
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 87(101) (2010), 129–137 DOI: 10.2298/PIM1001129J

A COUNTEREXAMPLE ON
NONTANGENTIAL CONVERGENCE

FOR OSCILLATORY INTEGRALS

Karoline Johansson

Communicated by Stevan Pilipović

Abstract. Consider the solution of the time-dependent Schrödinger equation
with initial data 𝑓 . It is shown by Sjögren and Sjölin (1989) that there exists
𝑓 in the Sobolev space 𝐻𝑠(R𝑛), 𝑠 = 𝑛/2 such that tangential convergence
can not be widened to convergence regions. In this paper we show that the
corresponding result holds when −Δ𝑥 is replaced by an operator 𝜙(𝐷), with
special conditions on 𝜙.

1. Introduction

In this paper we establish non-existence results of non-tangential convergence
for the solution 𝑢 = 𝑆𝜙𝑓 to the generalized time-dependent Schrödinger equation

(1.1) (𝜙(𝐷) + 𝑖𝜕𝑡)𝑢 = 0,

with the initial condition
𝑢(𝑥, 0) = 𝑓(𝑥).

Here 𝜙 is real-valued, and its radial derivatives of first and second orders (𝜙′ =
𝜙′𝑟 and 𝜙′′ = 𝜙′′𝑟𝑟) are continuous, outside a compact set containing origin, and
fulfill appropriate growth conditions. In particular 𝜙(𝜉) = |𝜉|𝑎 will satisfy these
conditions, for 𝑎 > 1.

For 𝜙(𝜉) = |𝜉|2 we recover Theorem 3 in [3], where Sjögren and Sjölin proved
that there exists a function 𝑓 in the Sobolev space 𝐻𝑛/2 such that near the vertical
line 𝑡 ↦→ (𝑥, 𝑡) through an arbitrary point (𝑥, 0) there are points accumulating at
(𝑥, 0) such that the solution of equation (1.1) takes values far from 𝑓 . This means
that the solution of the time-dependent Schrödinger equation with initial condition
𝑢(𝑥, 0) = 𝑓(𝑥) does not converge non-tangentially to 𝑓 . Therefore we can not
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130 JOHANSSON

consider regions of convergence. As a consequence of our results, it follows that
Theorem 3 in [3] holds for any 𝑎 > 1.

In this paper, we prove that the property which holds for 𝜙(𝜉) = |𝜉|2 also holds
for more general functions 𝜙(𝜉) of the type described above. In the proof we use
some ideas by Sjögren and Sjölin from [3] in combination with new estimates, to
construct a counterexample. Some ideas can also be found in Sjölin [5, 6] and
Walther [9, 10], and some related results are given in Bourgain [1], Kenig, Ponce
and Vega [2], and Sjölin [4, 7].

Existence of regions of convergence has been studied before for other equations.
For example, Stein and Weiss consider in [8, Chapter II Theorem 3.16] Poisson
integrals acting on Lebesgue spaces. These operators are related to the operator 𝑆𝜙.

For an appropriate function 𝜙 on R𝑛, let 𝑆𝜙 be the operator acting on functions
𝑓 defined by
(1.2) 𝑓 ↦→ ℱ−1(exp(𝑖𝑡𝜙(𝜉))ℱ𝑓),
where ℱ𝑓 is the Fourier transform of 𝑓 , which takes the form

̂︀𝑓(𝜉) = ℱ𝑓(𝜉) ≡
∫︁

R𝑛
𝑒−𝑖𝑥·𝜉𝑓(𝑥) 𝑑𝑥,

when 𝑓 ∈ 𝐿1(R𝑛). This means that, if ̂︀𝑓 is an integrable function, then 𝑆𝜙 in (1.2)
takes the form

𝑆𝜙𝑓(𝑥, 𝑡) = 1
(2𝜋)𝑛

∫︁
R𝑛
𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓(𝜉) 𝑑𝜉, 𝑥 ∈ R𝑛, 𝑡 ∈ R.

If 𝜙(𝜉) = |𝜉|2 and 𝑓 belongs to the Schwartz class 𝒮(R𝑛), then 𝑆𝜙𝑓 is the
solution to the time-dependent Schrödinger equation (−Δ𝑥 + 𝑖𝜕𝑡)𝑢 = 0 with the
initial condition 𝑢(𝑥, 0) = 𝑓(𝑥).

For more general appropriate 𝜙, for which the equation (1.1) is well-defined,
the expression 𝑆𝜙𝑓 is the solution to the generalized time-dependent Schrödinger
equation (1.1) with the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥). Note here that 𝑆𝜙𝑓 is well
defined for any real-valued measurable 𝜙 and 𝑓 ∈ 𝒮. On the other hand, it might
be difficult to interpret (1.1) if for example 𝜙 /∈ 𝐿1

loc.
In order to state the main result we need to specify the conditions on 𝜙 and

give some definitions. The function 𝜙 should satisfy the conditions
lim inf
𝑟→∞

( inf
|𝜔|=1
|𝜙′(𝑟, 𝜔)|) =∞,(1.3)

sup
𝑟>𝑅

(︂
sup
|𝜔|=1

𝑟𝛽 |𝜙′′(𝑟, 𝜔)|
|𝜙′(𝑟, 𝜔)|2

)︂
< 𝐶,(1.4)

for some 𝛽 > 0 and some constant 𝐶. Here 𝜙′(𝑟𝜔) = 𝜙′(𝑟, 𝜔) denotes the derivative
of 𝜙(𝑟, 𝜔) with respect to 𝑟, and similarly for higher orders of derivatives.

We let 𝐻𝑠(R𝑛) be the Sobolev space of distributions with 𝑠 ∈ R derivatives
in 𝐿2. That is 𝐻𝑠(R𝑛) consists of all 𝑓 ∈ 𝒮 ′(R𝑛) such that

(1.5) ‖𝑓‖𝐻𝑠(R𝑛) ≡
(︂∫︁

R𝑛
(1 + |𝜉|2)𝑠| ̂︀𝑓(𝜉)|2𝑑𝜉)︂1/2

<∞.
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Theorem 1.1. Assume that the function 𝛾 : R+ → R+ is strictly increasing
and continuous such that 𝛾(0) = 0. Let 𝑅 > 0, and let 𝜙 be real-valued function on
R𝑛 such that 𝜙′(𝑟, 𝜔) and 𝜙′′(𝑟, 𝜔) are continuous and satisfy (1.3) and (1.4) when
𝑟 > 𝑅. Then there exists a function 𝑓 ∈ 𝐻𝑛/2(R𝑛) such that 𝑆𝜙𝑓 is continuous in
{(𝑥, 𝑡); 𝑡 > 0} and
(1.6) lim sup

(𝑦,𝑡)→(𝑥,0)
|𝑆𝜙𝑓(𝑦, 𝑡)| = +∞

for all 𝑥 ∈ R𝑛, where the limit superior is taken over those (𝑦, 𝑡) for which |𝑦−𝑥| <
𝛾(𝑡) and 𝑡 > 0.

Here we recall that 𝜙′ = 𝜙′𝑟 and 𝜙′ = 𝜙′′𝑟𝑟 are the first and second orders
radial derivatives of 𝜙. When 𝑠 > 𝑛/2 no counterexample of the form in Theorem
1.1 can be provided, since 𝑆𝜙𝑓(𝑦, 𝑡) converges to 𝑓(𝑥) as (𝑦, 𝑡) approaches (𝑥, 0)
non-tangentially when 𝑓 ∈ 𝐻𝑠(R𝑛). In fact, Hölder’s inequality gives

(2𝜋)𝑛|𝑆𝜙𝑓(𝑥, 𝑡)| 6
∫︁

R𝑛
| ̂︀𝑓(𝜉)| 𝑑𝜉 6 (︂∫︁

R𝑛
(1 + |𝜉|2)−𝑠 𝑑𝜉

)︂
‖𝑓‖𝐻𝑠(R𝑛),

which is finite when 𝑓 ∈ 𝐻𝑠(R𝑛), 𝑠 > 𝑛/2. Therefore the convergence along
vertical lines can be extended to convergence regions when 𝑠 > 𝑛/2 and 𝑓 belongs
to 𝐻𝑠(R𝑛).

2. Examples and remarks

In this section we give some examples of functions 𝜙 for which Theorem 1.1
holds. In the first example we let 𝜙 be a positively homogeneous function of order
𝑎 > 1.

Example 2.1. Let 𝑎 > 1 and 𝜙(𝜉) = |𝜉|𝑎; then 𝑆𝜙𝑓(𝑥, 𝑡) is the solution to
the generalized time-dependent Schrödinger equation ((−Δ𝑥)𝑎/2 + 𝑖𝜕𝑡)𝑢 = 0. By
change of variables to polar coordinates and derivate with respect to 𝑟 we see that
𝜙(𝑟, 𝜔) = 𝑟𝑎, 𝜙′(𝑟, 𝜔) = 𝑎𝑟𝑎−1 and 𝜙′′(𝑟, 𝜔) = 𝑎(𝑎− 1)𝑟𝑎−2. We can see that these
derivatives satisfy (1.3) and (1.4). In particular for 𝑎 = 2 this is the solution to the
time-dependent Schrödinger equation (−Δ𝑥 + 𝑖𝜕𝑡)𝑢 = 0 and this case is treated in
Sjögren and Sjölin [3].

In the following example we let 𝜙 be a sum of positively homogeneous functions,
where 𝑎 > 1 denotes the term of the highest order.

Example 2.2. For 𝑎 > 1, let 𝜙(𝜉) =
∑︀𝑑
𝑖=1 |𝜉|𝑎𝑖𝜙𝑎,𝑖(1, 𝜔), 𝑎1 < · · · < 𝑎𝑑 = 𝑎,

where inf𝜔 |𝜙𝑎,𝑑(1, 𝜔)| = ℎ>0 and ‖𝜙𝑎,𝑖(1, ·)‖𝐿∞(𝑆𝑛−1)<∞ for each 𝑖 ∈ {1, 2, ..., 𝑑}.
Here 𝑆𝑛−1 is the (𝑛−1)-dimensional unit sphere. By rewriting this into polar
coordinates and differentiating with respect to 𝑟, we see that in the first derivative
the term 𝜙𝑎,𝑖(1, 𝜔)𝑟𝑎−1 dominates the sum and that the second derivative can be
estimated by 𝐶𝑟𝑎−2, for some constant 𝐶. These derivatives satisfy (1.3) and (1.4).

In the examples given above we have used functions 𝜙 such that the modulus of
the radial derivative is bounded from below by a positive homogeneous function of
order 𝑎− 1 for some 𝑎 > 1. This condition is not necessary. The assumption in the
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theorem permits a broader class of functions 𝜙. The following example shows that
there are functions, which do not grow as fast as a positive homogeneous function
of order 𝑎− 1 for any 𝑎 > 1, but satisfy the conditions (1.3) and (1.4).

Example 2.3. Let 𝜙(𝜉) = |𝜉| log |𝜉|, then 𝜙′(𝑟, 𝜔) = log 𝑟+1 and 𝜙′′(𝑟, 𝜔) = 𝑟−1

and (1.3) and (1.4) are satisfied.

We also allow the dominant part of the derivative to grow faster than any
positively homogeneous function as long as we have some restrictions on the second
derivative. The conditions are given explicitly in (1.3) and (1.4). The following
example contains such functions.

Example 2.4. Let 𝜙(𝜉) = 𝜙(𝑟, 𝜔) = 𝑒𝜇(𝜔)𝑟𝑏 , where inf |𝜔|=1 𝜇(𝜔) = 𝑐 > 0 and
0 < 𝑏 6 2. Here one should note that 𝜙 /∈ 𝒮 ′(R𝑛). These functions grow faster
than 𝑟𝑎 for all 𝑎 and the same is true for the absolute value of the first and second
derivatives with respect to 𝑟. This can be used to show that (1.3) and (1.4) are
satisfied.

3. Notations for the proof

In order to prove Theorem 1.1 we introduce some notations. Let 𝐵𝑟(𝑥) be the
open ball in R𝑛 with center at 𝑥 and radius 𝑟. Numbers denoted by 𝐶, 𝑐 or 𝐶 ′
may be different at each occurrence. We let

𝛿𝑘 = 𝛿𝑘,𝑛 ≡ 𝛾(1/(𝑘 + 1))/
√
𝑛, 𝑘 ∈ N,

where 𝛾 is the same as in Theorem 1.1. Since 𝛾 is strictly increasing it is clear
that (𝛿𝑘)𝑘∈N is strictly decreasing. We also let (𝑥𝑗)∞𝑗=1 ⊂ R𝑛 be chosen such that
𝑥1, 𝑥2, . . . , 𝑥𝑚1 denotes all points in 𝐵1(0)∩𝛿1Z𝑛, 𝑥𝑚1+1, . . . , 𝑥𝑚2 denotes all points
in 𝐵2(0)∩ 𝛿2Z𝑛 and generally {𝑥𝑚𝑘+1, . . . , 𝑥𝑚𝑘+1} = 𝐵𝑘+1(0)∩ 𝛿𝑘+1Z𝑛, for 𝑘 > 1.
Furthermore we choose a strictly decreasing sequence (𝑡𝑗)∞1 such that 1 > 𝑡1 >
𝑡2 > · · · > 0 and

1
𝑘 + 2 < 𝑡𝑗 <

1
𝑘 + 1 , 𝑘 ∈ N,

for 𝑚𝑘 + 1 6 𝑗 6 𝑚𝑘+1.
In the proof of Theorem 1.1 we consider the function 𝑓𝜙, which is defined by

the formula

(3.1) ̂︀𝑓𝜙(𝜉) = |𝜉|−𝑛(log |𝜉|)−3/4
∞∑︁
𝑗=1
𝜒𝑗(𝜉)𝑒−𝑖(𝑥𝑗 ·𝜉+𝑡𝑗𝜙(𝜉)),

where 𝜒𝑗 is the characteristic function of Ω𝑗 = {𝜉 ∈ R𝑛;𝑅𝑗 < |𝜉| < 𝑅′𝑗}.
Here (𝑅𝑗)∞1 and (𝑅′𝑗)∞1 are sequences in R which fulfill the following conditions:
(1) 𝑅1 > 2 +𝑅, 𝑅′1 > 𝑅1 + 1, with 𝑅 given by Theorem 1.1;
(2) 𝑅′𝑗 = 𝑅𝑁𝑗 when 𝑗 > 2, where𝑁 is a large positive number and independent

of 𝑗, which is specified later on;
(3) 𝑅𝑗 < 𝑅′𝑗 < 𝑅𝑗+1, when 𝑗 > 1;
(4)

(3.2) |𝜙′(𝑟, 𝜔)| > 1 when 𝑟 > 𝑅;
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(5) for 𝑗 > 2

(3.3) 𝑅
min(𝛽,1)
𝑗 > max

𝑙<𝑗

2𝑗

𝑡𝑙 − 𝑡𝑗
,

where 𝛽 > 0 is the same constant as in (1.4) and

(3.4) inf
𝑅𝑗6𝑟6𝑅′𝑗

( inf
|𝜔|=1
|𝜙′(𝑟, 𝜔)|) > max

𝑙<𝑗

2|𝑥𝑙 − 𝑥𝑗 |
𝑡𝑙 − 𝑡𝑗

;

Remark 3.1. The sequences (𝑅𝑗)∞1 and (𝑅′𝑗)∞1 can be chosen since 𝜙 satisfies
condition (1.3).

Furthermore, in order to get convenient approximations of the operator 𝑆𝜙, we
let

(3.5) 𝑆𝜙𝑚𝑓(𝑥, 𝑡) = 1
(2𝜋)𝑛

∫︁
|𝜉|<𝑅′𝑚

𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓(𝜉) 𝑑𝜉.
Then

(3.6) 𝑆𝜙𝑚𝑓𝜙(𝑥, 𝑡) =
𝑚∑︁
𝑗=1
𝐴𝜙𝑗 (𝑥, 𝑡),

where

(3.7) 𝐴𝜙𝑗 (𝑥, 𝑡) = 1
(2𝜋)𝑛

∫︁
Ω𝑗
𝑒𝑖(𝑥−𝑥𝑗)·𝜉𝑒𝑖(𝑡−𝑡𝑗)𝜙(𝜉)|𝜉|−𝑛(log |𝜉|)−3/4 𝑑𝜉.

By using polar coordinates we get

(3.8) 𝐴𝜙𝑗 (𝑥𝑘, 𝑡𝑘) = 1
(2𝜋)𝑛

∫︁
|𝜔|=1

{︃∫︁ 𝑅′𝑗
𝑅𝑗

1
𝑟(log 𝑟)3/4 𝑒

𝑖𝐹𝜙(𝑟,𝜔) 𝑑𝑟

}︂
𝑑𝜎(𝜔),

where 𝐹𝜙(𝑟, 𝜔) = 𝑟(𝑥𝑘−𝑥𝑗) ·𝜔+(𝑡𝑘−𝑡𝑗)𝜙(𝑟, 𝜔), and 𝑑𝜎(𝜔) is the Euclidean surface
measure on the (𝑛−1)-dimensional unit sphere. By differentiation we get

𝐹 ′𝜙(𝑟, 𝜔) = (𝑥𝑘 − 𝑥𝑗) · 𝜔 + (𝑡𝑘 − 𝑡𝑗)𝜙′(𝑟, 𝜔),(3.9)
𝐹 ′′𝜙 (𝑟, 𝜔) = (𝑡𝑘 − 𝑡𝑗)𝜙′′(𝑟, 𝜔).(3.10)

Here recall that 𝐹 ′𝜙(𝑟𝜔) = 𝐹 ′𝜙(𝑟, 𝜔) and 𝐹 ′′𝜙 (𝑟, 𝜔) denote the first and second orders
of derivatives of 𝐹𝜙(𝑟, 𝜔) with respect to the 𝑟-variable.

By integration by parts in the inner integral of (3.8) we get

(3.11)
∫︁ 𝑅′𝑗
𝑅𝑗

1
𝑟(log 𝑟)3/4 𝑒

𝑖𝐹𝜙(𝑟,𝜔) 𝑑𝑟 = 𝐴𝜙 −𝐵𝜙,

where

𝐴𝜙 =
[︁ 𝑒𝑖𝐹𝜙(𝑟,𝜔)

𝑟(log 𝑟)3/4𝑖𝐹 ′𝜙(𝑟, 𝜔)

]︁𝑅′𝑗
𝑅𝑗
,(3.12)

𝐵𝜙 =
∫︁ 𝑅′𝑗
𝑅𝑗

𝑑

𝑑𝑟

(︁ 1
𝑟(log 𝑟)3/4𝑖𝐹 ′𝜙(𝑟, 𝜔)

)︁
𝑒𝑖𝐹𝜙(𝑟,𝜔) 𝑑𝑟(3.13)
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4. Proofs

In this section we prove Theorem 1.1. We need some preparing lemmas for
the proof. In the following lemma we prove that for fixed 𝑥 ∈ 𝐵𝑘(0) there exists
sequences (𝑥𝑛𝑗 )∞1 and (𝑡𝑛𝑗 )∞1 such that

𝑥𝑛𝑗 ∈ {𝑥𝑚𝑘+1, . . . , 𝑥𝑚𝑘+1}, and 𝑡𝑛𝑗 ∈ {𝑡𝑚𝑘+1, . . . , 𝑡𝑚𝑘+1}
and |𝑥𝑛𝑗 − 𝑥| < 𝛾(𝑡𝑛𝑗 ).

Lemma 4.1. Let 𝑥 ∈ R𝑛 be fixed. Then for each 𝑘 > |𝑥| there exists 𝑥𝑛𝑗 ∈
{𝑥𝑚𝑘+1, . . . , 𝑥𝑚𝑘+1} and 𝑡𝑛𝑗 ∈ {𝑡𝑚𝑘+1, . . . , 𝑡𝑚𝑘+1} such that |𝑥𝑛𝑗 − 𝑥| < 𝛾(𝑡𝑛𝑗 ). In
particular (𝑥𝑛𝑗 , 𝑡𝑛𝑗 )→ (𝑥, 0) as 𝑗 turns to infinity.

Proof. For each 𝑘 > |𝑥|, 𝑥 belongs to a cube with vertices in 𝑇𝑘 = 𝐵𝑘+1(0)∩
𝛿𝑘+1Z𝑛 and side lengths 𝛾(1/(𝑘+2))/

√
𝑛. Take a vertex 𝑥′ in the cube and its diag-

onal 𝛾(1/(𝑘+2)) as center and radius of a ball respectively. This ball 𝐵𝛾(1/(𝑘+2))(𝑥′)
contains the whole cube and hence also 𝑥. Therefore there exists 𝑥𝑛𝑗 for every
𝑘 > |𝑥| such that 𝑥 ∈ 𝐵𝛾(1/(𝑘+2))(𝑥𝑛𝑗 ) ⊂ 𝐵𝛾(𝑡𝑛𝑗 )(𝑥𝑛𝑗 ). This proves the first part of
the assertion, and the second statement follows from the fact that 𝛾(0) = 0 and 𝛾
is continuous and strictly increasing. �

We want to prove that 𝑓𝜙 in (3.1) belongs to 𝐻𝑛/2(R𝑛) and fulfills (1.6). The
former relation is a consequence of Lemma 4.2 below, which concerns the Sobolev
space properties for functions of the form

(4.1) ̂︀𝑔(𝜉) = |𝜉|−𝑛(log |𝜉|)−𝜌/2
∞∑︁
𝑗=1
𝜒𝑗(𝜉)𝑏𝑗(𝜉),

where 𝜒𝑗 is the characteristic function on disjoint sets Ω𝑗 .
Lemma 4.2. Assume that 𝜌 > 1, Ω𝑗 for 𝑗 ∈ N are disjoint open subsets of

R𝑛r𝐵𝜌(0) , 𝑏𝑗 ∈ 𝐿1
loc(R𝑛) for 𝑗 ∈ N satisfies sup𝑗∈N ‖𝑏𝑗‖𝐿∞(Ω𝑗) <∞, and let 𝜒𝑗

be the characteristic function for Ω𝑗. If 𝑔 is given by (4.1), then 𝑔 ∈ 𝐻𝑛/2(R𝑛).
Proof. By estimating (1.5) for the function 𝑔 we get that∫︁

R𝑛
|̂︀𝑔(𝜉)|2(1 + |𝜉|2)𝑛/2 𝑑𝜉 6 𝐶

∫︁
R𝑛r𝐵𝜌(0)

|𝜉|−2𝑛(log |𝜉|)−𝜌(1 + |𝜉|2)𝑛/2 𝑑𝜉

6 2𝑛/2𝐶
∫︁ ∞
𝜌

1
𝑟(log 𝑟)𝜌 𝑑𝑟 <∞.

The second inequality holds since (1+𝑟2)𝑛/2 < (𝑟2 +𝑟2)𝑛/2 = 2𝑛/2𝑟𝑛 for 𝑟 > 1. �

In the following lemma we give estimates of the expression 𝐴𝜙𝑗 .

Lemma 4.3. Let 𝐴𝜙𝑗 (𝑥, 𝑡) be given by (3.7). Then the following is true:

(1)
𝑘−1∑︁
𝑗=1
|𝐴𝜙𝑗 (𝑥, 𝑡)| 6 𝐶(log𝑅′𝑘−1)1/4, with 𝐶 independent of 𝑘;

(2) 𝐴𝜙𝑘 (𝑥𝑘, 𝑡𝑘) > 𝑐(log𝑅′𝑘)1/4, with 𝑐 > 0 independent of 𝑘.
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Proof. (1) By triangle inequality and the fact that |𝜉| > 2, when 𝜉 ∈ Ω𝑗 , we
get

𝑘−1∑︁
𝑗=1
|𝐴𝜙𝑗 (𝑥, 𝑡)| 6 1

(2𝜋)𝑛

∫︁
26|𝜉|6𝑅′

𝑘−1

|𝜉|−𝑛(log |𝜉|)−3/4 𝑑𝜉

= 𝐶
∫︁ 𝑅′𝑘−1

2

1
𝑟(log 𝑟)3/4 𝑑𝑟 6 𝐶(log𝑅′𝑘−1)1/4,

where 𝐶 is independent of 𝑘. In the last equality we have taken the polar coordi-
nates as new variables of integration.

(2) Since 𝑅𝑁𝑗 = 𝑅′𝑗 for 𝑁 sufficiently large, we get

𝐴𝜙𝑘 (𝑥𝑘, 𝑡𝑘) = 𝐶
∫︁ 𝑅′𝑘
𝑅𝑘

1
𝑟(log 𝑟)3/4 𝑑𝑟 = 𝐶

(︁
(log𝑅′𝑘)1/4 −

(︀
log(𝑅′𝑘)1/𝑁)︀1/4)︁

= 𝐶
(︁

1− 1
𝑁1/4

)︁
(log𝑅′𝑘)1/4 > 𝑐(log𝑅′𝑘)1/4,

for some constant 𝑐 > 0, which is independent of 𝑘. �

Lemma 4.4. Assume that 𝑆𝜙𝑚𝑓𝜙 is given by (3.5). Then 𝑆𝜙𝑚𝑓𝜙 is continuous
on {(𝑥, 𝑡); 𝑡 > 0, 𝑥 ∈ R𝑛}.

Proof. The continuity for each 𝑆𝜙𝑚𝑓𝜙 follows from the facts, that for almost
every 𝜉 ∈ R𝑛, the map (𝑥, 𝑡) ↦→ 𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓𝜙(𝜉) is continuous, and that∫︁

|𝜉|<𝑅′𝑚
|𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓𝜙(𝜉)| 𝑑𝜉 =

∫︁
|𝜉|<𝑅′𝑚

| ̂︀𝑓𝜙(𝜉)| 𝑑𝜉 < 𝐶. �

When proving Theorem 1.1, we first prove that the modulus of 𝑆𝜙𝑚𝑓𝜙(𝑥𝑘, 𝑡𝑘)
turns to infinity as 𝑘 goes to infinity. For this reason we note that the triangle
inequality and (3.6) implies that

(4.2) |𝑆𝜙𝑚𝑓𝜙(𝑥𝑘, 𝑡𝑘)| >
⃒⃒
𝐴𝜙𝑘 (𝑥𝑘, 𝑡𝑘)

⃒⃒
−
⃒⃒⃒⃒ 𝑘−1∑︁
𝑗=1
𝐴𝜙𝑗 (𝑥𝑘, 𝑡𝑘)

⃒⃒⃒⃒
−
⃒⃒⃒⃒ 𝑚∑︁
𝑗=𝑘+1

𝐴𝜙𝑗 (𝑥𝑘, 𝑡𝑘)
⃒⃒⃒⃒
,

where 𝑚 > 𝑘. We want to estimate the terms in (4.2). From Lemma 4.3 we get
estimates for the first two terms. It remains to estimate the last term.

Proof of Theorem 1.1. Step 1. For 𝑗 > 𝑘 > 2 we shall estimate |𝐴𝜙𝑗 (𝑥𝑘, 𝑡𝑘)|
in (3.8). We have to find appropriate estimates for 𝐴𝜙 and 𝐵𝜙 in (3.11)–(3.13). By
using 𝑡𝑘 − 𝑡𝑗 > 0 and 𝑅𝑗 < 𝑟 < 𝑅′𝑗 it follows from (3.4), (3.9), triangle inequality
and the Cauchy–Schwarz inequality that

|𝐹 ′𝜙(𝑟, 𝜔)| > (𝑡𝑘 − 𝑡𝑗)|𝜙′(𝑟, 𝜔)| − |𝑥𝑘 − 𝑥𝑗 |(4.3)

> (𝑡𝑘 − 𝑡𝑗)|𝜙′(𝑟, 𝜔)| − (𝑡𝑘 − 𝑡𝑗)
|𝜙′(𝑟, 𝜔)|

2 = |𝜙
′(𝑟, 𝜔)|

2 (𝑡𝑘 − 𝑡𝑗).

From (3.2), (3.3) and (4.3) it follows that

|𝐴𝜙| =
⃒⃒⃒[︁ 1
𝑟(log 𝑟)3/4𝑖𝐹 ′𝜙(𝑟, 𝜔)

𝑒𝑖𝐹𝜙(𝑟,𝜔)
]︁𝑅′𝑗
𝑅𝑗

⃒⃒⃒
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6
𝐶

𝑅𝑗

(︁ 1
|𝐹 ′𝜙(𝑅𝑗 , 𝜔)| +

1
|𝐹 ′𝜙(𝑅′𝑗 , 𝜔)|

)︁
6

𝐶

(𝑡𝑘 − 𝑡𝑗)𝑅𝑗
6 𝐶2−𝑗 .

In order to estimate 𝐵𝜙, using (1.4), (3.10) and (4.3), we have⃒⃒⃒ 𝑑
𝑑𝑟

(︁ 1
𝑟(log 𝑟)3/4𝑖𝐹 ′𝜙(𝑟, 𝜔)

)︁
𝑒𝑖𝐹𝜙(𝑟,𝜔)

⃒⃒⃒
6

𝐶

𝑟2|𝐹 ′𝜙(𝑟, 𝜔)| +
𝐶|𝐹 ′′𝜙 (𝑟, 𝜔)|

𝑟|𝐹 ′𝜙(𝑟, 𝜔)|2(log 𝑟)3/4

<
𝐶

𝑟1+min(1,𝛽)(𝑡𝑘 − 𝑡𝑗)
.

This together with (3.3) gives us

|𝐵𝜙| =
⃒⃒⃒ ∫︁ 𝑅′𝑗
𝑅𝑗

𝑑

𝑑𝑟

(︁ 1
𝑟(log 𝑟)3/4𝑖𝐹 ′𝜙(𝑟, 𝜔)

)︁
𝑒𝑖𝐹𝜙(𝑟,𝜔) 𝑑𝑟

⃒⃒⃒
6
∫︁ 𝑅′𝑗
𝑅𝑗

𝐶

𝑟1+min(1,𝛽)(𝑡𝑘 − 𝑡𝑗)
𝑑𝑟 6

𝐶

𝑅
min(1,𝛽)
𝑗 (𝑡𝑘 − 𝑡𝑗)

6 𝐶2−𝑗 .

From the estimates above and the triangle inequality we get

(4.4) |𝐴𝜙𝑗 (𝑥𝑘, 𝑡𝑘)| 6 𝐶
(︀
|𝐴𝜙|+ |𝐵𝜙|

)︀
< 𝐶2−𝑗 , 𝑗 > 𝑘 > 2.

Here 𝐶 is independent of 𝑗 and 𝑘.
Using the results from (4.2), (4.4), in combination with Lemma 4.3, and recall-

ing that 𝑅′𝑗 = 𝑅𝑁𝑗 , gives us

|𝑆𝜙𝑚𝑓𝜙(𝑥𝑘, 𝑡𝑘)| > 𝑐(log𝑅′𝑘)1/4 − 𝐶 ′(log𝑅𝑘)1/4 − 𝐶
𝑚∑︁
𝑘+1

2−𝑗(4.5)

> 𝑐(log(𝑅′𝑘))1/4 − 𝐶
′

𝑁1/4 (log(𝑅′𝑘))1/4 − 𝐶 > 𝑐(log𝑅′𝑘)1/4,

when 𝑚 > 𝑘 and 𝑁 is chosen sufficiently large. Here 𝑐 > 0 is independent of 𝑘.
Step 2. Now it remains to show that 𝑆𝜙𝑓𝜙 is continuous when 𝑡 > 0, and

then it suffices to prove this continuity on a compact subset 𝐿 of {(𝑥, 𝑡); 𝑡 > 0,
𝑥 ∈ R𝑛}. We want to replace (𝑥𝑙, 𝑡𝑙) with (𝑥, 𝑡) ∈ 𝐿 in (3.3) and (3.4). Since we
have maximum over all 𝑙 less than 𝑗, we can choose 𝑗0 <∞ large enough such that
for all 𝑗 > 𝑙 > 𝑗0 we have that 𝑡𝑗 < 𝑡𝑙 < 𝑡. Hence we may replace (𝑥𝑙, 𝑡𝑙) with
(𝑥, 𝑡) ∈ 𝐿 on the right-hand sides in (3.3) and (3.4) for all 𝑗 > 𝑗0. This in turn
implies that (4.4) holds when (𝑥𝑘, 𝑡𝑘) is replaced by (𝑥, 𝑡) ∈ 𝐿 and 𝑗 > 𝑗0. We use
(4.4) to conclude that

|𝑆𝜙𝑚𝑓𝜙(𝑥, 𝑡)− 𝑆𝜙𝑓𝜙(𝑥, 𝑡)|

=
⃒⃒⃒⃒
(2𝜋)−𝑛

∫︁
|𝜉|<𝑅′𝑚

𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓𝜙(𝜉) 𝑑𝜉 − (2𝜋)−𝑛
∫︁

R𝑛
𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓𝜙(𝜉) 𝑑𝜉

⃒⃒⃒⃒
= (2𝜋)−𝑛

⃒⃒⃒⃒ ∫︁
|𝜉|>𝑅′𝑚

𝑒𝑖𝑥·𝜉𝑒𝑖𝑡𝜙(𝜉) ̂︀𝑓𝜙(𝜉) 𝑑𝜉
⃒⃒⃒⃒
6 𝐶

∞∑︁
𝑖=𝑚+1

2−𝑖 = 𝐶2−𝑚,

when 𝑚 > 𝑗0. Hence 𝑆𝜙𝑚𝑓𝜙 converge uniformly to 𝑆𝜙𝑓𝜙 on every compact set.
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We have now showed that 𝑆𝜙𝑚𝑓𝜙 converge uniformly to 𝑆𝜙𝑓𝜙 on every compact
set and from Lemma 4.4 it follows that each 𝑆𝜙𝑚𝑓𝜙 is a continuous function. There-
fore it follows that 𝑆𝜙𝑓𝜙 is continuous on {(𝑥, 𝑡); 𝑡 > 0}. In particular there is an
𝑁 ∈ N such that |𝑆𝜙𝑚𝑓𝜙(𝑥𝑘, 𝑡𝑘)−𝑆𝜙𝑓𝜙(𝑥𝑘, 𝑡𝑘)| < 1, when 𝑚 > 𝑁 . Using (4.5) and
the triangle inequality we get
𝑐(log𝑅′𝑘)1/4 6 |𝑆𝜙𝑚𝑓𝜙(𝑥𝑘, 𝑡𝑘)| 6 |𝑆𝜙𝑚𝑓𝜙(𝑥𝑘, 𝑡𝑘)− 𝑆𝜙𝑓𝜙(𝑥𝑘, 𝑡𝑘)|+ |𝑆𝜙𝑓𝜙(𝑥𝑘, 𝑡𝑘)|

< 1 + |𝑆𝜙𝑓𝜙(𝑥𝑘, 𝑡𝑘)|.

This gives us |𝑆𝜙𝑓𝜙(𝑥𝑘, 𝑡𝑘)| > 𝑐(log𝑅′𝑘)1/4 − 1 → +∞ as 𝑘 → +∞. For any fixed
𝑥 ∈ R𝑛 we can by Lemma 4.1 choose a subsequence (𝑥𝑛𝑗 , 𝑡𝑛𝑗 ) of (𝑥𝑘, 𝑡𝑘) that goes
to (𝑥, 0) as 𝑗 turns to infinity. This gives the result. �
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