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Abstract. Oscillations of a system with strong quadratic damping are con-
sidered. For the exact analytical form of the energy-displacement function the
explicit form of the maximal amplitudes of vibration are obtained by introduc-
ing the Lambert W function. Comparing the neighbor maximal amplitudes
and the corresponding energies the conclusions about the energy dissipation
is given. The approximate solution for a strong nonlinear differential equation
which describes the motion of the oscillator with quadratic damping is cal-
culated applying the elliptic-harmonic-balance method. The accuracy of the
solution is affirmed by comparing the maximal displacements obtained using
the approximate method with the exact one obtained by energy method.

1. Introduction

In the standard textbooks usually the systems with linear damping are consid-
ered. Due to their simplicity and the existence of an exact analytical solution, the
problem is discussed in details. Unfortunately, in reality the systems and damp-
ing are usually not linear. Very often two kinds of oscillators with damping are
considered: either, the systems with non-linear elasticity and linear damping, or
the systems with linear elasticity and non-linear damping. The first group of the
problems is widely discussed in the papers of Mickens [1], Waluya and van Horssen
[2], Andrianov and van Horssen [3] and Pilipchuk [4]. The second group of the
problems is usually restricted to the small damping. Nayfeh and Mook [5] applied
the analytical method of multiple scales for solving the lightly damped systems.
Timoshenko [6] gave an example of the application of the method of successive ap-
proximations for solving a differential equation with a small square damping term.
The same problem is considered by Bogolyubov and Mitropolski [7], who modified
the averaging method for solving the equation. Magnus [8] and Andronov et al.
[9] provided a qualitative analysis of the oscillator with strong quadratic damping.

2000 Mathematics Subject Classification: Primary 34C15.
Supported by the Ministry of Science, Republic of Serbia (Project 144008).

119



120 CVETIĆANIN

The trajectories for various initial energy values are plotted in the phase plane.
In [10] also some analytical solutions for the differential equation of the oscillator
with strong quadratic damping are presented. In this paper the extension to the
previously obtained results is given.

The mathematical model of the system is
ẍ+ x+ 2δẋ |ẋ| = 0,

i.e.,
(1) ẍ+ x± 2δẋ2 = 0,
with the initial conditions
(2) x(0) = x0, ẋ(0) = ẋ0,

where δ is a damping coefficient which need not to be small. The sign “minus"
corresponds to the velocity direction which is opposite to the direction of x axis,
and “plus" holds if the direction of the velocity and x axis are the same. In [11]
the same notation is introduced in the equation which describes the vibrations
of an oscillator with quadratic geometric nonlinearity. In Section 2 the energy-
displacement function is determined. Based on that function, exact analytical
values for the maximal displacements of the system are calculated. By analyzing
the results, the values of the parameters for an energy dissipation are obtained. In
Section 3 the energy-displacement function for the system with linear damping is
determined. The energy-displacement curve is compared with that obtained for the
quadratic damping. In Section 4, by using the elliptic-harmonic-balance method,
an approximate analytical solution for the differential equation (1) and the initial
conditions (2) is obtained. The solution is assumed in the form of an even order
Jacobi elliptic function cn. The approximate analytical values of the maximal dis-
placements are compared with the exact one, calculated in the previous section.
The theoretical consideration are illustrated with numerical examples.

2. Energy-displacement function for quadratic damping

Multiplying the differential equation of motion (1) by ẋ, it follows

(3) d

dt

( ẋ2

2
+ x

2

2

)
= ∓2δẋ3.

Introducing the energy function E = ẋ
2

2
+ x

2

2
, (3) can be rewritten as

(4)
dE

dx
= (∓4δ)

(
E − x

2

2

)
.

Introducing the new variable

(5)
y2

2
= E − x

2

2
,

(4) is transformed into the linear Bernoulli first-order equation [12]

(6) dy

dx
+ (±4δ)y + x = 0.
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The solution of (6) and transformation (5) give the exact energy-displacement so-
lution

(7) E = x
2

2
+ x

(±4δ)
+ 1

(±4δ)2 +
(
η − 1

(±4δ)2

)
exp((±4δ)x),

where η is a constant of integration. Two energy functions exist: one with a positive
sign in front of δ and the other with a negative sign. The transient from one to the
other energy function (7) is for Emin, i.e., when ẋ is zero and the velocity changes
its direction. It is satisfied for

(8) x+ 1
(±4δ)

+ (±4δ)
(
η − 1

(±4δ)2

)
exp((±4δ)x) = 0,

when the amplitude of vibration is maximal. The upper sign in (8) corresponds to
the energy function during the motion from the left side to the right side and the
lower sign for the motion in the opposite direction.

The motion in one direction is in the displacement interval (xi−1, xi), where
i = 1, 2, . . . . Based on the initial conditions: initial position xi−1 and the initial
energy Ei−1 = x2

i−1/2, the integration constant η in (7) can be calculated

(9) ηi =
1

16δ2
+
(
Ei−1 −

x2
i−1
2
− xi−1

(±4δ)
− 1

16δ2
)

exp(−(±4δ)xi−1).

The energy dissipation in the interval is

E = x
2

2
+ x

(±4δ)
+ 1

(±4δ)2 +
(
ηi − 1

(±4δ)2

)
exp((±4δ)x).

The motion in one direction stops for zero velocity when

(10) xi − 1
(±4δ) = (±4δ)

(
ηi − 1

16δ2
)

exp(−(±4δ)xi).

Introducing (9) into (10) and transforming it, the following relation is obtained

(11)
(
xi − 1

(±4δ)

)
exp(±4δ)xi = −

(
xi−1 − 1

(±4δ)

)
exp(−(±4δ)xi−1).

The relation enables one to compute all of the local maximal amplitudes of vibration
for the given initial conditions.

The main disadvantage of relation (10) i.e., (11) is that xi has an implicit form,
which is not suitable for discussion. For a better analysis, let us transform relation
(10) into an explicit form. Introducing a new variable r

r = xi
(±4δ)(ηi − 1/16δ2)

− 1
16δ2(ηi − 1/16δ2)

,

relation (10) is transformed to

r = exp
(
− 16δ2

(
ηi − 1

16δ2
)
r − 1
)
,

i.e.,

(12) ln r + 1 = −16δ2
(
ηi − 1

16δ2
)
r.
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The left side of equation (12) represents the Lambert W function [13]

(13) w = −(ln r + 1) = 16δ2
(
ηi − 1

16δ2
)
r.

The expression for r in (13) is

r =
1

16δ2(ηi − 1/16δ2)w
(16δ2(ηi − 1/16δ2)

e

)
,

and for the coordinate xi

(14) xi = 1
(±4δ)

(
1 + w

(16δ2ηi − 1
e

))
.

Using (9) and (14), the maximal displacement xi as a function of the neighbor
maximal amplitude xi−1 is obtained

(15) xi = 1
(±4δ)

(
1 + w

(
− 1

16δ2e

( xi−1

(±4δ)
+ 1

16δ2
)

exp
(− (±4δ)xi−1

)))
.

Using the Lambert W series expansion

(16) w
(
− 1

16δ2e

( xi−1

(±4δ)
+ 1

16δ2
)

exp
(− (±4δ)xi−1

))

=
∞∑
n=1

(−1)2n−1nn−2

(n− 1)!

(
xi−1

(±4δ)3 + 1
(16δ2)2

)n
exp
(− n(1 + (±4δ)xi−1)

)
,

and substituting (16) into (15), the value of xi as a function of the initial conditions,
i.e., the previous maximal amplitude, and damping coefficient δ, is obtained.

3. Energy-displacement function for linear damping

For a system with linear damping
ẍ+ x+ 2δẋ = 0,

the energy variation is described with the differential equation
dE

dx
= −2δ

√
2
(
E − x

2

2

)1/2
.

An exact analytical solution for δ < 1 (see [12]) is:

ln
∣∣∣2E ± 2δx

√
2E − x2

∣∣∣− 2δ√
1− δ2 tan−1 ±

√
2E − x2 + δx
x
√

1− δ2 = η,

where η is a constant of integration.
Due to the change of the motion direction, the energy variation is divided into

two intervals (ẋ > 0 and ẋ < 0), whose boundaries are defined by velocity. Besides,
the change of the sign of x requires dividing each of these intervals into two parts:
x > 0 and x < 0.

For the first part of the interval, the energy variation is

(17) ln
∣∣∣2E + 2δx

√
2E − x2

∣∣∣− 2δ√
1− δ2 tan−1

√
2E − x2 + δx
x
√

1− δ2 = ηi,
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where i = 1, 2, . . . , and

ηi = ln |2Ei−1| − 2δ√
1− δ2 tan−1 δ√

1− δ2 .

ηi is calculated using the initial conditions xi−1 �= 0, ẋi−1 = 0 and Ei−1 = x2
i−1/2.

The end of this part is for x = 0, when, due to (17), the energy E0
i−1 is

ln
∣∣2E0
i−1
∣∣+ δπ√

1− δ2 = ηi.

For x = 0 and energy E0
i−1, the constant of integration for the second part of the

interval is calculated
η0
i = ln

∣∣2E0
i−1
∣∣− πδ√

1− δ2 .
The energy dissipation is in accordance with the relation

(18) ln
∣∣∣2E + 2δx

√
2E − x2

∣∣∣− 2δ√
1− δ2 tan−1

√
2E − x2 + δx
x
√

1− δ2 = η0
i .

The maximal displacement (for ẋi = 0) and the corresponding energy at the end
of the interval are

xi = ±
[

exp
(

2δ√
1− δ2 tan−1 δ√

1− δ2 + η0
i

)]1/2
,

Ei = 1
2
x2
i = 1

2
exp
(

2δ√
1− δ2 tan−1 δ√

1− δ2 + η0
i

)
.

The same procedure of the energy dissipation has to be done for the next interval
of motion.

To compare the results obtained for the quadratic and linear damping numerical
calculations are carried out.

3.1. Examples. 1. Let us consider a system with quadratic damping, with
the value of the damping parameter δ = 0.5. The initial conditions of motion are
x(0) = 0.5 and ẋ(0) = 0, i.e., E0 = 0.125. Based on the suggested procedure, the
integration constant for the first interval is calculated. The energy-displacement
function for the first interval is

E← = x
2

2
+ x

2
+ 1

4
+
(

0.06606− 1
4

)
exp(2x).

At the end of the first interval: x1 = −0.29681, E1 = 4.4048× 10−2. In the next
interval, when the system moves from the left side to the right one, the energy
decrease is

E→ = x
2

2
− x

2
+ 1

4
+
(

0.0029951− 1
4

)
exp(−2x).

The end of the interval is for x2 = 0.21197, E2 = 2.2466 × 10−2. The motion
direction changes and

E← = E = x
2

2
+ x

2
+ 1

4
+
(

0.017021− 1
4

)
exp(2x).
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Figure 1. E-x diagram with Ei-xi curve for the system with qua-
dratic damping, damping coefficient δ = 0.5, and initial conditions
x0 = 0.5, E0 = 0.125.
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Figure 2. E-x diagram for the system with linear damping,
damping coefficient δ = 0.5, and initial conditions x0 = 0.5, E0 =
0.125.

The motion in that direction stops for x3 = −0.16504, E3 = 1.3619× 10−2. This
procedure can be further continued. In Fig. 1 the energy-displacement diagram
is plotted. In the same figure the Ei − xi curve of the maximal displacements is
plotted.

2. Let us consider a mechanical system with linear damping, where the damping
parameter is δ = 0.5, and the initial conditions are x0 = 0.5 and ẋ0 = 0 with the
energy level E0 = 0.125. The energy displacement function in the first part of the
first interval is

ln
∣∣∣2E + x

√
2E − x2

∣∣∣− 1.1547 tan−1
√

2E − x2 + 0.5x
x
√

0.75
= −1.9909.
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For x = 0 the energy is E0
1 = 1.1133 × 10−2. These values are the initial

conditions for the second part of the first interval. The energy dissipates, according
to the relation (18),

ln
∣∣∣2E + x

√
2E − x2

∣∣∣− 1.1547 tan−1
√

2E − x2 + 0.5x
x
√

0.75
= −5.6185,

and decreases to E1 = 3.3224× 10−3 for x1 = −8.1516× 10−2.
The second interval starts with the following energy variation

ln
∣∣∣2E + x

√
2E − x2

∣∣∣+ 1.1547 tan−1
√

2E − x2 + 0.5x
x
√

0.75
= −4.4093.

For x = 0, the energy value is E0
2 = 9.9154× 10−4. The second part of the second

interval is

ln
∣∣∣2E + x

√
2E − x2

∣∣∣+ 1.1547 tan−1
√

2E − x2 + 0.5x
x
√

0.75
= −8.0369.

The maximal displacement is x2 = 1.3290×10−2 when the energy is E2 = 8.8312×
10−5. The procedure is repeating, and the energy-displacement curve is plotted in
Fig. 2.

3.2. Comparison of the results. Comparing the curves plotted in the fig-
ures 1 and 2 for the systems with quadratic and linear damping where the initial
conditions (x0 = 0.5, ẋ0 = 0), i.e., the energy supply (E0 = 0.125) and also the
damping coefficient (δ = 0.5) are equal, it can be concluded that the energy dissi-
pation is faster for the linear damping than for the quadratic damping.

The differential equation with quadratic damping (1) is solved numerically
for δ = 1 and various initial conditions i.e., various values of the initial energy:
a) x0 = 0.2, E0 = 0.02; b) x0 = 0.5, E0 = 0.125 and c) x0 = 1, E0 = 0.5. The
energy-displacement curves are plotted in figures 3–5, respectively. Comparing the
curves in these figures it can be concluded that the energy dissipation is faster for
a smaller initial energy.

In figures 1 and 3 the energy-displacement curves for various values of the
damping coefficient (δ = 0.5 and δ = 1) are plotted. The initial conditions for both
systems with strong quadratic damping are equal. Comparing the curves we see
that the energy dissipation is faster for higher values of the damping coefficient, as
it is known for a system with linear damping.

4. Approximate analytical solution
for a system with quadratic damping

To solve the differential equation with quadratic damping, the elliptic-harmonic-
balance method [11] is applied. A solution is assumed in the form of Jacobi elliptic
function cn [14]
(19) x = A+B cn2(ωt+ α, k2) ≡ A+B cn2,

where ω is the frequency, k is the modulus of the function and A,B and α are
constants.
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Figure 3. E-x diagram for the system with quadratic damping,
damping coefficient δ = 1, and initial conditions x0 = 0.5, E0 =
0.125.
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Figure 4. E-x diagram for the system with quadratic damping,
damping coefficient δ = 1, and initial conditions x0 = 0.2, E0 =
0.02.
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Figure 5. E-x diagram for the system with quadratic damping,
damping coefficient δ = 1, and initial conditions x0 = 1, E0 = 0.5.



OSCILLATOR WITH DAMPING 127

The first and the second time derivatives of (19) are

ẋ = −2Bω cn sn dn,(20)
ẍ = 2Bω2[(1 − k2)− 2(1− 2k2) cn2−3k2 cn4],(21)

where sn ≡ sn(ωt + α, k2) and dn ≡ dn(ωt + α, k2) are also the Jacobi elliptic
functions [14]. Substituting (19)–(21) into (1) and separating the terms with the
same order of cn function up to O(cn6), the following system of algebraic equations
is obtained

cn0 : A+ 2Bω2(1 − k2) = 0,
cn2 : 1 + 2(±4δ)Bω2(1 − k2)− 4ω2(1− 2k2) = 0,
cn4 : 3k2 + (±4δ)B(1− 2k2) = 0,

whose solutions as functions of B are

(22)
ω2 = 3− 2(±4δ)B

2(16δ2B2 − 3(±4δ)B + 6)
, k2 = (±4δ)B

2(±4δ)B − 3
,

A = (±4δ)B2 − 3B
16δ2B2 − 3(±4δ)B + 6

.

The unknown constants B and α are obtained by solving the relations for the initial
conditions

x(t0) = A+B cn2(ωt0 + α, k2)

= (±4δ)B2 − 3B
16δ2B2 − 3(±4δ)B + 6

+B cn2
0

(
α,

(±4δ)B
2(±4δ)B − 3

)
,

ẋ(t0) = −√2B

√
3− 2(±4δ)B

16δ2B2 − 3(±4δ)B + 6
cn0 sn0 dn0(23)

where t0 stands for the initial time, and

cn0 ≡ cn
(
t0

√
3− 2(±4δ)B

2(16δ2B2 − 3(±4δ)B + 6)
+ α,

(±4δ)B
2(±4δ)B − 3

)
,

sn0 ≡ sn
(
t0

√
3− 2(±4δ)B

2(16δ2B2 − 3(±4δ)B + 6)
+ α, (±4δ)B

2(±4δ)B − 3

)
,(24)

dn ≡ dn
(
t0

√
3− 2(±4δ)B

2(16δ2B2 − 3(±4δ)B + 6)
+ α, (±4δ)B

2(±4δ)B − 3

)
.

According to the consideration given in Section 2 the motion is divided into in-
tervals where the velocity is positive or negative. The displacement interval from
left to right or right to left is (xi−1, xi) and the time interval (Ti−1, Ti), where
i = 1, 2, . . . . For every interval of motion the parameter properties of the system
(ωi, ki, Ai, Bi and αi) have to be calculated. Depending on the direction of the
motion, the parameters are determined according to (22)–(24), where the upper
sign corresponds to the motion from left to right, and the lower sign for the motion
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from right to left. The initial conditions for each interval (except the first (2)) are
determined

(25) Ti−1 =
i−1∑

0

K(k2
n)
ωn
, xi−1 = Ai−1, ẋi−1 = 0,

where K is the complete elliptic integral of the first kind. Substituting (25) into
(23) and (24), the constants of integration αi and Bi are calculated

16δ2B3
i +B2

i (2(±4δ)− 16δ2Ai−1) + 3Bi(1 − (±4δ)Ai−1)− 6Ai−1 = 0,
−ωi−1Ti−1 = αi.

Introducing αi and Bi into (22) the parameters ωi, ki, Ai are as follows

(26)
ω2
i = 3− 2(±4δ)Bi

2(16δ2B2
i − 3(±4δ)Bi + 6)

, k2
i = (±4δ)Bi

2(±4δ)Bi − 3
,

A = (±4δ)B2
i − 3Bi

16δ2B2
i − 3(±4δ)Bi + 6

.

The substitution of the obtained parameters in (19) gives the solution for all the
separate intervals of motion.

Analyzing relation (26) it can be concluded that the frequency and the modulus
of the Jacobi elliptic function depend on the initial conditions. The initial condi-
tions have a significant influence on the frequency and the period of vibrations of
a system with quadratic damping.

4.1. Example. For the initial conditions x(0) = 0.5, ẋ(0) = 0, and the value
of the damping parameter δ = 0.5, an approximate analytical solution of the dif-
ferential equation with quadratic damping is calculated. The first motion interval
is from right to left according to

x← = −0.29804 + 0.79804 cn2(0.48183t, 0.25776).
The motion stops at T1 = 3.4867, x(T1) = −0.29804, ẋ(T1) = 0. Then, the motion
is in the opposite direction

x→ = 0.19916− 0.4972 cn2(0.50014(t− 3.4867), 0.98339),
and lasts t2 = 3.1391 when the motion stops at the position x(T2) = 0.198407. The
initial conditions for the next interval of motion are T2 = 6.6258, x(T2) = 0.198407,
ẋ(T2) = 0. The motion continues from right to left

x← = −0.168 + 0.366407 cn2(0.50393(t− 6.6258), 0.17741).
At the end of the interval the velocity is zero and the displacement is x(T3) =
−0.17233. The values T3 = 9.8937, x(T3) = −0.168, ẋ(T3) = 0 are the initial
values for the motion in the next interval.

In Fig. 6 the exact numerical solution and the approximate solution of (1) are
compared. They are in good agreement.

In Table 1 the exact maximal displacements obtained in Example 1 of Section 2
(xie) and the approximate values (xia) are compared.

The differences between the dates in the table are quite small.



OSCILLATOR WITH DAMPING 129

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t
x

Figure 6. Comparison of the analytical solution (xa) with ex-
act numerical result (xe) for the system with quadratic damp-
ing, damping coefficient δ = 0.5 and initial conditions x0 = 0.5,
dx0/dt = 0.

Table 1. Maximal displacements: exact (xie) and approximate (xia).

xie 0.50000 −0.29681 0.21197 −0.16504 0.13515 −0.11448 0.09929
xia 0.50000 −0.29804 0.19916 −0.16800 0.13105 −0.11601 0.09666

5. Conclusion

From the previous consideration the following is concluded:
1. For an oscillator with linear elastic properties and quadratic damping the

first integral of energy type exists. The exact analytic form of energy-displacement
function depends on the motion direction. For every interval of motion the new
integration constant ηi, based on the maximal displacement in the previous motion
interval, has to be determined. In each position, where the direction is changed, the
new first integral is formed, which insures the continuity of the energy dissipation.

2. The maximal displacement xi achieves for zero velocity (ẋi = 0), when the
energy is Ei = x2

i /2. In the E–x plane the energy curve is a quadratic parabola.
For all the oscillators with linear elastic force and linear frequency ω0 = 1, the
maximal displacement has value which lies on that parabola, independently of the
order of a damping (linear α = 1, or quadratic α = 2 or fractal 1 < α < 2) and the
damping coefficient (δ).

3. The order of damping has a significant influence on the decrease of energy:
for quadratic damping the energy decrease is slower than for linear damping.

4. For the same order of damping function, the energy decrease is faster for
higher values of the damping coefficient.

5. For obtaining more accurate approximate solution for (1) with the initial
conditions (2), the number of terms with cn function have to be increased. In
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general, an approximate solution is

x = A+
N∑
n=1
Bn cn2n(ωt+ αn, k2).

6. An approximate analytic solution in the form of a quadratic Jacobi elliptic
function cn is in good agreement with the exact solution of the vibrations of the
oscillator with quadratic damping obtained numerically.
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