Sk(t))te(,sz’sz). Now one can repeat literally the arguments
given in the proof of [33 Theorem 6] in order to conclude that (DG); holds for all
¢, € D(_gk-1,95-1,). Hence, G satisfies (DG);. It remains to prove that B = A,
where B is the generator of G. Suppose (x,y) € B. Then G(—¢')x = G(p)y, ¢ € D,
ie., Gy (—¢)r+G_(—¢p)x = Gy (p)r+G_(p)x, p € D. This, in particular, holds
for every ¢ € Dy and one obtains G4 (—¢’ )z = G4 (¢)x, ¢ € Dy. In other words,
B C A. Assume now (z,y) € A. Then the definition of G and [28] Lemma 3.6]
imply:
Glp)y = Glp)Ar = Gy (p) Az + G () Ax
=G (=@ = p(0)z = G_(=¢")z + ¢(0)x
Gi(—¢)a+ G (~¢)o=G(=¢')s, peD.

This gives A C B and ends the proof of proposition. O

The previous theorem implies that a wide class of multiplication operators act-
ing on LP(R"™)-type spaces can be used for the construction of distribution groups.
In particular, several examples presented in [I] offers one to construct local once
integrated groups which can be explicitly calculated.

The following corollary is an immediate consequence of Lemma [30, The-
orems 2.1-2.2] and [43] Corollary 2.7].

COROLLARY 2.1. (a) Suppose o > 0, 7 € (0,00] and A generates an a-times
integrated group (So(t))te(—r,r)- Then, for every a € (0, %), there exist b > 0 and
M > 0 so that:

(2.3) E(a,b) C p(£A) and ||R(\: £A)|| < M|A|*, X € E(a,b).

(b) Suppose there exista > 0,b >0, M >0 and o > —1 so that (2.3) holds. Then,
for every 8> a+1 and 7 = a(8 — a — 1), A generates a local B3-times integrated

group (Sﬁ(t))tE(*T,T)'
(c) Suppose n € N, k € N, 7 € (0,00) and A generates a local n-times inte-
grated group (Sn(t))ie(—r,r). Then A generates a local (kn)-times integrated group

(Skn (t))te(fkv',kr) .
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Suppose a € (0,00), « ¢ Nand f € S. Put n = [o] :=inf{k € Z : k > a}.
Recall [35], the Weyl fractional derivatives W and W of order « are defined by:

WEf(t) = anl—);i; /(s — )"l f(s)ds, teR
We (L) = F(nl_a)j; /(t—s)”*aflf(s) ds, tER.

Ifa=neN, put WP := (-1)"4- and W" := 4. Then we know [33] that
WP = wew? o« >0,8>0.
The following result can be attributed to Miana.

THEOREM 2.1. [33] Suppose o > 0 and (S(t))ier is an a-times integrated group
generated by A. Put G(p)z == [~ Wo(t)S(t)zdt+ [;° Weg(t)S(—t)zdt, p € D,
x € E. Then G is a (DG) generated by A.

Notice that, in the case a = n € N, we have the following equality:

e} 0

G(p)z = (—1)" / o™ ()8 (t)z dt + / o™ ()8 (1) dt.

0 —00
We refer the reader to [9] Section XXI] and [24]—[25] for the basic material
concerning analytic integrated semigroups.

REMARK 2.1. Let a > 0, w > 0 and let A be the generator of an a-times inte-
grated group (S, (t))ier with ||S,(t)]| = O(e?!!), t € R. Due to [33, Theorem §],
A? generates an exponentially bounded, ($)-times integrated semigroup (Vi (t))¢>o0

given by V,(t) := \/i?r 1= e=*"/48, (s)ds. If Rez > 0, then one can define V,,(z)

by Va(z) := \/41? 1= e=s/4%5,(s)ds (V1 =1). Arguing as in the proof of [25]
Theorem 11] (cf. also [3] p.220], |25, Proposition 8] and [26] Proposition 2.4]),
we have that (V(t)):>0 is an exponentially bounded, analytic (§)-times integrated

semigroup of angle 7.

The next theorem clarifies an interesting relation between integrated groups
and global differentiable regularized groups.

THEOREM 2.2. Suppose a > 0, 7 € (0,00], b € (0,1) and A generates an
a-times integrated group (So(t))tc(—r,r). Then, for every v € (0,arctan(cos(b%))),
there exist two analytic operator families (Ty 4 (t))iex., € L(E) and (Ty,—(t))ex, C
L(E) so that:

(a) For everyt e X, Ty 4 (t) and Ty, _(t) are injective operators.

(b) For every t; € ¥, and ty € ¥, A generates a global (Tp, 4 (t1)Tp —(t2))-
group (Vot,.1,(5))scr-

(c) For every x € E, t; € ¥, and ty € ¥, the mapping s — Vi, 1,(5)x,
s € R is infinitely differentiable in (—oo,0) U (0, 00).



DISTRIBUTION GROUPS 73

PROOF. Due to Corollary 2] there exist ¢ > 0, d > 0 and M > 0 so that
E(e,d) C p(+A) and that ||R()\ +A)|| < M|A\%, A € E(c,d). Choose a number
a € (0,%) such that b € (0, Sray ) and that v € (0,arctan(cos(b(m — a)))). It is
clear that there are numbers d € (0 1] and w € (d + 1,00) so that
Qoai={2€C:|z|<d}U{re® :r >0, 0€[-a,a]} Cp(Ad—w)Np(—A—w).
Let the curve I', g = 0€Q, 4 be oriented upwards. Define Tj, 4 (t), t € 3, by:
1
Ty s (t)a = o et N ROV £A4 —w)zd), z € E.
T
Fa,d

Applying the arguments given in Section 2 of [39], one can deduce that (T}, +(t))ex,
are analytic operator families and that, for every t € X, T, 4 (t) and T _(t) are
injective operators. Clearly,
Tys (h1)(—A —w) C (—A— )Ty 4 (1),
Tb,,(tg)(A — w) C (A — (,L))Tb,,(ifg)7 t1,t2 € ZA/.
It is straightforward to prove that Ty y (t1)Tp,— (t2) = T, (t2)Tp +(t1), t1,t2 € X

and the arguments given in [21] shows that +A —w are generators of global Tj, 4 (¢)-
semigroups (Upt,+(5))s>0. Suppose t1,t2 € ¥, and « € E. Then one obtains

Ty, (t2)(Ub,ty 4 (8)x — Tp 4 (1))

S

:Tb,,(tg)(A—w)/Ub,tl, W)z dv = (A — w)Tp,_(t2) /Ubth v)z dv.
0

0
Hence,
/ Tb — tQ Ub 1, +( )).T d’U = Tb7_(t2)Ub7t1,+(S)$7Tb7+(t1)Tb’_(t2)$, S 2 0
0
Furthermore, [Ty — (t2)Up,iy +(8)]To+ (t1) = Do+ (t1)[Tp,— (t2)Up sy ,+(s)], s = 0, and

[Ty, — (t2)Upty +(8)][(A—w) C (A—w)[Tp —(t2)Up4,,+(s)], s = 0. This simply implies
that (Tp,— (t2)Up,ty,+(S))s>0 is a global (Ty 4 (t1)Tp — (t2))-semigroup generated by
Ty (61T (£2)) " (A=) Ty (11)Ty,(£2)) = A—io. S, (e°°Ty, _(t2)Up .+ (5))s50
is a global (Tp 4 (t1)Tp,—(t2))-semigroup generated by A. Analogically, for every
t1,t2 € Xy, (9T 4 (t1)Up ty,—(5))s>0 is a global (Ty, 4 (t1)Ty,— (t2))-semigroup gen-
erated by —A. Hence, for every t; € X, and ¢, € X,, A generates a global
Ty (£1)Th (£2))-gr0uD (Vi1 (5))ock given by:

v (s) = STy _(t2) Up iy +(8), s> 0,
Pt emwsTy L (8) Up gy — (—5), 5 < 0.

The mapping s — Vi1, 4,(s)x, s € R is infinitely differentiable in (—o0,0) U (0, o0)
since the mappings s — Tp, _(t2)Up 1, +(s)x and s +— T, +(t1)Up,1,,— (s)x are infin-
itely differentiable in s > 0 [2I]. The proof is completed. O
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3. [Boy+++3Bn,Co,...,Cpn_1]-groups
We introduce [By, ..., By, Co,...,Cp_1]-groups as follows.

DEFINITION 3.1. Let A be a closed linear operator. Suppose, further, 0 < 7 <
oo, n € Nand By,...,B,,Co,...,Ch_1 € L(E). A strongly continuous operator
family (S(t))ie(—r,r) is a [Bo, ..., Bn,Co,...,Cph_1]-group with a subgenerator A
if and only if:

t n
(a) A[S(s)xds=S{t)zr+ Y t!Bjx, t € (—7,7), x € E and
0 =0

n—1
(b) AS(t)x — S(t)Az = Y t/Cjz, t € (—7,7), x € D(A).
§=0
It is said that (S(t));c(—r,r) is non-degenerate if the assumption S(t)z = 0, for

all ¢ € (—7,7), implies = 0. Define the integral generator of a non-degenerate
[BO7 teey B’I’L, 007 teey Cnfl]'group (S(t)>t€(77',‘r) by

n n—1 . ¢
R . i+l
_ 2 o _
A= {(%y) € E”: S(t)x + JE_Ot]Bjx - ;_0: ﬁC]x = /S(s)yd& te (-, T)}.
- - 0

The integral generator A of a non-degenerate [Bo,...,Bn,Co,...,Ch_1]-group
(S(t))te(—r,r) is a function and it is straightforward to see that A is a closed linear
operator which is an extension of any subgenerator of (S(t))ie(—r,r). Further on,
the injectiveness of B; for some i € {0,...,n} implies that (S(t));e(—r,r) is non-
degenerate. In general, a subgenerator A of (S(t))e(—r ) does not commute with
S(-) and the set of all subgenerators of (S(t))¢c(—r,r) need not be monomial. Let
us show this by the following illustrative example.

ExAMPLE 3.1. (i) Let
E:=R? A(xy,x9) := (1 — 29,0),

Bo(z1,x2) := (0, —2x2), Bi(x1,x2) := (—21 — T2, —2x1), Ba(x1,22) := (0,0),
Co(z1,z2) := (—x2,0), C1(x1,x2) := (=21 + T2, —21 + x2),
S(t)(z1,22) := (txy, tx; + 22), t €R, (z1,22) € E.

It is straightforward to verify that (S(t)):er is a [Bo, Bi, Ba, Co, C1]-group with a
subgenerator A and that: S(¢)S(s) = S(s)S(¢) iff t = s, S(t)D # DS(t), t € R,

D € {By,Cy,C1} and DyDy # D1Dy, D; € {B;,C;}, i =1,2.

(ii) Suppose C; = 0, j = 0,...,n — 1 and the bounded linear operators B;
J=0,...,nfulfill B #3750 R(B;). Put S(t)x:=—>7_(t/Bjz, t € (—7,7), x €
E and denote by A the family of all closed subspaces of E containing » .-, R(B;).

If F € A, define a closed linear operator Ap by D(Ap) := F and Apz :=0, z €
D(AF). Then Ap is a subgenerator of a [By, ..., By,0,...,0]-group (S(t))ic(—r,r)-
——

n

REMARK 3.1. (i) Assume n € N, 7 € (0,00] and A generates an n-times
integrated group (S(t))ie(—rr). Put S(t) := S(t), t € [0,7) and S(t) := (—1)"S(¢),
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t € (—7,0). Then (S(t))te(—r,n isa [0,...,0, Cbro,... ,0]-group having A as a
N—— ——

subgenerator. M M

(ii) Let A be a subgenerator of a [By, ..., By, Co, ..., Cyp_1]-group (S(t))ie(—r,7)-

S'() S(—t), t € (-7,7), B; := (-1)’B; and C; := (—1)7*1C;. Then

( ( Nitc(—r,r) is a [Bo, ..., By, Co,...,Cn_1]-group with a subgenerator — A.

( ) Let k € N and let Dy,...,Dy € L(E). For a given i € {1,...,k}, put
= H 1 Dj. Define S;(-), i € {0,...,k} recursively by:

t
So(t)x == S(t)x,...,Si(t)x = /Si_l(s)Dl-x ds, z€FE, te(-7,71),

and suppose, additionally, that D;A C AD;, i € {1,...,k}. By a simple induc-
tion argument, one can deduce that, for every i € {1,...,k}, (Si(t))ic(—r,r) is

0By D; n!B,D; 01CD; (n—1)1Cp_1D;
[0,...,0, %52, Gyt o 05 oo 0 T80 =2y

}—group with a subgener-
ator A.

(iv) Suppose A generates a C- regularized group (T'(t))ter in the sense of [9]
Definition 7.2]. Put Tk )z = fo tks)l (s)xds, t € R, x € E, k € N. Then
(T (t))ter is a [0,...,0,—4C,0,...,0]-group having A as a subgenerator.

w_/ w_/

k k

Suppose A is closed, By, - , B, € L(E) and define

PBo...B. (A) = {A eC: R(Z L ) C R(\ - A)}

The following profiling of exponentially bounded [By,...,B,,Co,...,Cph_1]-
groups can be simply proved ([24]).

PROPOSITION 3.1. (i) Let A be a subgenerator of a [Bf ..., B, Cf,...,Ct_]-
group (S(t))ier satisfying ||S(t)|| < Me*!t, t € R, for some M >0 andw > 0. Set
By = (=1)/B} and Cj := (- )3+1CJ+, Then,

(i1) ppt,.. i (A)N PBy ..., po(mA4) 2{A € C:Re A > w},
(i2) [y e MS(H)zdt = -(AF A~ Yo% Bix ReA>w, z € E and

(i3) £A [T e MS(Et)wdt — [T e MG (£t) £ Awdt = Y1) 55 CFw,
ReA>w, z € D(A)

(ii) Suppose A is a closed operator and (S(t))ier is a strongly continuous op-
erator family satisfying ||S(t)|| < Me“!!, t € R, for some M > 0 and w > 0. If
(i1), (i2) and (i3) hold, then (S(t))ier 4s a [By ..., B, Cy,...,CF | ]-group with
a subgenerator A.
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Suppose n € N. If A is a closed operator and By, -+, B, € L(F), then we

define linear operators Y;, i € {0,...,n} recursively by:

YO = Bo, YvH,l = (’L+1)'Bl+1 +AK, Z€{07,7L—1}
Note that Y7 is closed and that the assumption 0 € p(A) simply implies the closed-
ness of Y;, i € {0,...,n}.

PROPOSITION 3.2. Suppose 7 € (0,00], n € N~ {1} and A is a subgenerator
of a [Bo,...,Bn,Co,...,Cp_1]-group (S(t))te(—r,r. Then:

(i) iBix — Ci—1x € D(A), x € D(A), i € {1 ,n}, A(iBix — Ci_1x) =
iB;Ax —iCiz, i € {1,...,n— 1} and A(nB,x — Cn,lx) =nB,Az, x € D(A).

(i) D(A%) € M)y D(Y)), k € {0,...,n} and Yiz = —(L:S(t)z)
D(AF), k€ {0,...,n}.

(iii) For every k € {0,...,n — 1} and x € D(AF*1):

1 1
(3.1) Crr + HAYk( z) = ﬁYk(ALT)

(iv) If R(Bo) C D(A), then Yy is closed, D(A*) C ﬂkH D(Y;), k{0, ...,n—1},
(3-1) holds for every k € {1,...,n— 1} and x € D(A¥) and there exists an appro-
priate constant M > 0 so that | Yy 12| < M||z||x, k € {0,...,n— 1}, x € D(A¥).

(v) A(=Ypz + Y, 1Az) = —nlB, Az, x € D(A"); if R(By) C D(A), then
AY,xz =Y, Az, x € D(A"™).

PROOF. Suppose 2 € D(A). Clearly, £S(t)z = AS(t)z — >, it' ! Bz,
t € (—7,7) and

i—or T S

nzftZC’x—AS()x S(t)Az = AS(t) [A/S )Ax ds— ZtBAx} te (—r,7).

=0 =0

Hence,
n—1 n t
Y tCix - t'BiAv=A [S(t)x — /S(S)Ax ds} ,te(—7,7).
i=0 i=0 2

Since

{ 0/ S(s) Az ds] — AS(e — Y it B — S(t) Az

i=1

n—1 n
= Z t'Ciz — Ziti’lBix, te(—7,7),
1=0 =1

the closedness of A implies
t

n—1 n
Y tiCiw— > it B = 4 {S(t)x —~ /S(S)Aw ds} € D(A), te(-7,7)
=0 i=1 dt

0
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and:

n—1 n n—1 n
4 [z ey iti_lBix] _ S it - it Bid, b€ (—7,7).
=0 i=1 i=1 i=1

Differentiate sufficiently many times in order to see that iB;x—C;_12 € D(A),
i € {1,...,n} and that (i) holds. To prove (ii), notice that the closedness of
A and argumentation used in the proof of (i) enable one to conclude that the
mapping t +— jtk S(t)x, t € (—7,7) is k-times continuously differentiable for every
ke{0,...,n}and z € D(Ak). Fix a k € {0,...,n}; then we obtain:

1+1

S(t)x —A S Z; N~ 1Bsx,  te (—T,7),
j=l+1

for every 1 € {0,...,k —1}.

Since Yy = By, the proof of (ii) follows by induction.

Suppose now x € D(A**1). Then the mapping t — S(t)Az, t € (—7,7)
is k-times continuously differentiable. Since Cpz = % dtk [AS (t)x — S(t)Ax], t
(—7,7), we have that the mapping t — AS(t)x, t € ( 7 7) is k-times continuously
differentiable and the closedness of A implies that dtk AS( Jr = Adtk S(t)x, t €

(—7,7) and that Cxx = [Ad S(t)x — dtkS( )Az], € (—=7,7). Put t = 0 in the

dtk
last equality to finish the proof of (iii).

To prove (iv), notice that R(By) C D(A) and that the Closed Graph Theorem
implies Y7 = ABg + By € L(E); the closedness of Y5 simply follows from this fact.
Suppose now z € D(AF). Since £S(t)x — S(t)Ax = Y1) t'Cow — S it' ' Bya,
t € (—7,7), one concludes that

dk dk—l dk— ) n i
ﬁS(t)x - WS(t)Am = T [;t Cix — Zzt Bix]7 te(—7,7).

This implies =Yz + Y142z = (kK — 1)!Cy_12 — k! Bz and an employment of (i)
gives —Yix + Y1 Az € D(A) and:

(3.4) A[-Yix + Y 1Az] = KICpx — K'ByAz, ke {l,...,n—1}, x € D(A").

Because R(By) C D(A)7 one concludes inductively from ) that Yz € D(A),
z € D(AF), k € {0,...,n — 1}, i.e., D(AF) C N2 DY), k: €{0,...,n—1} and
implies k!Crx + Aka = k'BkAz + AY_1Ax = YAz, k € {1 cooyn— 1}
r € D(AF). The existence of a constant M > 0 satisfying ||Yir12| < M||z|x,
k€ {0,...,n—1}, x € D(AF) essentially follows from an application of and
an induction argument. This ends the proof of (iv) while the proof of (v) follows
simply from that of (iv). O

REMARK 3.2. (a) Suppose 7 € (0, 00] and A is a subgenerator of a [By, By, Cy)-
group (S(t)):efo,r)- Arguing as in the proof of Proposition one obtains A(Byx—
Coz) = B1 Az, x € D(A) and AY x = Y1 Az, x € D(A?). Furthermore, if R(By) C
D(A), then AY1z = Y1 Az, x € D(A).
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(b) The next question is motivated by the analysis of Arendt, El-Mennaoui
and Keyantuo [I]: If A is a subgenerator of a [0, .. L7,Co,...,Cy_1]-group
\W_/

)nl

(S(t))tefo,ry» m € N, 0 < 7 < o0, does S(t)A C Ag'(t), t € (—7,7)? The answer
is affirmative and we will show this only in the non-trivial case n > 1. Indeed,
S(0) = 0 and this implies Coz = 0, © € D(A). By Proposition [3.2{i), we have
AC;_1z = iCix, i € {1,...,n — 1}, z € D(A). Inductively, C;z =0, i € {1,...,
n—1}, x € D(A) and an immediate consequence is S(t)A C AS(t), t € (—7, 7).

(c) Let A be a subgenerator of a [By, ..., By, Co,...,Cp_1]-group (S(t))tc(—r,7),
n > 2, (S(t))te(—r,r) non-degenerate and A the integral generator of (S())te(—r,7)-
Then iB;z — C;_1z € D(A), € D(A), i € {1,...,n}, A(iBjz — C;_1z) =
iBijAx —iCix, i € {1,...,n — 1} and A(nBpx — Cp_12) = nB, Az, x € D(A).
To prove this, suppose (z,y) € A. Clearly,

A/tS(s):cds = j(S(s)y+§stjx>ds, te (=7,7).
0 0

7=0
Differentiate this equality to obtain that S(t)x € D(A) and that AS(t)z = S(t)y +
Z?:Ol tiCjx, t € (—7,7). Hence,

n—1
A[/ deJrZ tjillcxfzth :c} :S(t)erthij,
§=0
—1 n
A[Z C’acthjB x} = thijthijy, te(—r,71).
§=0 §=0

7=0
Differentiation of the previous equahty leads us to the desired assertion. Notice
that (c) extends Proposition i) to n9n—degenerate groups and that, in the case
n=1, A(Biz — Coz) = B1 Az, © € D(A).
PROPOSITION 3.3. Suppose 0 < 7 < oo and A is a subgenerator of a [By, ..., Bp,
CO7 ceey Cn,l]-gmup (S(t))te(f'r,‘r) . ]f
(35) CjAQACj, j:O,...,n—l cmdBjAgABj, j:].,...,TL

then, for every x € E,
s t+s

i[/ j(t+s—r) " BiS(r)zdr - /j(t—i—s—r)le(r)Bjmdr]
(3.6) 2 [O/t—i—s—r)JC’ S(r)zdr +tC; /s xdr}

7S(t+s)Box—ZZ/tJrsfr)rdrC'Bo: t,s € (—7,7), [t+s| <.
0
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PROOF. Suppose, for a moment, y € D(A) and t € (—7, 7). Then fg AS(s)yds

= S(t)y + Z] ot! Bjy, ie. fo [ s)Ay + Z? (}SJij}ds = S(t)y + Z?:o t/Bjy.
Hence,

n—1

d
%S(t)y = S(t)Ay + Zt]ij thj 'Bjy, te(-7,7).

Jj=0 Jj=1

Fix an z € F and t,s € (—7,7) with |t + s| < 7. Define afterwards the function
fit+s—T,t+s+7)N(=7,7) = Eby f(r) :==S({t+s—r) [, S(s)xds. Then we
obtain:

D=4 [S(H—s—r) / S(v)a dv} — S(t+s—r)S(r)z - {S(H—S—T)A / S(v)z dv

+n71(t+s—r)jCj S(v)zdv — ” i(t+s—r)'B; [ S(v)zdv
e [sieisSesecorm [

= S(t+s—r)S(r)x — S{t+s—r) [S(r)x + erBjx]
n—1
Z(t—l—s uer /S xdv—ka (t+s—7)"'B; /S Y dv
=0 Jj=1

J

n—1 "
= fZ(t+sfr)j0j/S(v)xdv+Zj(tJrsfr)j*lBj/S(v)xdv
Jj=0 0 J=1 s

- Z 71 S(t+s—7)Bjz,
j=0
forall r € (t+s—7,t+s+7)N(—7,7). Integrate the last equality with respect
to r from 0 to s to conclude that:

r

(3.7) S(t)/ v)zdy = — Zc/ +s—7~)j/5(v)xdvdr

0 J=0 0

+Zij/(t+s—r)j_l/S(v)xdvdr—Z/TJS(t+s—r)Bj:Edr.
j=1 0 jZOO

0
Thereby,

S(#)S(s)z = S(t) [A / S(v)adv — ; sij:z:]

=0

[AS /S xdv—ZtJC /s xdv]—ZsJS
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n—1 s "
:A{—ZCJ/(t—I—S—r) /S(v)xdvdr
j=0 0
+Z]B]/t+sf1"] 1/S xdvder/ertJrs—r)B:rdr

J=1 0 =079
1

JC /S xdv—ZsJS’

Taking into consideration (3.5)), we get:

S

n—

n—1

:—jZ::OCJO/(t—i—s—r { :v—i—Zer}
+;jBJO/(t+STJ 1[ :chZTB:z:]

n

s n—1 n
(3.8) - AZ/TjS(t—‘rS—T)Bjx dr — Z tC; /S(v)m dv — Zst(t)B]x
J=07% Jj=0 0 J=0

Observing that:

t+s t+s

¢
A/S t+s—r)Boxdr—A/S Boxdv—A[ /S(U)Boxdv—/S(v)Boxdv}
0

= S(t + S)Bol’ + Z(t + S)zBlBox — S(t)BQIL' — Z tiBiBox

i=0 1=0
and that
s t+s
A/er(t +s—r)Bjxdr=A /(t + s —v)/S(v)Bjz dv
0 t
t t+s v
:A[—sj/S(a)Bjxda—&—/j(t+s—v)j_1/S(J)Bja:dadv]
0 t 0
n t+8 n
=g/ [S(t)Bjx + ZtiBiBjx] + /j(t+s—v)f—1 |:S(U)le' + ZviBiBjx} dv,
i=0 A =0

for all j =1,...,n, (3.8)) implies:

n—1 9

i/ +S—T]CS xdr—Z/t+s—r ZrCBmdr

700
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n

+ j/t+s Y 1B;S(r xdr—i—z / T)j_lzTiBjBi.’L‘dT
0

=1 =0

[

n

— S(t+ s)Box — Z(t + 8)'B; Boz + S(t)Boz + Z t'B; By

i=0 i=0
n n n t+S n
—|—Z sl {S(t)BjaH—Z tiBiBjx} —Zj/(t—i—s—v)j_l [S(U)Bjx—f—z viBz-Bjx} dv
j=1 i=0 j=1 % i=0
n—1 ] s n .
(3.9) - Z t'C; /S(U)x dv — ZSJS(t)Bja?.
j=0 0 7=0
Clearly, S(t)Box + >_7_, s7S(t)Bjz — >_7_ s S(t) Bjz = 0 and:
t+s
—ZZ/ (t+s—v)""'dvB;Bjx = — ZZ/t—i—s—r)jr] YdrB;B;x
Jj=11i=0 % j=11i=0
—ZZtsJBBx—ZZ/ —7)"YridrB;Bjx
Jj=1 =0 j=11:i=1 0
Z tt 7BBx—ZZ/ t+s—r71’drBBm
j=11=0 j=11i=1 0
Therefore,
n n t+S n n
(3.10) ZZ / Jjit+s— )J_lvidUBiBjx—l—ZZSjtiBiBjx
J=114=0 % j=11i=0
+ZZ/ (t+s—7r)"'r'drB;B;x
j=1 =0 0
- Z/ (t+s—r)y~'drB;Box =Y [(t+s) —t/]B;Boa.
j:l j=1

Finally, (3.6] follows from an application of (3.9)) and (3.10]).

REMARK 3.3. The composition property does not remain true if the condition
is neglected. Namely, let A, By, By, Ba, Cp, C1 and (S(t))scr possess the same
meaning as in Example[3.1{i). Then (S(t)):cr is a [Bo, B1, Ba, Co, C1]-group with a
subgenerator A and a tedious matrix computation shows that and are not
valid. Moreover, pg, B, B,(A) 2 {\ € C:ReX > 0} and R(By)+ R(B1)+R(B2) ¢
R(1 — A) (see Proposition [3.1)).
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4. Connections between distribution groups
and local integrated groups

In order to establish a satisfactory relationship of distribution groups with
local integrated groups, we need the following definition introduced by Tanaka and
Okazawa in [40] (cf. [40], Definition 4]):

(A) Suppose n € N and 7 € (0,00]. A strongly continuous operator family
(S(t))tefo,r) is called a (local) n-times integrated semigroup if:

(i) S(t)S(s)a = [ et fo} e S(r)xdr, z€E,0<t
s,t+s < 7, and S(0) =
(if) S(t)z =0 for every t € [0, 7) implies z = 0.

Suppose (S(t)):epo,r) is an n-times integrated semigroup in the sense of (A).
The infinitesimal generator Ag of (S(t))¢c(o,r) is defined in [40] by

D(Ap) = {a: € U C"(o): lim % exists},

o€(0,7] h=0+
ST (W) —
Aoz = llm+#, xz € D(Ay),

where C"(0) :={x € E | S(-)x : [0,0) — E is n-times continuously differentiable}.

The infinitesimal generator Ag of (S(t)):e[o,) is a closable linear operator and
the closure of Ay, Ay, is said to be the complete infinitesimal generator, c.i.g in
short, of (S(t)):ef0,r)-

Suppose (S(t)):c[o,r) is a (local) n-times integrated semigroup in the sense of
Definition Then (S(t)):e[o,r) is an n-times integrated semigroup in the sense of
(A); in general, the converse statement does not hold (see [1], [24] Proposition 2.1],
[28] and [40, Proposition 4.5]).

THEOREM 4.1. (a) Suppose G € D'(L(E)) and A is a closed linear opera-
tor so that holds. Then, for every 7 € (0,00), there exist ng = no(7) €
N and By,...,Bn,,Co,...,Cno—1 € L(E) such that A is a subgenerator of a
[Bo, - - Bngy, Co, - - -, Crg—1]-group (S7(t))ie(—r,r) satisfying S-(t)x € D(A) for all
x€FE andt e (—7,7).

(b) Let G and A be as in the formulation of (a) and let Ay = AR(G) Suppose, in
addition, that G is regular and put S(t) := S;(t), t € (—7,7), where (S;(t))te(—r,r)
is a [Bo,...,Bng, Co,--.,Cno—1]-group constructed in (a). Then:

(b1) R(G) C N2y D(Yi), Yp,x = —z, € R(G), the function t—u(t;z), t e

R is infinitely differentiable, u(t; x) € Doo(A) and Su(t; ) = u(t; A"z),
teR, z e R(G), neN.

(b2) Ifng =1, then £ A, generate local once integrated semigroups (SL(t))cio,r)

in R(G) given by SL(t)z := S(+t)(+x) + Box, x € R(G), t € [0,7). Fur-
thermore, Ay generates a Cy-group in R(G).
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(b3) Suppose ng = 2 and put S%(t)x S(+t)x + Box + t(£ABy + By)z,

te[0,7), € R(G). Then S%(t ) ( @),

¢
2 =
(/Si(s)a:ds,Si(t)x - 233) € +4;, ze€R(G), te[0,7),
S2(t)A1x = A1SEi(t)z, t € [0,7), = € R(G), Si(t)r € D(A), z €
R(G), the mapping t — %53 (t)z, t € [0,7) is continuously differen-
tiable for every x € R(G), R(G) C ﬂz o DY) and Yoxr = —x, x €
R(G). Furthermore, £A; are generators of local once integrated semi-

groups (5% (t))iefo.r)-
(b4) Suppose ng > 3,

no—1
(4.1) R@ C () D;
i=2
and there exists M > 0 with
(4.2) |Yiz|| < M|jz|, z€R(G), i=2,...,n9— 1.
The followzng holds: R(G) C D(Yy,) and Yy,x = —x, © € R(G).
Set ST (t)x = St)x + 10 LYz and S™(H)x = (—1)"0S(~t)z +
zjogl Mm z € R(G), t € [0,7). Then: S7(t) € L(R(G)),

(f5 810(s)a ds, ST (t)z— ) e +A1, 2 € R(G), t € [0,7), S1(H) A =
ASYe(t)x, t € [0,7), z € R(G) and S7°(t)x € D(A), x € R(G). Set

1 1
A;Lrl 4= {(%y) e +A;:Cix+ ,f'AYix = :I:,f'Yiy, 1=2,...,n9 — 1}.
’ 2! 2!

Then A7, 4 1 are generators of local (ng — 1)-times integrated semigroups
(452 (t)sefo.r)-

(b5) Suppose ng = 3 and p(A) # 0. Then, for every 19 € (0,00), there exists
n(ro) € N such that Ay generates a local n(1o)-times integrated group on
(—7’0,7’0).

PROOF. (a) Let 7 € (0,00) be chosen arbitrarily. Since AG(¢)x = G(—¢')z,
¢ € D, x € E we have G € D'(L(E,[D(A)])). An employment of [32, Theo-
rem 2.1.1] implies that there exist an integer ny = ng(7) and a continuous func-
tion S; : [-7,7] — L(E,[D(A)]) such that G(p)z = (1) [T ©(m0) (£) S, (t)z dt,
© € D(_r ), x € E. We obtain:

AG(p)x = (1) / O ") () AS, () dt = (—1)"o+? /go(”°+1)(t)/AST(s)a: dsdt
-7 -7 0

= G(—¢ )z = (-1)"*! /so("””(t)sf(t):vdt, ¢ €D(_rr), x € E.

—T
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An immediate consequence is:

T t
/ so<"°+1><t>[ / AS-(s)rds — S-(t)x|dt =0, ¢ €D(_rr), z € E.
0

-7

The well-known arguments of distribution theory (cf. for instance [17, Lemma 8.1.1]
or apply the Hanh-Banach theorem and [36, Theorem 5.10, p. 80]) imply that there
exist By, ..., By, € L(E) which satisfy (a) of Definition 3.1. Similarly, if z € D(A),
then G(p)Az = AG(p)x, p € D and we get:

/ P (D)[AS, () — S, () Azl dt =0, ¢ €Dy, z € E.
Thus, there exist Cy,...,Cpy—1 € L(E) which satisfy
n—1
AS (t)x — 8- (t) Az = Y Cya,
3=0
for all ¢ € (—7,7) and « € D(A). To prove (bl), we need the following notion from
[23]. Suppose ¢ € D and [*_((t)dt = 1. Given ¢ € D, we define I¢(p) by:

I@)(t) = / [sa(u)—au)]ow(v)dv]du, teR

Then we have: Ic(¢) € D, Ic(¢') = ¢ and L1:(p)(t) = o(t ) 7,

teR [23] Suppose © € R(G) Since AG(p)x = G(—¢')x, <p € D one concludes
-7 u(tiz)dt = A [%_o(t)u(t;z)dt, ¢ € D and the partial integration
gives:

(4.3) A / / s;x)dsdt = / o' (t)u(t;z)dt, ¢ € D.

Suppose (py) is a regularizing sequence and put ¢, = Ic(p,) in (4.3) in order to
see that:

AZ j u(s; ) ds dt = Z [on(t) — C(H)]ult; ) dt.

The closedness of A and u(0;2) = « imply, for every ¢ € D with ffooc C(t)ydt =1:

(4.4) A/g()/sxdsdt /g u(t;z)dt — .

— 00

It is evident that, for every ¢ € R, there exists a sequence ({,) in D so that
f Cn(t)dt = 1, n € N and that lim, . ¢, = J;, in the sense of distributions.
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Put (n in . As above, the closedness of A implies fot u(s;x)ds € D(A) and
Afo s;x)ds = u(t;z) — z, t € R. Inductively,

t t
_ _ k
A/t ) /t ) sx)ds—%x, teR, keN.
0 0 '
Clearly, Az € R(G) and A commutes with G(-). Hence,
(4.6) A / e(t)u(t;z) dt = / e(t)u(t; Az)dt, ¢ e D.

An application of gives u(t;z) € D(A), Au(t;z) = u(t; Az), t € R and this
implies u(t;z) € Do(A), t € R. Since Afot u(s;z)ds = u(t;x) —x, t € R one
obtains by induction that the function ¢ — u(¢;z), t € R is infinitely differentiable
and that 4-u(t;z) = u(t; A"z), t € R, x € R(G), n € N. Furthermore,

¢ TL(J 1 p t_S no—1
4. A A
(@.7) / nofl / e s Aa) ds
0 0
Since
Gleo= (-1 [ @ @s@dt= [ pt)ultio)
fe’e] t
t— 8 no 1
— (—1)"0 /w"‘)) / o u(siz)dsdt, ©€D_rp,
—00 0

there is a subset {yo(z),...,Yn,—1(z)} of E such that:

t t_ S 'fl(J 1 no—1 ]
. —_— T . —
(4.8) / (o — 1] u(s;x)ds = — Z t'y;(x), te(—7,7).
0 =0
Put ¢t = 0 to obtain yo(x) = Box. A consequence of (4.8) is:
t t (t - 8)’”0 no—1 ti+1
(4.9) /S(s)xdsf/niolu(s;x) ds = — ZO v, te(=r7).
0 0 =

Due to (4.5)), one can apply A on both sides of (4.9)) in order to see that, for every
te(—7,7):

. s)no—l no no—1 i1

no ) t
[S(t)x + ZotlBix} - / ((no—l)! u(s;x)ds + ol T T -4 Zo myz(l”)
i= 0 i=
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Returning to (4.8]) implies:

nofl ) no ) tno ’I’Lgfl t2+1
=0 =0 =0

Since A is closed, one can differentiate (| sufficiently many times to obtain that:
z e N2y D(Y;), Yoo = —x and y;(x) = 5 Yix, i € {0,...,n9 — 1}. This completes
the proof of (bl).
To prove (b2) fix an = € T\’,(G) Put S (tr = S(t)r + 00! £ LYi(z), t
[0,7). By (4 , St(t)x = fo (no 1), u(s;x)ds, t € [0,7) and an employment
1.' 1mphes AST(t)r = ST (t)Ax, t € [0,7). To prove (b2), suppose ng = 1.
Then SL(t)x = S(t)x + Boz, t € [0,7), € R(G). By the proof of (bl), one yields
tr = fo s;x)ds, t € [0,7), € R(G). Accordingly, S1(¢)(R(G)) € R(G),
[0,7). By ([1.5), (fy SL(s)ads, S} (t)z — tz) € Ay, t € [0,7), @ € R(G) and
the closedness of A implies (fot Si(s)xds,SL(t)x —tz) € Ay, t€[0,7), z € R(G).
Clearly, Si(t)A; C A1S1(t), t € [0,7) and this proves that (SL(t))icpo,r) is a
once integrated semigroup generated by A;. The similar arguments (see also the
proof of (b3)) work for —A; and (S (t))icp,r)- To prove that A; generates a
Co-group in R(G), we argue as follows. Since (fg St(s)zds,SL(t)x — tz) € Ay,
€ [0,7), z € R(G) and R(Si(t)) € D(A), ¢t € [0,7) one gets that the mapping
t— 481 (t)z, t € [0,7) is continuously differentiable for every z € R(G) and that
48l ()r = ASi(t)z +x, t € [0,7), € R(G). Moreover, it can be easily checked
that, for every fixed z € R(G), the function u(t) = Si(t)z, t € [0,7) is a unique
solution of the problem:

uwe C([0,7) : [D(A1)]) N CH([0,7) : R(G)),
Ci(r): 9 () = Au(t) +=z, te€][0,71),
u(0) = 0.
An application of [1, Theorem 1.2] gives that A; generates a Co-semigroup in R(G).
Similarly, —A; generates a Cy-semigroup in R(G) and this clearly implies that A;
generates a Co-group in R(G).

To prove (b3), note that the proof of (bl) implies that S% (¢ fo (t —
s)u(s;z)ds, t € [0,7), z € R(G). So, S2(t)(R(G)) C R(G), t [O,T) Note
also that S(0) = —By and that the Closed Graph Theorem gives 5% (t) € L(R(G)),
t € [0,7). Next, the closedness of A and (4.5 imply (fo 52 (s)xds, S2(t) — %x) €
Ay, x € R(G), t € [0,7). Since fot S_%_(s xzds € D(A), z € R(G), t € [0,7) and
R(By) C D(A), we immediately obtain AByz + Bz € D(A), z € R(G). Further
on

t 2
t
52 (s)xds = S(t)x + Box + tBiz + t* Bax + tABox + §A(AB()$ + Bix)

—xz, z€R(G), tel0,1).
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Therefore, A(AByx + B1z) = —x — 2By, x € R(G), and in conclusion, one
yields: S2(t)z € D(A), AS2 (t)x = A(S(t)z + Box) + t(—x — 2Bsz), = € R(G),
€ [0,7), R(G) C n?:o D(Y;) and Yox = —x, € R(G). Suppose x € D(A;).
Since R(By) € D(A) and AS? (t)z—S2 (t)Azx = [AS(t)z+ABoz+tA(ABy+Bi)z] —
€ [0,7), Proposition iv) immediately implies (5% (t)z, S%(t)A1z) € Ay, t €
[0,7). So, (Si(t))te[ox) is a twice integrated semigroup generated by A;. Because
R(S%(t)) € D(A), t € [0,7), the mapping ¢ — S% (¢)z is continuously differentiable
for every fixed z € R(G) and the following holds: 452 (t)z = AS? (t)z + ta =
A(S(t)x + Box) — 2tBax, t € [0,7), x € R(G). Then it is straightforward to see
that 452 (t) € L(R(G)), t € [0,7) and that (fot(%Si(s)x) ds, (482 (t)z) — tz) €
Ai, t € [0,7). Suppose now z € D(A;). Then 4S%(t)z = AS%(t)z + ta =
S2(t)Az + tz € D(A) and ALS2(t)x = AS?(t)Azx + tAx = LS52(t)Ax, t €
[0,7), (£S5 (t)x, &5 (t)A1z) € Ay, t € [0,7), and consequently, <%S‘2|‘(t))t6[0,7')
is a once integrated semigroup generated by A;. In order to obtain the corre-
sponding statement for the operator —A; and (5% (t))tefo,r), notice the follow-
ing facts: . holds for —A and G, G fulfills (DG)4 with u(’;z), G(p)z =
o[22 o) (@) (1) S(t)|zdt, z € E, ¢ € D and ((—1)"S(t))ie(—rr) is a
[( )""Bo, s (= 1)”“+”°Bn0, (=110, ..., (—=1)ntm 0, _]-group with a sub-
generator —A.

In order to prove (b4), assume 2 € R(G). Let (z,) be a sequence in R(G)
with lim, . x, = z. Due to and (bl), lim, e Yn,—1(2n) = Yu,—12 and
limy, 00 AYpo—1(2n) = —2 — ng!Bpyx. Hence, Y, ,—12 € D(A), x € D(Y,,) and
Y.,z = —x as claimed. This yields SY°(¢)z € D(A), x € m As in the proofs
of (b1), (b2) and (b3), one obtains S}°(¢t) € L(R (fo Sho(s)xds, ST (t)x
Zno‘x) € +A;, x € R(G), t € [0,7) and SY°(¢ )Alx = A 570t )ac, tel0,7), x €
R(G). We will sketch the rest of the proof of (b4) only for A and S(-). Suppose
t, s € [0,7) and t + s < 7. Since ASY°(:)x = SY°(-)Az, x € R(G), one can
repeat literally the arguments given in the proof of [29] Propostion 2.4] in order to
conclude that:

(4.11) ST (£)S70(s)x = [7— j - / }%sﬂr)xdr, z € R(G).
0 0 0

The standard limit procedure implies that remains true for every x € R(G)
and t, s € [0,7) with ¢ +s < 7. It is straightforward to verify that (SY°(t))icp0,) C
L(R(G)) is a local ng-times integrated semigroup in the sense of (A). To prove that
Aj,—1.+ is the generator of a local ng-times integrated semigroup (S}°(t)):c(o,7) in
the sense of Definition 3.1, we argue as follows. First of all, let us observe that
A;mfl’ 4 is a closed operator and that the arguments employed in the proof of
Proposition[3.2]also show that D(A™)ND(A;) € C™ (7). Suppose now = € D(Ay),

where Ag is the infinitesimal generator of (S (t))¢cjo,). This implies the existence
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of a number o € (0,7) so that the mapping ¢ — S”O( Jx, t € [0,0) is no-times
continuously differentiable and that Aoz = limy_o4 (g (S} (t)z) — x)/t. On the

other hand, the closedness of A offers one to show that jtk S(t)r € D(A) and

that %S( Y = Adtk S =35 g (G~ k)t)=F=1B;x, for every t € [0,0)

and k € {0,...,n9 — 1}. Therefore, z € N2, D(Y;) and Y,z = f(jTiS(t)x)
k €{0,...,n0}. Moreover,

dmo
dtno

t=0’

(ST (t)x) — o = A[%Sio(t)m} —ng!Bpot — &
A[j;jo 11 Sho(t)x } + AY,, 1z = A[%S? (t)x — (%S(t)m)tzox}.

It is also evident that

The closedness of A implies # € D(A;), Agpx = Ajz and, because of that, Ay C
A;. Further on, R(G) C D(A™) N D(A;) C C"O (1) and an application of [40l
Proposition 4.5] gives (fot S0 (s)xds, SY(t)x — 4 £lz) € Ag, z € R(G), t € [0,7)
and ST (t) Aoz = ApST°(t)x, t € [0,7), z € D(Ap). Suppose (z,y) € Ag. Then

nofl nofl i no— 1

0=ASY(t)x — Si°(t)y = Z t'Cix + Z %AYM Z Yy, [0,7)

=0 =0

and this implies Ag C A}, _; . Further, fix an 2 € D(A], _, ;) and notice that
ASTY(t)r = SY°(t)Ax, t € [0,7) and that

t t t
gmo
A 143 (/Sio(s)xds,Sf_o(t)a: no!z) = (/Szo(s)de,Al/Si‘](s)xds)
0 0 0

= </szo(s)xds,O/SiO(s)Axds), tel0,7).

This implies

C/S"O Yo ds + - AY/S"0 Yrds = Y/S"O YAz ds,
O telo,7),i€{2,...,n0—1}.

Differentiate this equality to obtain that C; S} (t)z+ £ AY; S} (t)z = %YZ-SZL_" (t) Az,
te0,7),i€{2,...,n9—1}. Thus, ST°(t)A}, , , C A, 1 ,.S}(t),t€[0,7)and
A, —1.+ is the generator of a local ng-times integrated semigroup (S}°(t));e[o,7) in
the sense of Definition _An application of the arguments given in the proof of
[24, Proposition 2.1] gives Ag = A;, _; .. Since R(S°(t)) € D(A), the mapping
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t— SY°(t)x, t € [0,7) is continuously differentiable for every fixed z € R(G) and

d g o no—1 mo—l i fmo—1

t €[0,7), z € R(G). Then it can be easily verified that (£ S7°())sci0,-) € L(R(G))
is a local (ng — 1)-times integrated semigroup in the sense of (A). The c.i.g of
(%S_’f_o (t))eeqo,r) is Ao = A}, , and an application of [40} Proposition 4.5] enables
one to conclude that A;, _; . is the generator of a local (ng — 1)-times integrated
semigroup (457° (t))tefo,r) in the sense of Definition

To prove (b5), suppose A € p(A) and set Ay = A — X\, Gy = e G and
ur(;2) = e Mu(sz), € R(G) = R(G,). It is straightforward to check that
A, and G fulfill 1) and that G is regular with G (¢)x = ffooo e(t)ux(t; z) dt,
¢ €D, x € R(Gy). Clearly,

T

Galp)z = Gle M p)z = (~1)"™ /(37’\'80)(”0)(’5)5(@95 dt

—T

—1)"0/2(—1)"0% ("ZP)A”O"e”gp(“(t)S(t)xdt
2 i=0

= i(—l)i(?))\no—i_[ w(i)(t)(e—AtS(t)x) dt = (_1)"°_Zw(”‘))(t)e_“S(t)xdt
+Z (7 ) )/ " j e s (oyrdsa
“ 0

= (1)"°]¢("0)(t) {e’\tS(t)x + i <T;O> P /t MeASS(s)x ds|dt,
i i=1 0

for every ¢ € D(_; ) and x € E. Put, for every t € (—7,7) and z € E :

S\(t)z = e MS(t x—i—Z( ))\"0 Z/t((tn;i);m__il_)!le_’\SS(s):Eds.
0

Then the mapping Sy : (—7,7) — L(E,[D(A,)]) is continuous and Gy(p)z =
(=1)m [T o () (1) S\ () dt, ¢ € D7), * € E. The proof of (a) implies that
nO,CO7.. C)‘ _; such that A, is
a subgenerator of a B, nO,CO yer C’no 1]-group (S)\( ))te(fm')- Define Y}
recursively by: Y3\ = B’\ and YA, = i+ 1D)IBX+ A\, i € {0,...,no—1}. Since
0 € p(A,), we have that YZ’\ isclosed, i =1,...,n9. Suppose, for the time being, x €
R(G) and (z,) is a sequence in R(G) such that lim,,_,o, , = 2. A consequence of
Y,;\Oxn = —x,,n €Nislim,_ . AAY no—1Tn = —T — nolB;}O,T and the boundedness

there exist bounded linear operators BS‘, ..
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of Ay implies lim, o0 Y, 12, = Ay (—2— nO!BT)L‘Ox). Continuing this procedure
enables one to establish that, for every i = 1,. —1, lim,, ., Yz, exists. The
closedness of Y yields z € ﬂ?oo D(Y;?)) and Y)‘ r=—x. Put A; \ = (A,\)m and
Cx = A;("O_l)x, z € R(G). Because Gy Ay C A\Gy, we have A, G, = G A"
k€ N, A7*(R(G)) C R(G), k € N and A;*(R(G)) € R(G), k € N. This offers
one to see that 0 € p(A;,) and that C' € L(R(G)) is injective. Assume now
x € D(A;Lf’)\_l). Then Ai‘}\_lx € R(G) and this gives z = A;("O_l)(AZU_lx) =
C(A}~'z) € R(C). Hence, D(A;"O/\*l) C R(C). Proceeding as in the proof of
Proposition one obtains that the mapping t — Sx(¢t)z, t € (—7,7) is no-times
continuously differentiable and that there exists a function M : (—7,7) — (0, 00),
independent of x, so that | gg;oo Sa@)z| < M(Jt) X, |4k, t € (—=7,7). Put
urMt;x) = dt"O 2 S\(t)x, t € 0,7), 2 € D(AY™Y) and T(t)x = ur(t; Cx), t € [0,7),
x € R(G). Due to Proposition E, D(AY™") € D(Yy*) and v*(0;x) = —Yy"w,
z € D(AY™Y). Moreover, R(C) C R(G) N D(A}*~") and this implies u*(0; Cz) =
-Y"Cx = Cx. The mapping t — T'(t)x, t € [0, 7) is continuous for every fixed z €
R(G) and |[T(t)z]| = ur(t A"~ Va)| < M(1) ey ||A Hellzll, ¢ € 0,7), 2 €

R(G).

D(AY™

The partial integration shows G (p)z = ij ot urt;x) dt, ¢ € Dip,ry, © €

') and this implies u*(t;z) € R(G), t € [0,7), © € D(A;fo_l). Therefore,
T(t)x € R(G), t € [0,7), z € R(G) and T(t) € L(R(G)) € [0,7). As in the
proof of (bl), one concludes Ay f(fu (s;Cz)ds = Ay fo s)xds = u(t;Cx) —
u?0;Cx) = T(t)x — Cx, t € [0,7), € R(G) and that u (t,AAx) = Ayut(t; 2),
t €[0,7), z € D(AY"). Due to the previous equality, we have T'(t)A; x € A1 \T'(t)
and T'(t)C = CT(t), t € [0, 7). Now it is straightforward to prove that the abstract
Cauchy problem:

v E C([O,T) : [D(ALA)D N Cl([O,T) : 72((?))7
V'(t) = A1 v(t) + Cx, t € ]0,7),
v(0) =0,

possesses a unique solution for every z € R(G) given by v( fo s)xds, t €
[0,7), € R(G). This simply implies that the abstract Cauchy problem:

fe C([Oﬂ') : [D(AL)\)]) N Cl([O,T) : R(G)),
(ACP,7) : f’((t)) = A\ f(t), t€0,7),
J(0) ==,

has a unique solution for every z € C(D(A;,)) and that A; \ is the integral
generator of a local C-semigroup (7'()):e[o,r)- As before, D(AY°) C C(D(Ax)) and
an application of [44, Theorem 4.4] shows that Aj » generates a local (ng —1)-times
integrated semigroup on [0,7). A rescaling result for local integrated semigroups
(cf. for instance [1]) implies that A; generates a local (ng — 1)-times integrated
semigroup on [0, 7). Analogously, —A; generates a local (ng — 1)-times integrated
semigroup on [0, 7) and the proof ends an employment of Corollary O
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THEOREM 4.2. Let G be a (DG) generated by A. Then the group (S(t))ie(—r.7),
constructed in Theorem a), is non-degenerate. If ng = 1, then A generates a
Co-group. If ng = 2, then:

(a) (Si(t) = +A(S(+t)x + Box) — 2tBox)sepo,r) are local once integrated
semigroups in the sense of (A).
(b) The c.i.g of (S}r(t))te[oﬁ), resp., (St (t))teqo,r) 18 Am, resp., (—A)m.
(¢) Suppose A is densely defined or A — A is surjective for some A € C. Then
+A are generators of local once integrated semigroups (SL (t))eefo,r) -
Furthermore:

(i) For every x € E and ¢, v € D(_; ) with supp ¢ +supptp C (-7, 7):

(4.12) G(@)G(qp)x:i(fl)i“i! / ™) (¢) / (0= (5)S(t + s) By ds dt.
=0 —o0 —o0

(ii) Yo,z = —z, x € N2, D(Y;).
(iii) Suppose x € D(A™~'). Then {z,Az} C N2y D(Y;), Yoo = —u,
Yo, Ar = —Az and D(A™1) C R(G).
(iv) A is stationary dense with n(A) < ng — 1.
(v) If p(A) # 0, then for every 19 € (0,00), there is an n(ry) € N so that A
generates a local n(1y)-times integrated group on (—7p,7o)-
(vi) G is dense iff Do (A) is dense in E. In the case p(A) # 0, G is dense iff
A is densely defined.
(¥i) Npep, N(G(2)) = 0} and (1,cp, N(G(@) = (0},

PROOF. Assume S(t)x =0, t € (—7,7). This implies G(¢))x =0, ¥ € D(_, 1)
and G(p)x = limy, 00 G(p * pp)z = limy, o0 G(p)G(prn)x = 0, p € D, where (p,)
is a regularizing sequence. Owing to (DG)2, one can deduce that z € N (G) and
that (S(t))¢e(—r,r) is non-degenerate. Put now Si(t)x = S(t)x + Box, t € (—7,7),
r € E. We will prove that (S1(t))¢cjo,r) is a once integrated semigroup generated
by A. First of all, note that S1(t)A C AS;(t), t € (—7,7) and that Sy : (—7,7) —
L(E,[D(A)]) is continuous. This clearly implies %S (t)z = ASi(t)z + Bz, t €
(=7,7), ¢ € E, where B=—B; — ABy € L(FE). Further, fot Si(s)xds € D(A), t €
(—7,7), x € E and one gets that Afot S1(s)zds = AfOt(S(s):c + Boz)ds = S(t)x +
Box+tBix+tABox = Si(t)r—tBx,t € (—7,7), x € E and that (S1(t))ie(—r,r) is a
[0, —B, 0]-group with a subgenerator A. We will prove that B = I. Suppose (,n €
D(_7/a,7/2) and (py) is a regularizing sequence. We know [23] that supp I¢(¢) C
[ min(—7/4, inf(supp ¢)), max(7/4, sup(supp ¢))] and that there exists k € N such
that supp I¢(pn) Usupp I, (pn) C [—7/4,7/4], n > k. Fix an « € E. By (DG); (see
also the equation given below), one gets that, for every ¢, € D(_; /4 7/4):

(4.13) / ) / W'(5)S1(8) 1 (s)z ds dt = — / ) / D(s)Sh(t + s)a ds dt.

Put ¢ = I¢(pn), n > k in (4.13). Then one obtains, for every ¢, 1 € D(_; 4.+ /4):
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oo

[ -] [ wosiosiswasa

— 00

:_/ [pn(t) = C(t)] /w(s)Sl(t—i—s)xdsdt.

—00

Letting n — oo and applying the partial integration, one concludes that, for every
¥ € D(—r/a,7/4)!

(4.14) —/C(t)/w’(s)Sl(t)Sl(s)wdsdt

o

_ 7zp’(s)/851(v)xdvds— 74@)/ ’(s)/sSl(t+v)xdvdsdt.
S Jo

o'} 0
Plug ¢ = I,)(pn), n > k into (4.14). We get, for every ¢ € D(_;/4,7/4):

oo oo

_/C(t) / [on(s) —n(s)] S1(t)S1(s)x ds dt

— 00 — 00

oo

:/[pn(s)—n(s)] /SSl(v)atdvds—]oC(t)f [pn(s)—n(s)]/Sl(tw)xdvdtds.

—00 0

S

—00 0
The standard limit procedure leads us to the next equality:

oo

(4.15) / C(t) n(s)Sa(8) 1 (s)z ds dt

. = — 777(8)/851(v)xdv ds + 7C(t)n(s)/SS;[(t—I—v)xdvdtds.
Sy 0 “oo 0

Let t, s € (—7/4,7/4) be fixed and let (¢n)nen and (nn)nen be sequences in
D(_r/a,7/4) satisfying [T C,(t)dt =1, [T nu(t)dt =1, n € N, limp—oo G = &
and lim, .o 7, = s, in the sense of distributions. By virtue of (4.15]), we have:

t+s t s

(4.16) S\ ()51 ()a = { / _ / - / ]Sl(r)mdr.
0

0 0

Notice that (4.16) implies

S1(1) (%51(7“)1‘) T S1(t+ s)x — Si(s)z,

S1(t)[AS1(s)x + Bx] = S1(t + s)x — S1(s)z.
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Since S1(t)A C AS:(t), t € (—7,7), one yields:
t+s t S

A{ / //]Sl(r)xerrSl(t)Bx—Sl(t+s):£Sl(s)x, ie.,
o 0 0

Si(t+ s)x — (t + s)Bx — S1(t)x + tBx — S1(s)x + sBx + S1(t) Bx
= S1(t + s)x — S1(s)x.

So, S1(v)[Bx —a] = 0, v € (—7/4,7/4). Since G(p) = — [7_ ¢’ (v)S1(v)z dv,
© € D(_7/4,7/4), one can easily conclude that (S1(t))ie(—r/4,7/4) is @ non-degenerate
operator family. Hence, B = I and (S1(t))¢c[o,) is a once integrated semigroup
generated by A. Analogously, (—S(—t) — Bo):co,r) is a once integrated semigroup
generated by —A and one can repeat literally the arguments given in the proof of
Theorem [£.1[b2) in order to see that A generates a Co-group. Suppose now ng = 2
and denote A; = Am. We will only prove that A; is the c.i.g of (S}_(t))te[07T).
Evidently, ABy + By € L(E), G(p)z = [7 " (1)[S(t) + Box + t(ABy + By)xldt,
¢ € D(_77), * € E and the mapping t — S(t)x + Box + t(ABo + Bi)x, t € [0,7)
is continuously differentiable with

d

%[S(t)$ + Box + t(ABo + B1)JZ] = AS(t)J? — Bix — 2tBsx + (ABO + B1)$7

t €10,7), z € E. Therefore,

(4.17) G(o)x = — / P()SL(Mzdt, e Dio,ry, = € E.

Suppose x € E, ¢, € Djy ;) and supp ¢ +supp e C [0, 7). Since G satisfies (DG);
(see also (4.21))), we obtain

7 ' (t) 7 W' (s)S4 (1) S (s)w dt ds = — 7 ' (t) 7 P(s)S(t + s)udtds.

Arguing as in the case ng = 1, one gets, for every ¢,s € [0,7) with ¢t + s < 7:
t+s t s

S (1)S (s)z = [/—/—/]Si(r)xdr.
0 0 0

Further on, S%(0) = 0 and the mapping ¢t — S} (¢)z, t € [0,7) is continuous. It
can be simply verified that (S (¢))¢eo,r) is a non-degenerate operator family, and
consequently, (S4 (£))¢e(o,r) is a local once integrated semigroup in the sense of (A).
Suppose z € D(Ap). Then there exists o € (0, 7] such that the mapping t — S (¢)z,
t € [0,0) is continuously differentiable and that Aoz = lim;_.o (% (SL(t)z)—2)/t.
The partial integration and yield:

(4.18) Glp)z = / go(t)(%S}r(t)x)t, ¢ € Dpo.o)-

— 00
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Owing to and Theorem b3), we get lim, oo G(pp)r = J: E R(G),
52 (t)x = S(t)z + Box + t(ABy + By)z € R(G), t € [0,7) and R(G) > 482 (t)z =
AS(t)x— Bz —2tBox+(ABy+Bi)x = Si(t)z, t € [0,7). Consequently, dtSl (t)x e
R(G), t €[0,0), Aoz =limy_o1 (&(Si(t)z) — )/t € R(G) and:
(4.19) {z, Ayz} C R(G).
Further, 4 S(t)x = AS(t)x — Byx — 2tBayx, t € 0,7),
A[S(t + h)x — S(0)z] — A[S(t)z — S(0)z]

h

) dt

- 1 — i
o S+(t)x + 2Bsx ]}Lli%

~ lim AS(t—i—h)x - S(t)z

Jim T tefo.0)

and
t+h)x—S(t
lim S+ )i ST _ 4s(t)e — Bio— 2Bow, te[0,7).
The closedness of A gives AS(t)x — Bix—2tBsx € D(A), t € [0,0) and A[AS(t)z —
Bz — 2tBox] = %Si_(t):z: +2Bsz, t € [0,0). Put t = 0 in the previous equality to
obtain A(ABy + By)x = —x — 2Bsx. Hence,

d (gl
L (SL(t)x) — AlA — Bix — 2tBsx| — 2Bsx —
Apz = lim FACEOD N lim AS(t)r = Brz = 2tBsa] 20
t—0+ t t—0+ t
_ A[AS(t)x — Byx — 2tBox] + A(ABy + B1)x
T o t
_ th%1+ AA[S(t)a: - S(0)z] — 2thcv.

On the other hand,

A[S(t)x — —2tB St (t)x — SL(0 d

t—0+ t t—0+ t dt t=0
Therefore, z € D(A), Apx = Az, Ay C A and (4.19) enables one to see that
Ay C A; and that Ay C A;. Furthermore, Theorem b3) shows that A; is

the generator of a once integrated semigroup (%Si(t))te[o S L(R(G)) in the
sense of Definition Accordingly, (%S?‘F(t))te[o,r) C L(R(G)) is a local once
integrated semigroup in the sense of (A) and it can be easily proved that the c.i.g
of (452 (t))tE[O,T) is A;. But, th: c.i.gof (S}ﬁ))te[ox) is an extension of the c.i.g of
(%Si(t))te[o e Hence, A1 C Ay and A; = Ay. Further on, it is straightforward to
see that 4 S1 (t)z = AS(t)Ax— B1 Az —2tBy Az — (2B;—Cy)z, t € [0,7), « € D(A).
Due to [40, Lemma 4.3(b)], we obtain that = = (—%Si(t)x)tzo, xz € D(A) and an
immediate consequence of this equality and (4. 181 is hmnﬁoo Glpp)r =z, © €
D(A). By Theorem [4.1[b3), we have D(A) C R( ) € Ny DY) and Yor = —z,
x € D(A). Suppose z € D(A). By Proposition [3.2(iv), Az 6 D), Ciz+ AYix =
Y1 Az and, because of that, 2Bsx + Y1 Az = Clac + Yor = Ciz — . Now an
application of Propositioni) shows that Y1 Az = —(2Bsax—Cha)—z € D(A) and
that AY; Az = —2ByAx — Az. In other words, Ax € ﬂ?:o D(Y;) and Yo Az = —Ax.
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Let us prove (c). First of all, suppose A € C and A — A is surjective. Assume
x = (A — A)y, for some y € D(A). We obtain F = ﬂ?:o D(Y;) > x and Yoz =
Yo(Ay — Ay) = =AMy + Ay = —z. Proceeding as in the proof of (b3) of Theorem
[41] one gets that

t
t2
A / S’ s)xds = S(t)x + Box + tByx + t*Box + t ABox + 5A(ABOQ: + Byz)
0 9 t2
=81(t)x - 3% z€eE, tel0,7).

This implies fg Si(s)xds € D(A), t € [0,7) and Afg St(s)zds = Si(t)x — tx,
x € E, t €[0,7). Assume z € D(A). Due to Proposition (i)7 we get St (t)z =
(S(t) — S(0))Az — t(2Bax — Chz) € D(A), t € [0,7) and ASL(t)z = A(S(t) —
5(0))Az — 2tBy Az = S (t)Ax, t € [0,7). Suppose now that A is densely defined.
Since D(A) € R(G), we automatically obtain that R(G) = E and that A is the
c.ig of (S} (t))eo,r)- Due to [40, Proposition 4.5, (S} (t))efo,r) is a local once
integrated semigroup in the sense of Definition To prove (i), suppose = € E,
©,% € D(_; ) and supp ¢ + supp¢ C (-7, 7). Note that:

[o )

()G ) = / () ./¢M S (s)z ds dt

=—/<p("°)(t)/w<”0+” /S )a dv ds dt.

Repeating literally the arguments given in the proof of Proposition one obtains
(3.7) and the last equality implies:

no— 1 S
G(p)G(Y)z = / (o) (¢ /¢(n°+1) [ Z/t—i—s—r /CS Yz dv dr
+i] (t+s—r) =1 B;S(v )xdvdrfi S (t4s— r)B; mdr}dsdt
Ry PRy

Jj=1 0
Noticing that ffooc oM ()t dt =0, n €N, j € Ny, n > j, one can deduce that:

nols

I / (no) /,(/)(no-&-l) Z/t+s—r /CS Yo dvdr dsdt = 0.

—o0
As a matter of fact,

o0 o0

= [ [t

— 00 — 00
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T

3k ok
% Z/ ) mtk Skz(_r>k3/CjS(U)$dvd7“det.
J=00 (k1,ka,ks)ENG 5
ki+kot+ks=j

Suppose j € {0,...,n9 — 1}, (k1, ko, k3) € N§ and k1 + ko + k3 = j. One gets:

(n, ) (n +1) Ky k2
/ 0 /w 0 /kl'kg'kgt /C'S Yo dv dr dsdt

/ om0 (£) ¢kt / Yot (g /k T sk2(—r)k3/CjS(v)xdvdr ds = 0.
1+R2:R3:
o o 0

Hence, I; = 0. Analogically,

7 0] 7 ot (s)

and we obtain:

r

j/(t+s—r)j_l/BjS(v)xdvdrdsdtzo
0

no
j=1

oo

G(p)GY)x = / (mo) (¢ / ot (s /rﬂ'S(t+s—r)Bmdrdet

0o no t+s
(4.20) = / (™) (1) / Yot (g Z/ t+s—r)S(r)Bjxdrdsdt.
oo oo =0 %

Put, for every t € (—7,7) and j € {1,...,no + 1}:
t+s
gjt(s) == /(t +s—7r)"1S(r)Bjadr, sé€ (-1 —t,T—1).
t
It is straightforward to check that 2g;,(s) = (j —1) J; Tt s — r)I=2S(r)B;x dr,
j>1,s€(—7—t,7—t) and that Lg; (s) = S(t—i—s)Blac7 s€ (=7 —t,7—t). The
partial integration and imply:

no t+s
o) // (10) (£)p(10) (5 Z/ (t+s— r)7~LS(r)B;a dr ds dt
J=1%

— 00 —O0

- / / (™) (£))("0) (5)S(t + s) By ds dt.

— 00 —0O0

Apply again the partial integration in order to see that:

G(p) // (70) (£)4p(m0) (5)S(t 4 s) Box: ds dt

—0o0 —O0
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+ / / P (1) (5)S(t + ) Brards dt

t+s
/ / "o 1><>Z G —1) / (t+s =) 728 (r) By dr dsdt.

Continuing this procedure, we finally obtain (4.12]).
To prove (ii), suppose ¢, 1 € D(_; ;) and supp p+suppt) C (-7, 7). Evidently,

oo oo

Glp *¥)a = (1) / (% ) (DS () dt = (~1) / (70) s ) (1) () dit
(4.21) ~ (—1)m / [ / go(”O)(t—s)w(s)ds]S(t)xdt

= (=1)" /ap(”") /z/J (t+s)xdsdt, z€E.

Due to (4.21)), we have:

oo

(4.22) G(Y)x = hm G(w*pn)xfnhm (=1)™ / (mo) (¢ /1/) S(t+s)x dsdt,

x € E. Combining (DG)1, (4.12) and - ) gives:
(4.23) (~1)™GW)z = Z( DHNIG M~ N B, =€ E.

=0

Suppose now z € (%, D(Y;). A consequence of the definition of Y, and (1.2)) is
no!G(Y)Bp,x+AG(Y)Yny—12 = no!G(¢) Bryx— G )Yy —12 = G(¢) Yz Ifng >
2, then we obtain no!G(¢) Bp,x — G(¢')(AYng—22 + (nog — 1)!Bp,—12) = G(¥) Yoot
and no!G(¢) B,z — (ng — )IG(W')Bpy—12 + G )Yypy—2x = G(¥)Y,,xz. By the
definition of Y; and , one concludes inductively:

no
(4.24) D (1) tIG (0T Biw = G(4h) Vi, .

=0
This equality and imply G(¢)(Yn,x + ) = 0; a simple consequence is
G(n)(Yn,x + ) =0, n € D and the proof of (ii) finishes an application of (DG)s.

To prove (iii), one can argue as in the proof of (b5) of Theorem We

sketch the proof for the sake of completeness. Fix an x € D(A™~!). Since
S : (—71,7) = L(E,[D(A)]) is continuous, one can argue as in the proof of Propo-
sition in order to see that the mapping t — S(t)z, t € (—7,7) is no-times
continuously differentiable and that there exists a function M : (—7,7) — (0, 00)
satisfying Hdt"o tz|| < M@t)||xllng—1, t € (—7,7). Furthermore, holds
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for every [ € {0,...,n9 — 1} and one obtains inductively Yz = —(%S(t)x)tzo,
k €{0,...,n}. Denote u(t;z) = %S(t)x, t € (—7,7); then the partial integration

shows G(p)z = [*_p(t)u(t;z)zdt, ¢ € D_, ). The previous equality and (ii)

imply lim G(p,)z = u(0;2) = —Y,,z = x € R(G). Therefore, D(A™~1) C R(G).
Further on, Proposition iv) implies

Cho—1T + AY,—12 = Ynofl(A-T); i.e.,

(Tlo — 1)'

1
(TLO — 1)' (no — 1)'
Due to Proposition [3.2fi), Y,—1(Az) € D(A) and a simple computation gives
Y, Az = —Ax which finishes the proof of (iii).

Further on, let us observe that (iii) implies D(A™) C D(A™~ 1) C R(G) C
Dy (A) € D(An+1), for every n € N such that n > ng — 1. Hence, A is stationary
dense and n(A) < ng — 1.

To prove (v), suppose A € p(A4). We will prove that A generates a local
(ng — 1)-times integrated group on (—7, 7). Repeating literally the arguments given
in the proof of Theorem one gets Afot u(s;x)ds = u(t;x) —x, t € (—7,7),
xr € D(A™~1) and Au(t;x) = u(t; Az), t € (—7,7), * € D(A™). Put S0~ 1(t)z =
u(t; RN+ A)™~1z), t € [0,7), € E. Clearly, the mapping t — S0 ~1(t)x,
t € [0,7) is continuous for every x € E and an induction argument shows that, for
every k € Ny, there exists an appropriate constant M (k, ) € (0, 00) which fulfills
|A*R(X : A)Fz|| < M(k,\)||z||, » € E. This implies

18" (B)z]| = lult; RON = A)" ™ )| < MR = A)"0 " ]y
no—1
<M(t) Y M(@@N|RO: Ao ],
i=0
x € E and S™~1(t) € L(E), t € [0,7). In order to simplify the notation, denote
C = R(\: A)™~1. We have Afot Smo-l(s)rds = Afot u(s;Cx)ds = u(t;Cx) —
Cx = S~ Y(t)z — Cz, t € [0,7), x € E. Since Au(t;z) = u(t; Azx), t € (—7,7),
x € D(A™), one easily obtains S™71(t)A C AS™~1(t), S~L(H)R(\ : A) =
R(X\: A)S™~1(¢) and, by induction, S™~1(t)C' = CS™~1(t), t € [0,7). Now it is
straightforward to prove that the abstract Cauchy problem:
ve C([0,7): [D(A)])NCH[0,7) : E),
v'(t) = Av(t) + Cz, t € [0,7),
v(0) =0,

Chro—1% + [~z —ng!Bp,z] = Y,,—1(Az).

has a unique solution for every = € E, given by v(t) = fot Smo=Y(s)xds, t € [0,7),
x € E. By [44] Theorem 4.4], A generates a local (ng — 1)-times integrated semi-
group on [0, 7). Since —A generates a (DG) @, we also obtain that —A generates
a local (ng — 1)-times integrated semigroup on [0,7) and Lemma [2.2(v) implies
that A generates a local (ng — 1)-times integrated group on (—7, 7). Thus, (v) is a
consequence of Corollary c).
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To prove (vi), notice that the assumption R(G) = E and R(G) C Do (A) imply
that Dy (A) is dense in E. The converse statement is obvious since Do (A) C
D(Am—1) C R(G) (cf. the proofs of (iii) and (iv)). In the case p(A4) # 0, the
denseness of Do (A) in F is equivalent to the denseness of D(A) in E (see, for
example, [27]) and the proof of (vi) completes a routine argument.

It remains to be proved (vii). Suppose G(¢)x = 0, ¢ € Dy. This implies
(=1)mo [0 @ (t)S(t)zdt = 0, ¢ € Dy ;) and the existence of bounded linear op-
erators Dy, ..., Dy, —1 € L(E) satisfying S(t)z = Z;ﬁgl t!Djz, t € [0,7). Hence,

n()l nol

(4.25) AZ Dx_thDx+Zth €0, 7).

Substitute t = 0 in (4.25)) to obtain Dy = —By. Differentiating (4.25|), it is straight-
forward to see that: = € (1%, D(Y;), U, ' {Diz} € D(A), D; :c = (71)Yx i=
1,...,n9—1and A(D,,—1z) = ngBp,x. This implies (nano + o 1 ,AYn0 1)95 =
0, i.e., z € N(Y,,). Due to (ii), z = 0 and m@GDo N(G(y)) = {O} The second
equality in (vii) follows by passing to —A and G. O

EXAMPLE 4.1. Let F := L*°(R) and let A := Wlth maximal domain. Then
A is not denbely defined and generates a once mtegrated group (S1(¢))ter given
by (51 = fo r+s)dr,s e R, t R (cf also [12, Example 4.1]). Put

f—fOSl fdst 0, fekE, St fffo Si(—s)fds, t <0, f € E and

o) f == [T " (t)S2(t) fdt, o €D, f € E. Then (S(t))ser is a twice integrated
group generated by A, the mapping So : R — L(E,[D(A)]) is continuous and G
is a non-dense (DG)vgenerated by A (cf. Theorem [.2] with ng = = 2). We would
like to point out that there exists f € D(A) such that Af ¢ R(G). Suppose
contrarily that R(A) € R(G). By Theorem 6.2, D(A) C R(G) and we obtain
A=A feR(G), NeC, feD(A). Since C\iR C p(A), one yields E = R(G)
and the contradiction is obvious. Hence, Theorem implies that (Sl( )0 is a
once integrated semigroup generated by A in the sense of Definition [2.3| and that
the c.i.g of (S1(t))ter is AR(G) (# A). Furthermore, R(G) & ﬂz:O D(Y; ) =FE.

PROPOSITION 4.1. Suppose Gy and G2 are distribution groups generated by A
and p(A) # 0. Then G = Gs.

PROOF. Suppose © € E, A € p(A) and ¢ € D, ., for some 7 € (0,00).
We will prove that Gi(¢)z = Ga(p)z. Clearly, G; € D'(L(E,[D(A)])), i = 1,2
and an application of [32] Theorem 2.1.1] gives that there exist ny € N, ny € N
and continuous mappings S; : (—7,7) — L(E, [D(A)]), i = 1,2 so that G;(¢)z =

—1)m ffooo D) (0)S; () dt, 1 € D7), * € E, i = 1,2. The proof of Theo-
rem [£.1] shows that there are bounded linear operators

BO7'"7BnlaBOa"'7B’nzcha"'7Cn1717007-~-acn271
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such that (S1(t))e(—r,r), resp., (S2(t))ie(—r,r) is a [Bo,...,Bn,,Co,...,Cpy—1]-
group, resp., [?0, eeesBn,,Coy .o, Cryy ]—group with a subgenerator A. With-
out loss of generality, we may assume m; = mno. Further on, the proof of Theo-
rem [4.2|implies that (£3S;(t)R(\ : A)™—1) 1,2 are local R(\: A)y™~1-

i =
dtm1 tel0,7)’
semigroups generated by A. Hence, there exist zo,...,xn,—1 € E which satisfies

SiRN: A1y — So()R(N : Ayl = Z?:lal tiz;, t € [0,7). An immediate
consequence is:
RO\ : A™M1G(@)x — RO\ : A)™M LGy (p)x
=G1(p)R(\: A" e — Ga(p)R(N : A)™ e

oo

ny— 1
=(-)m / (m)( Z tha; dt =0,
which clearly implies G (¢)z = Ga(p)z. O

REMARK 4.1. (i) Suppose A generates a (DG) G and p(A) # 0. Then there
exist @ > 0 and b > 0 such that E(a,b) C p(+A) and that the next representation
formula holds for G:

)\t A — At —A
- / / ROV: Az + e MR(A : — A)z]dtd),

x € E, ¢ € D, where we assume that the curve I' = 9E(a, b) is oriented upwards.

(ii) Suppose G € D'(L(E)) is regular, A is a closed linear operator so that
holds and there are no non-trivial solutions of the abstract Cauchy problem:

{ ue C(R:[DA)))NC'R: E),
(ACPy) : ¢ u/(t) = Au(t), t € R,
u(0) = x,

when z = 0 (cf. Theorem. Then G(p*¢)z = G(p) G(w)x z € R(G), p, € D.
To show this, let us point out that G(p * )z = [T [ () ¥(s) u(t + s;2) ds dt
wdmwcwmzﬁ;wwcwmmeuxeR<>wweDsmwGO L(E),
the consideration is over if we prove that G(v) = [T w(s)u(t + s;z)ds,

Y eD, IER(G) t € R. Put, forﬁxedv,/;EDandeR(G) f():zG(?/J) (t;z)—
75 w(s)u(t + s;x)ds, t € R. Then

A/ﬂﬁ@:mwmww—ﬂ—fw@A7lm@m@
0 - s

o0

= G)[u(t;x) — z] /1/) u(t + s;x) —u(s;z)]ds = f(t), teR.

So, the function wu(t fo s)ds, t € R solves (ACP;) and u(0) = 0. This proves
f=0.
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(iii) Suppose G € D'(L(E)) is regular, holds for A and G, 7 € (0,00)
and p(A) # 0. Set Gy = G 7@ Then Gy is a dense (DG) in R(G) generated
by A;. To this end, we employ the same terminology as in the proof of Theorem
b5); without loss of generality, we can assume that 0 € p(A) so that Ay = A,
uy = u and G = G. Suppose (p,) is a regularizing sequence. Choose an arbitrary

€ (0,00) and notice that

C*G(p*)r = CG(p x)Cax = C / (o * ) (&) u(t; Cx) dt

o0

:C/(w*w)(t) t)z dt = C/ / T(t+s)zdsdt
- / / (1) B(3) T(t) T(s)a ds di = G(o)CG()Cr = C2Gl(p) G(),

for every z € R(G) and ¢, 1) € Dyy,ry with supp ¢ +supp¢ C [0, 7). The injective-
ness of C' combining with the argumentation used in the proof of Theorem bl)
enables one to deduce that G(yp * )z = G(p)G(Y)z, ¢, € D, x € R(G) and that
G1 € D'(L(R(Q))) satisfies (DG);. The assumption G;(¢)x = 0, ¢ € D implies
Gi(p)Cx = [T _pt)u(t;Cx)dt = [*_(t)T(t)zdt = 0, for every ¢ € Do ) and
Czx = T(0)x = lim,,_,o, G1(p,)Cx = 0. So, x = 0 and G; is a (DG) in R(G). Tt
can be easily seen that G is generated by A;.

(iv) Suppose G and A are as in (ii) and let A € p(A). Then the [By,..., By,,
Co, ..., Crny—1]-group (S(t))se(—r,7), constructed in Theorem a), satisfies (4.1,
as well as Y,z = —z, ¢ € R(G). Namely, (ii) shows that G; = Glm

(DG) in R(G) generated by A;. The proof of Theorem b5) implies that A; gen-
erates a local no-times integrated group (Sy, (t))te(—rr) in L(R(G)) and it is not dif-
ficult to show that G (p)z = (—1)" [ o(10)(£)S,,, (H)a dt+ [°_ <no)(t)s ( ) dt,
¢ € Di—rry ¢ € R(G). Hence, [;° M) (t)S,,(t)xdt = [;° M) (t)S(t)z dt,
¢ € Dy, x € R(G) and an application of [17, Theorem 8.1.1] gives the exis-
tence of operators D; € L(R(G), E), i =0,...,no — 1 satisfying S(t)x = Sy, (t)x +
St tiD, t € [0,7), © € R(G). Since Afo s)zds = S(t)z + Y. t' Bz,
t €10,7), z € E one obtains

is a

no—1 i+l no—1 tno __
3 n,

A ; ZJrlD VT = ; t'(D;x + Bix) +t™ B,z + n—o!x, te0,7), z € R(G).
This implies R(G) € D(Yn,), Dix = GHYie, i =1,...,n0 — 1, (1), (4.2) and
Yo, x = —z, © € R(G).

(iv) Suppose G is a (DG) and ¢ € D. Then G(¢) = G(p4+)+G(p-) if and only
if {G(py), G(p-)} C L(E) if and only if G(¢4) € L(E). Namely, the assumption
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G(p) = G(p4) + G(p-) immediately implies D(G(p+)) = D(G(p-)) = E and the
Closed Graph Theorem gives G(¢4) € L(E) and G(p_) € L(E). Clearly, {G(p4),
G(¢-)} C L(F) implies G(p4) € L(E). Suppose now G(p) € L(E). We will show
that G(¢_) € L(E) and that G(¢_) = G(¢)—G(p+). Fix an ¢ € E and notice that
Glp * )z = G(¥)G(p)r, 1 € D implies Glpy * h)a + Glo_ +$)z = GW)G(9)z,
1 € D. Since x € D(G(p4)), we obtain G(p— * )z = G(¢)[G(¢)x — G(p+)z]. So,
z € D(G(p-)) and G(p-)z = G(p)z — G(p ).

PROPOSITION 4.2. Suppose G is a (DG) and G(¢4) € L(E), ¢ € D. Put
Gi(p) == Glpy) and G_(p) := G((@)-), ¢ € D. Then £A are generators of
distribution semigroups G4.

PROOF. Owing to the previous remark, we have G1(p) € L(E), ¢ € D and
G(p) = Gi(p) + G_(p), ¢ € D. Evidently, supp G4 UsuppG_ C [0,00), G4 €
D{(L(FE)) and Theoremvii) implies () cp, N(G+(p)) = {0}. Since (pxo¢))1 =
w1 * Yy, p,p € D, Proposition yields that G is a pre-(DSG). Analogously,
G_ is a pre-(DSG) and one obtains that G, resp., G_ is a (DSG). Designate by
Ay, resp., A_, the generator of G, resp., G_. Then it is straightforward to verify
that Ay are extensions of £A. The proof is completed if one shows:

Ay CA and A_ C —A.

We will first prove that Ay = —A_. To see this, suppose z € E and ¢, ¢ € D.
Then one obtains: G(p * ¥)z = G(¥)G(p4)z, G4 (ot x )z + G- ((p1 * V) )z =

v

(G4 (¥) + G- (4)) G (p)z and:

(426)  Gilpyx e+ G ((py #¥))w = Gy (p o )z + G () Gy (p).

Further, notice that (1 * oy —@*_ —pxo1p)(t) =0, t > 0. The last equality and
(4.26) give G (¥ * 1)z = Gy(px Y- )z + Gi(p *0 )z and:

(4.27) Gi(px () )z + G ((pg #¥) )z = G_(¥) Gy (p)z.

Suppose now (z,y) € D(A;), a > 0, % € D(4,o0) and (py,) is a regularizing sequence

satistying supp p, C [0, 2], n € N. Since G (—p)z = G4(¢)y, ¢ € Do, ([{27)
enables one to establish the following equalities:

(4.28) Gy (pn* (0)2)y+ G—((pn * %))y = G_() G4(pn)y
= G_(¢) Gy (=p)x = Gy (=p, * () )x + G (( = pl, ) ).

Clearly, supp(p, * (12})*) U supp(—p’n * (15)*) - [0, %] + (—00,—a) C (—O0,0],
n > L and an application of gives:
(4.29) G-((pn*¥) )y = G- (( = pux ()))z.

Letting n — oo in , one concludes that G_(¢)y = —G_ (((’LZ)),)V):E =G_(¢Y)x

and, as a matter of routine, one can see that the previous equalities remain true for
every ¥ € Dy. In conclusion, one gets (z,—y) € A_ and Ay C —A_; analogously,
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Ay D —A_ and this finally gives A, = —A_. Taking into account |28 Lemma 3.6],
one can deduce the following:

G(p)Ayr = Gi(p)Arz + G (P) Atz = G (¢ )z — p(0)z — A_G_(p)z
=Gi(=¢)z — p(0)z — (G- (=@ )z — ¢(0)x)
=Gy (- )z + G (=) = G(-¢ )z, ¢€D.
Hence, (z,A;z) € A, Ay C Aand A, = A. O

REMARK 4.2. Suppose G is a (DG) generated by A and p(A) # (). Due to
Lemma [2.2] and Theorem [4.2] we have that A, resp., —A, is the generator of a
(DSG) G, resp., Ga. Obviously, G(¢) = G1(¢)+G2(¢), ¢ € D and G1(p) G2(¢) =
G2(¥) G1(p), p, 9 € D. Let z € E and ¢ € D be fixed. We will prove that G4 (¢) =
G(¢+) = G1(p). To this end, it is enough to show G(¢¥ * ¢ )z = G(¥) G1(p)z,
Y € D, i.e.,

(4.30) G1(¥ * @) + Go (v * ) )x = G1(p) G2 (P)z + G1(p) G1(¥), ¥ € D.

Notice that the proof of [33] Theorem 6] (see [33] (9), p.61]) enables one to see
that Gi(p * _ )z + Ga((p+ * Q/J)V)x = G1(¢) Go(P)x, 1 € D. As in the proof of
Proposition one has (Y x oy —p*xt_ —pxo)(t) =0, ¢t > 0, v € D, which
gives G1 (¢ x o)z = Gi(p* P-)z + Gi(p xo )z = Gi(px Y- )z + Gi(p) Gi(P)z,
1 € D. Hence,

G1(¥* 4)r + Go((Y * 1) )z = Gilp * ¥ )z + G1(p) G1(¥)z + Go (¥ * ¢1.) )

= G1(p* )z + G1(p) G1(¥)x + G1(p) G2(¥h)x — G1(p * Y_)x

v

=Gi(p) G2(V)z + Gi(p) Gi(¥)z, ¢ €D
and this proves (4.30). Accordingly, A is the generator of G4 = G and the previous

remark implies that G(p_) = Ga(@) € L(E), ¢ € D and that G((*)-) is a (DSG)
generated by —A.

THEOREM 4.3. Suppose By,...,Bpn,Co,...,Cph_1 € L(E) and A is a subgen-
erator of a [By,...,Bn,Co,...,Ch_1]-group (S(t))ter. Set

o0

Glp)z = (1) / oM OS(Hzdt, peD, zcE.

Then:

(a) holds and holds for every ¢ € D and ¢ € D.

(b) NM(G) C N(Y,,) and, in particular, the injectiveness of Yy, implies (DG)s
for G.

(¢c) For every ¢ € D and ¢ € D, N(Y,,) C N(G(p)G(¥)); especially, if G is
reqular, then N(Y,) = N(G).

(d) Assume By = -+ = By,_1 = 0 and B, = —41. Then G is a (DG)
generated by A.
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ProOF. To prove (a), notice that G € D'(L(E)). Suppose x € E and ¢ € D.
Then AG(p)xr = G(—¢')z; indeed,

Glo)x = (-1)" [ o™ t)St)zdt = (=1)"* [ o"FV(t) [ S(s)zdsdt € D(A)
J Joro]s
and
AG(¢)x:(f1)”+1/¢<”+1> [ x+ZtJB :c}
= (7 [ SISOt = G-
Further,
Glo)Az = (=1t [ oD (1) [ S(s)Axdsdt
[#n]
= (—1)*! (1) (1) AS(s)xfnilstjx ds dt
Lo flaserren
= (=) [ oTV)A [ S(s)xdsdt = AG(¢)x, = € D(A).
Jeron]

Hence, G(p)A C AG(p) and (L.2)) holds. The proofs of ([£.12)) and (b) are contained
in those of Theorem . Let ¢ € D, ¢ € D and let = € N( ) be fixed. Arguing
as in the proof of Theorem one gets the validity of (4.24). Hence,

n

0= (1) IG((e™ %) ") Biw = Z(—l)”li!G(@(”) « ")) Bx

@
Il
=)

'M:

Il
=)

(—1)"il(=1 /@(n /1/1(" 2 (t + s)B;x dsdt.

7

Owing to (#12), G(¢)G(¢¥)x = 0 and N(Y,) C N(G(¢)G(¥)). Let (px) be a
regularizing sequence and G be regular. Then G( Yo = limg— 0o G(pr)G()x =0
and z € N(G). This proves N(Y;,) C N(G), and due to (b), we have N (G) C
N(Y},). The proof of (c) is completed.

To prove (d), notice that the proof of Theorem |4.2 - implies (|4 for G. Since
By = =B,_1=0and B, L1, we immediately obtain (DG) from .
Clearly, w =mn!B, = —I and (DG) follows from an application of (b). Hence,
G is a (DG). Put now S(¢) := S(t), t > 0 and S(t) := (=1)"S(t), t < 0. It is
straightforward to verify that (S(t))ier is an n-times integrated group generated
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by A. Furthermore, it is evident that

') 0
Glp)x = (—-1)" / e (t)S(t)x dt + / oM (&)S(t)xdt, €D, xekE.
0 —o0
By the proof of Theorem [2.1] we have that G is generated by A. O
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