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Abstract. We analyze adequacy of knots and links, utilizing Conway no-
tation, Montesinos tangles and Linknot and KhoHo computer calculations.
We introduce a numerical invariant called adequacy number, and compute
adequacy polynomial which is the invariant of alternating link families. Ac-
cording to computational results, adequacy polynomial distinguishes (up to
mutation) all families of alternating knots and links generated by links with
at most 12 crossings.

1. Introduction

We consider adequacy of nonalternating knots and links (shortly KLs) and their
families (classes) given in the Conway notation. First, we explain the Conway no-
tation, introduced in Conway’s seminal paper [1] published in 1967, and effectively
used since (e.g., [2]). Conway symbols of knots with up to 10 crossings and links
with at most 9 crossings are given in the Appendix of the book [3].

Figure 1. The elementary tangles.

The main building blocks in the Conway notation are elementary tangles. We
distinguish three elementary tangles, shown in Fig. 1 and denoted by 0, 1 and −1.
All other tangles can be obtained by combining elementary tangles, while 0 and 1
are sufficient for generating alternating knots and links (abbr. KLs). Elementary
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tangles can be combined by the following operations: sum, product, and ramification
(Figs. 2-3). Given tangles a and b, the image of a under reflection with mirror line
NW–SE is denoted by −a, and the sum is denoted by a + b. The product a b is
defined as a b = −a + b, and ramification by (a, b) = −a − b.

Figure 2. A sum and product of tangles.

Figure 3. Ramification of tangles.

A tangle can be closed in two ways (without introducing additional crossings):
by joining in pairs NE and NW, and SE and SW ends of a tangle to obtain a
numerator closure; or by joining in pairs NE and SE, and NW and SW ends we
obtain a denominator closure (Fig. 1a,b).

Figure 4. (a) Numerator closure; (b) denominator closure; (c)
basic polyhedron 1∗.

Definition 1.1. A rational tangle is any finite product of elementary tangles.
A rational KL is a numerator closure of a rational tangle.

Definition 1.2. A tangle is algebraic if it can be obtained from elementary
tangles using the operations of sum and product. KL is algebraic if it is a numerator
closure of an algebraic tangle.
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A Montesinos tangle and the corresponding Montesinos link, consisting of n
alternating rational tangles ti, with at least three nonelementary tangles tk for k ∈
{1, 2, . . . , n}, is denoted by t1, t2, . . . , tn, n � 3, i = 1, . . . , n (Fig. 5). The number of
tangles n is called the length of the Montesinos tangle. In particular, if all tangles ti,
n � 3, i = 1, . . . , n are integer tangles, we obtain pretzel KLs. Every nonalternating
Montesinos link can be expressed in the form t1, t2, . . . , tm, −tm+1, . . . , −tn, m � 3,
i = 1, . . . , m with all ti �= ±1 and m � n. Such a representation of a nonalternating
Montesinos link is called minimal representation, with respect to the number of
crossings. Throughout the paper, the term “Montesinos link" refers to the minimal
representation of a Montesinos link.

Figure 5. Montesinos link t1, t2, . . . , tn.

Definition 1.3. Basic polyhedron is a 4-regular, 4-edge-connected, at least
2-vertex connected plane graph.

Basic polyhedron [1, 2] of a given KL can be identified by recursively collapsing
all bigons in a KL diagram, until none of them remains.

The basic polyhedron 1∗ is illustrated in Fig. 1c, and the other basic polyhedra
with at most 11 crossings in Figs. 7–9.

Definition 1.4. A link L is algebraic or 1∗-link if there exists at least one
diagram of L which can be reduced to the basic polyhedron 1∗ by a finite sequence
of bigon collapses. Otherwise, it is a nonalgebraic or polyhedral link.

Conway notation for polyhedral KLs contains additionally a symbol of a basic
polyhedron we are working with. The symbol n∗m = n∗m1.1. . . . .1, where ∗m is a
sequence of m stars, denotes the m-th basic polyhedron in the list of basic polyhedra
with n vertices. A KL obtained from a basic polyhedron n∗m by substituting tangles
t1, . . . , tk, k � n instead of vertices, is denoted by n∗mt1 . . . tk, where the number
of dots between two successive tangles shows the number of omitted substituents
of value 1. For example, 6∗2 : 2 : 2 0 means 6∗2.1.2.1.2 0.1, and 6∗2 1.2.3 2 : −2 2 0
means 6∗2 1.2.3 2.1. − 2 2 0.1 (Fig. 6).

The complete list of the basic polyhedra with n � 11 crossings used in this
paper is illustrated in Figs. 7–91.

In comparison with other KL notations (Dowker-Thistlethwaite notation, PD-
notation, P-data, etc.), Conway notation is the most suitable for utilizing the notion

1Two different symbols of the basic polyhedron with 6 vertices are used simultaneously in [1].
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Figure 6. Basic polyhedron 6∗ and the knots 6∗2.1.2.1.2 0.1 and
6∗2 1.2.3 2 : −2 2 0.

Figure 7. Basic polyhedra 6∗, 8∗, and 9∗.

of families of knots and links and analyzing how knot and link properties change
inside families.

Definition 1.5. For a link or knot L given in an unreduced2 Conway notation
C(L) denote by S a set of numbers in the Conway symbol excluding numbers
denoting basic polyhedron and zeros (determining the position of tangles in the
vertices of polyhedron) and let S̃ = {a1, a2, . . . , ak} be a nonempty subset of S.
Family FS̃(L) of knots or links derived from L consists of all knots or links L′

2The Conway notation is called unreduced if in symbols of polyhedral links elementary tangles
1 in single vertices are not omitted.
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Figure 8. Basic polyhedra with n = 10 crossings.

Figure 9. Basic polyhedra with n = 11 crossings.

whose Conway symbol is obtained by substituting all ai �= ±1, by sgn(ai)|ai + kai |,
|ai + kai | > 1, kai ∈ Z.

An infinite subset of a family is called subfamily. If all kai are even integers,
the number of components is preserved within the corresponding subfamilies, i.e.,
adding full-twists preserves the number of components inside the subfamilies.

Definition 1.6. A link given by Conway symbol containing only tangles ±1
and ±2 is called a source link. A link given by Conway symbol containing only
tangles ±1, ±2, or ±3 is called a generating link.
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For example, Hopf link 2 (link 22
1 in Rolfsen’s notation) is the source link of

the simplest link family p (p = 2, 3, . . . ) (Fig. 10), and Hopf link and trefoil 3
(knot 31 in the classical notation) are generating links of this family. A family of
KLs is usually derived from its source link by substituting ai ∈ S̃, ai = ±2, by
sgn(ai)(2 + k), k = 1, 2, 3, . . . (see Def. 1.6).

Figure 10. Hopf link and its family p (p = 2, 3, . . .).

2. Adequacy of knots and links

In this section we briefly review the adequacy of KLs and discuss relations to
the Khovanov homology. Throughout the paper we consider only reduced prime
links.

Let D be a diagram of an unoriented, framed link L ∈ R3. A Kauffman state
of a diagram D is a function from the set of crossings of D to the set of signs
{+1, −1}. Graphical interpretation is given by smoothing each crossing of D by
introducing markers according to the convention illustrated in Fig. 11. A state
diagram Ds of a diagram D and Kauffman state s, is a system of circles obtained
by smoothing all crossings of D [4]. The set of circles in Ds, which are called state
circles, is denoted by C(D). Points of the state circles corresponding to a smoothed
crossing are called touch-points. The number of touch-points belonging to a state
circle c ∈ C(D) is called the length of c.

Figure 11. (a) −marker; (b) +marker. The broken lines repre-
sent the edges of the associated graph Gs connecting state circles
(represented by dots).
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Kauffman states s+ and s− with all + or all − signs are called special states,
and their corresponding state diagrams Ds+ and Ds− are called special diagrams.
All other Kauffman states with both + or − signs are called mixed states, and to
them correspond mixed state diagrams.

Definition 2.1. A diagram D is s-adequate if two arcs at every touch-point
of Ds belong to different state circles. In particular, a diagram D is +adequate
or −adequate if it is s+ or s− adequate, respectively. If a diagram is neither
+adequate nor −adequate, it is called inadequate. If a diagram is both +adequate
and −adequate, it is called adequate, and if it is only +adequate or −adequate, it
is called semi-adequate [5, 6].

To every state diagram Ds we associate the graph Gs, whose vertices are state
circles of Ds and edges are lines connecting state circles via smoothed crossings in
D. Now we can restate Definition 2.1 in terms of Gs: D is s-adequate if Gs is
loopless. A state graph Gs is called adequate if Ds is s-adequate.

Definition 2.2. A link is adequate if it has an adequate (+adequate and
−adequate) diagram. A link is semi-adequate if it has a + or −adequate diagram.
A link is inadequate if it is neither + or −adequate [5, 6].

The mirror image of a diagram transforms the +adequacy into −adequacy and
vice versa.

Definition 2.3. A link that has one +adequate diagram and another diagram
that is −adequate is called weakly adequate.

For example, knot 11n146 9∗. − 2 : . − 2 has −adequate 11-crossing diagram and
+adequate 12-crossing diagram 6∗ − 2.2. − 2.2.2 0. − 2 0. Another such example is
Perko’s knot 10161 3 : −2 0 : −2 0 = 6∗ − 2 1. − 1.2 0. − 1.2 0. − 1 (Fig. 14) [7].

The torsion in the Khovanov homology carries additional information about
knots and their cobordisms, not contained in the Jones polynomial and seems to
be the best framework for determining adequacy. Classical theorems on adequacy
(Theorems 2.1–2.5) follow almost instantly by using the basic properties of the
Khovanov homology [8, 9].

A crossing in a link diagram for which there exists a circle in the projection
plane intersecting the diagram transversely at that crossing, but not intersecting
the diagram at any other point is called nugatory crossing. A link diagram is called
reduced if it has no nugatory crossings. In this paper we work only with reduced
KL diagrams. The following theorems hold for reduced alternating link diagrams:

Theorem 2.1. A reduced alternating diagram is adequate [5, 6, 10].

Hence, all alternating links are adequate.

Theorem 2.2. An adequate diagram has minimal crossing number [5, 6, 10].

Khovanov gave a direct simple proof of Theorem 2.2 in Section 7.7 [8].

Theorem 2.3. Every nonminimal reduced unlink diagram is inadequate. Semi-
adequate reduced link diagrams are nontrivial [11].
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A nonminimal diagram of an adequate link can be semi-adequate or inade-
quate. For example, nonminimal diagram 3 2 4 − 2 2 of the alternating knot 3 3 2 3
is semi-adequate, and nonminimal diagram 3 3 4 − 1 2 of the alternating knot 3 3 2
is inadequate.

A nonminimal diagram of a semi-adequate link also can be semi-adequate or
inadequate. For example, nonminimal diagram 3, 3, 2, 2 −3 and minimal diagram of
the same knot 3, 3, 2, −2 − 2 are both semi-adequate; minimal diagram of the knot
2 1, 3, −2 is semi-adequate, and its nonminimal diagram 2 1, 3, 2− is inadequate.

Proposition 2.1. Two adequate diagrams of a link have the same crossing
number and the same writhe [10], and the same number of circles in the Kauffman
state s+ (and the same for s−) [8].

Definition 2.4. An alternating diagram of a marked 2-tangle t is called
strongly alternating if both numerator closure N(t) and denominator closure D(t),
are irreducible [5, 6, 10].

Theorem 2.4. Non-alternating sum of two strongly alternating tangles is ad-
equate [5, 6, 10].

This theorem is very effective in determining adequacy of certain types of link
diagrams. For example, all semi-alternating diagrams [5, 6] are adequate.

According to Theorem 2.2, minimal diagrams can be used to determine if a link
is adequate, but do not provide necessary and sufficient conditions to distinguish
semi-adequate links from inadequate ones.

Theorem 2.5. A link is inadequate if both coefficients of the terms of highest
and lowest degree of its Jones polynomial are different from ±1 [5].

By adding the q-degree in observation [7], we obtain a small improvement of
this theorem in terms of the Khovanov homology:

Proposition 2.2. The link is not +adequate (resp. −adequate) if the rank of
the homology in the highest (resp. lowest) nonvanishing q-degree is strictly larger
than 1.

It is worth mentioning the recent results describing torsion in the Khovanov
homology of adequate and semi-adequate knots and links. The existence of Z2-
torsion in the Khovanov homology of a large class of adequate links was proved
in [4]. Existence results were extended, using the modified chromatic graph coho-
mology, to semi-adequate knots [12, 13] and torsion was explicitly computed in
[13, 14].

3. Adequate links with at most 12 crossings

Using Knotscape tables of knots given in the Dowker–Thistlethwaite notation,
A. Stoimenow detected all nonalternating adequate knots up to 16 crossings. We
consider adequacy of nonalternating links and their families (classes) given in Con-
way notation.
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Adequate nonalternating links with up to 10 crossings are given in the following
table:

n = 8
2, 2, −2, −2 (2, 2) − (2, 2)

2 Links
n = 9

3, 2, −2, −2 (3, 2) − (2, 2) (2 1, 2) − (2, 2)
. − (2, 2)
4 Links
n = 10

(3, 2) − (3, 2) (3, 2) − (2 1, 2) (2 1, 2) − (2 1, 2)
3 Knots

3, 2 1, −2, −2 3, 3, −2, −2 3, −2, 2 1, −2
3, −2, 3, −2 4, 2, −2, −2 2, 2, 2, −2, −2

2 2, 2, −2, −2 (4, 2) − (2, 2) (3, 2 1) − (2, 2)
(3 1, 2) − (2, 2) (2 1, 2 1) − (2, 2) (3, 3) − (2, 2)

(2 1 1, 2) − (2, 2) (2, −2, −2) (2, 2) (2 2, 2) − (2, 2)
(2, 2, 2) − (2, 2) (2, 2), 2, −(2, 2) . − (2, 2).2

. − (2, 2).2 0 . − (2, 2) : 2 0 . − (2, 2) : 2
103∗ − 1. − 1. − 1. − 1 :: . − 1

22 Links

All of the KLs in the table, except the polyhedral ones, satisfy Theorem 2.4 or can
be obtained by permuting rational tangles in Montesinos links which satisfy this
theorem.

Theorem 2.5 and Proposition 2.2 give sufficient, but not necessary conditions
for recognizing inadequate links. For example, the first and last coefficient of Jones
polynomial of the knot 11n95 = 2 0. − 2 1. − 2 0.2 are different from ±1, so it is
inadequate [10]. However, since these theorems do not give necessary conditions
for a link to be inadequate, the main problem remains detection of inadequate links.

For knots with at most 12 crossings every minimal diagram of a semi-adequate
knot is semi-adequate. Unfortunately, this is not true for knots with 13 or more
crossings: the first example of a semi-adequate knot with a minimal inadequate
diagram (Fig. 12) is the knot 13n4084 10∗∗. − 1. − 1. − 1 : . − 2.2. − 2 with the
minimal Dowker–Thistlethwaite code

{{13}, {6, −10, 12, 24, 20, −18, −26, −22, −4, 2, −16, 8, −14}}.

Except this inadequate diagram of writhe 9, it has another semi-adequate minimal
diagram 11∗∗. − 2 :: −2 0 : −1. − 1. − 1 of writhe 7, with the Dowker–Thistlethwaite
code

{{13}, {6, 12, −16, 23, 2, 17, 21, 26, 11, −4, −25, 7, 13}}
[15, 16]. The smallest examples of semi-adequate knots without a minimal semi-
adequate diagram have 15 crossings. For example, knot 15n164563 has a unique
minimal diagram 10∗∗ − 1. − 2 0.2 0 :: .2 0.2 0. − 2 0 which is inadequate (Fig. 13).
However, it has a 16-crossing diagram 11∗2 0. − 1. − 2. − 1.3 0. − 1.2 0 :: −1 which is
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semi-adequate [17]. This example can be generalized to the family of knot diagrams
10∗∗ − 1. − 2 0.(2k) 0 :: .2 0.2 0. − 2 0 and 11∗(2k) 0. − 1. − 2. − 1.3 0. − 1.2 0 :: −1,
k � 1 with the same properties, respectively.

Figure 12. Semi-adequate knot 13n4084 with a minimal inade-
quate diagram 10∗∗. − 1. − 1. − 1 : . − 2.2. − 2 and minimal semi-
adequate diagram 11∗∗. − 2 :: −2 0 : −1. − 1. − 1 [15, 16].

Figure 13. Semi-adequate knot 15n164563 which has only minimal
diagram 10∗∗ − 1. − 2 0.2 0 :: .2 0.2 0. − 2 0 which is inadequate and
nonminimal 16-crossing diagram 11∗2 0.−1.−2.−1.3 0.−1.2 0 :: −1
which is semi-adequate [17].

For knots with at most 12 crossings we checked adequacy of all of their minimal
diagrams, while we used only one for KLs with more than 12 crossings.

Note that different minimal diagrams of a given knot or a link can be +adequate
or −adequate, hence we get a weakly adequate link.



ADEQUACY OF LINK FAMILIES 31

The smallest3 nonalternating knot 10161 whose minimal diagrams have different
writhes is Perko pair: 3 : −2 0 : −2 0 and 2 1 : −2 0 : −2 0 (see Fig. 14), and it
is weakly adequate. Knots with this property are scarce in knot theory literature
and hard to find. According to our computations, there are only 29 knots with this
property among all knots with at most 12 crossings:

• Perko knot 10161 with 10 crossings,
• 3 knots: 11n116, 11n135, and 11n143 with 11 crossings, and
• 25 knots: 12n349, 12n382, 12n394, 12n398, 12n417, 12n430, 12n436, 12n519,

12n535, 12n552, 12n579, 12n594, 12n617, 12n624, 12n629, 12n638, 12n640,
12n644, 12n647, 12n650, 12n655, 12n739, 12n764, 12n850, and 12n851 with
12 crossings.

Notice that all of these knots are nonalgebraic.
According to our computations [18], a family of knots generated by the Perko

knot, starting with knots 12n850, 14n26229, and 16n965076, given in Knotscape nota-
tion, has the same property: writhes of diagrams determined by Conway sym-
bols (2k + 1) : −2 0 : −2 0 and (2k) 1 : −2 0 : −2 0 differ by 2. Diagrams
2 (2k) : −2 0 : −2 0 and 2 (2k − 1) 1 : −2 0 : −2 0, k = 1, 2, 3, corresponding to
knots 11n135, 13n3546, and 15n114094 share the same property.

We expect that this property is preserved within infinite families of KLs. For
example, consider two families KL diagrams determining the same knot or link,
t (k + 1) : −2 0 : −2 0 and t k 1 : −2 0 : −2 0, where t is a positive rational tangle4

whose Conway symbol does not contain basic tangle 1 in the first place, and k ∈ N.
According to [18], t (k + 1) : −2 0 : −2 0 is a knot if the tangle t (k + 1) is of the
type [1] or [∞], and 2-component link if it is of the type [0]. Hence, the suitable
choice of k and tangle t, yields a knot with two families of minimal diagrams
t (k + 1) : −2 0 : −2 0 and t k 1 : −2 0 : −2 0 whose writhes differ by 2. As a
corollary we get that for every n � 10 there exists at least one nonalternating knot
with this property. Two minimal diagrams of the knot obtained for t = 2 2 and
k = 3 are illustrated in Fig. 15.

According our computations, all the mentioned knots with two minimal dia-
grams with different writhes are weakly adequate, so we conjecture

Conjecture 3.1. Every knot which has minimal diagrams with different writ-
hes is weakly adequate.

At least for small number of crossings, most of nonalternating links are semi-
adequate, so we attempt to tabulate adequate nonalternating links and candidates
for inadequate links and find some general criteria for adequacy. Adequacy of all
minimal diagrams of nonalternating KLs with at most 12 crossings was checked
using LinKnot [19].

Among 202 nonalternating links with at most ten crossings there are only 28
adequate links and three adequate knots. Links with inadequate minimal diagrams
are even more rare. There are only three 10 crossing links with inadequate minimal

3The term “smallest" refers to the minimal crossing number diagram of a given KL.
4A rational tangle is called positive if all numbers in its Conway symbol are positive.
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Figure 14. Perko pair: weakly-adequate knot with two minimal
diagrams 6∗3 : −2 0 : −2 0 and 6∗ − 2 1. − 1.2 0. − 1.2 0. − 1 with
the adequacy of different signs, where the first is +adequate, and
the other −adequate.

diagrams: 2. − 2 0. − 2.2 0 and 103∗ − 1. − 1 :: −1. − 1 are inadequate according
to Theorem 2.5 and Proposition 2.2, and for the link (2, 2, −2) (2, −2) we can not
decide it is semi-adequate or inadequate.

Although the Khovanov homology is a stronger invariant than the Jones poly-
nomial, so potentially it can give better criteria for adequacy, at the moment we
do not have an example of a KL whose inadequacy is detected by the Khovanov
homology, but not by the Jones polynomial. For example, Proposition 2.2 gives no
new information for KLs with up to 12 crossings5 based on the computations6.

According to the computations, all inadequate knots and links with at most 12
crossings are thin in the Khovanov and odd Khovanov homologies.

Particular links, families, or classes of links which have all minimal inadequate
diagrams will be referred by us as candidates for inadequate links and in some cases
Theorem 2.5 or Proposition 2.2 confirm that they indeed are inadequate.

Candidates for inadequate knots occur for the first time among 11-crossing
knots: knot 2 0.−2 1.−2 0.2 is inadequate according to Theorem 2.5 and Proposition
2.2, but for the knot 2 0. − 3. − 2 0.2 which all minimal diagrams are inadequate, it

5The same holds for odd Khovanov homology.
6Khovanov homology can be efficiently computed for relatively large links by A. Shu-

makovitch’s KhoHo [20], or Bar-Natan’s Knot Theory [21]).
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Figure 15. Perko-type pair of knot diagrams: weakly-adequate
knot with two minimal diagrams 6∗2 2 3 : −2 0 : −2 0 and 6∗ −
2 2 2 1. − 1.2 0. − 1.2 0. − 1 with the adequacy of different signs,
where the first is +adequate, and the other −adequate.

is not possible to make any conclusion, since both leading coefficients of its Jones
polynomial are equal to 1.

Among 19 12-crossing knots with an inadequate minimal diagram, 11 knots
given in the following table are inadequate according to Theorem 2.5 and Proposi-
tion 2.2

2. − 2 0. − 2.2 1 1 0 2 : (−2, 2 1) 0 : −2 0 2 : (2, −2 1) 0 : −2 0
2.2. − 2.2 0. − 2 1 3. − 2 0. − 2.2 1 0 3. − 2 1 0. − 2.2 0

8∗2 0. − 2 0. − 2 0.2 0 8∗ − 2 1.2 0. − 2 9∗. − 2 : −2 0. − 2
101∗ − 2 0 :: . − 2 0 102∗ − 2 0 :: −2

while inadequacy of the remaining 8 knots from the following table remains un-
known
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2. − 3 0. − 2 1.2 0 8∗ − 2 1 1 :: −2 0 8∗2 : . − 2 0 : . − 2 1 0
8∗ − 2 1 :: −3 0 8∗2 : . − 2 1 0 : . − 2 0 8∗ − 2 0.2 : −2 1 0

8∗ − 2.2. − 2 0 : 2 0 8∗ − 2 0 : −2 0 : −2 0 : 2 0

The following 11-crossing links (2 1, 2) − 1 − 1 (2, 2), (2, 2), −2, −1, (2, −2),
6∗3. − 2 0. − 2.2 0, 6∗(2, −2).2. − 2 are inadequate according to Theorem 2.5 and
Proposition 2.2, while 8 links in the following table are candidates for inadequate
links:

(−2 1, 2) 1 1 (2, −2) (−2 1, 2, 2) (2, −2) (2 1, 2, −2) (2, −2) (2, 2) − 1 − 1 − 1 (2, −2)
(2, 2, −2) (−2 − 1, 2) (2, 2, −2) (2 1, −2) 6∗2 1. − 2 0. − 2.2 0 6∗(2, −2), −2

Using the same method, we confirm inadequacy of 63 12-crossing links, while
the remaining 232 links are candidates for inadequate links.

It is interesting to notice that all inadequate links with at most 12 crossings
are Khovanov homology thin. The first three inadequate Khovanov homology thick
knots, 14n11449, 14n12713, and 14n22178, occur among 526 inadequate knots with
n = 14 crossings, and all of them are polyhedral. First algebraic inadequate Kho-
vanov homology thick knot is 15n5429 −(2, 3) 1, (2 1, −2) 1, 2+ (Fig. 16).

Figure 16. Algebraic inadequate Khovanov homology thick knot
15n5429 −(2, 3) 1, (2 1, −2) 1, 2+.

Tables of adequate nonalternating links with at most 12 crossings in Conway
notation can be downloaded in the form of Mathematica notebook from the address:
http://www.mi.sanu.ac.rs/vismath/adequate.pdf

4. Families and classes of links and their adequacy

In this section we analyze adequacy of KL families given in Conway notation.

Theorem 4.1. The plus or minus adequacy property is preserved within fami-
lies of link diagrams.



ADEQUACY OF LINK FAMILIES 35

Proof. Let us start from a source link L. If we substitute ai ∈ S̃, ai �= ±1,
by sgn(ai)(|ai| + 1) (Definition 1.5), a new state circle of the length 2 appears in
one of the states Ds+ or Ds− , so the adequacy stays the same. In the other state,
the number of state circles remains unchanged and all state circles associated with
the new crossing obtain one new touching point. If the crossings of the original
tangle a after smoothing correspond to different state circles, the same holds for the
tangle sgn(ai)(|ai| + 1), which does not change the adequacy type. By induction,
we conclude that this property holds for every kai ∈ N (see Def. 1.5). Hence, all link
diagrams which belong to the same family of diagrams have the same adequacy. �

Proposition 4.1. The adequacy type of a link diagram D remains unchanged
if we replace every positive rational tangle by 2, and every negative rational tangle
by −2.

The proof of this proposition is straightforward.

Theorem 4.2. A nonalternating Montesinos link t1, t2, . . . , tn is semi-adequa-
te if its all but one rational tangle have the same sign. Otherwise, it is adequate.

Definition 4.1. A tangle Pn = t1, t2, . . . , tn (n � 2) is called adequate or semi-
adequate if its corresponding link, obtained as its numerator closure, is adequate
or semi-adequate, respectively.

Definition 4.2. An alternating tangle Pn = t1, t2, . . . , tn (n � 2) is called
+alternating if all its rational tangles ti are positive, and −alternating if they are
all negative.

For example, tangle t1, −t2 is inadequate, if t1, t2 are positive rational tangles.
Let us denote source link of the form 2, . . . , −2, . . . , where 2 occurs k times, and

−2 occurs l times with (2)k, (−2)l. As a corollary of Theorem 2.1 and Theorem 4.2,
we obtain six classes of source links, with the same adequacy type shown in the
table below:

k � 3, l = 0 +alternating
k = 0, l � 3 −alternating
k � 2, l � 2 adequate
k = 1, l � 2 +adequate
k � 2, l = 1 −adequate

k = l = 1 inadequate

Minimal representatives of these 6 classes are source links (2, 2, 2), (−2, −2, −2),
(2, 2, −2, −2), (−2, −2, 2), (2, 2, −2), and (2, −2), respectively. Based on Proposi-
tion 4.1, we view these six source links as the representatives of Montesinos links
containing rational tangles with given signs. For example, source link 2, 2, −2, −2
can be used as the representative of all nonalternating adequate Montesinos links
of the form t1, . . . , tk, −t′

1, . . . , −t′
l, (k � 2, l � 2), where ti, i = 1, 2, . . . , k, t′

j ,
j = 1, 2, . . . , l are positive rational tangles different from 1.



36 JABLAN, RADOVIĆ, AND SAZDANOVIĆ

5. Examples: classes of algebraic links and their adequacy

Results in Section 5 and Section 6 follow from Proposition 4.1 and computer
computations.

Proposition 5.1. A link Pm Qn = (p1, p2, . . . , pm) (q1, q2, . . . , qn) (m, n � 2,
pi �= ±1, qj �= ±1, i = 1, 2, . . . , m, j = 1, 2, . . . , n) obtained as the product of tangles
Pm and Qn is adequate if

• both Pm and Qn are adequate; or
• one of them is +alternating, and the other +adequate; or
• one of them is −alternating, and the other −adequate.

It is semi-adequate if
• one of them is adequate, and the other semi-adequate; or
• one of them is +adequate, and the other −adequate; or
• if one of them inadequate, and the other an alternating tangle.

It is candidate for inadequate if
• both Pm and Qn are +adequate or −adequate;
• if one of them is inadequate, and the other is not an alternating tangle.

From the preceding proposition we obtain the following multiplication table,
where ∗ denotes the product of tangles P1 and P2

7:

∗ +alt −alt adq +adq −adq inadq
+alt +alt adq adq adq +adq +adq
−alt adq −alt adq −adq adq −adq
adq adq adq adq −adq +adq inadeq

+adq adq +adq +adq inadeq +adq inadeq
−adq −adq adq −adq −adq inadeq inadeq
inadq −adq +adq inadeq inadeq inadeq

For links of the form Pm Qn = (p1, p2, . . . , pn) (q1, q2, . . . , qn) we obtain general
rules for adequacy, expressed as the multiplication table. Unfortunately, for links
of the form P1 P2 . . . Pk, with k � 2 we could not determine such a rule.

The following tangles are the minimal representatives of tangles P1, . . . , Pk

(k � 2) with the properties +alt, −alt, adq, +adq, −adq, and inadeq:

1 +alt 2, 2, 2
2 −alt −2, −2, −2
3 adq 2, 2, −2, −2
4 +adq −2, −2, 2
5 −adq 2, 2, −2
6 inadeq 2, −2

7The product P1 P2 of inadequate tangles P1 and P2 is omitted, since it represents a non-
minimal diagram of an alternating link.
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If we denote the properties +alt, −alt, adq, +adq, −adq, and inadeq by
numbers 1–6, for k = 3, then we have the following statement:

Proposition 5.2. The links P1 P2 P3 are adequate for the following properties
of tangles P1, P2, P3:

1, 1, 1 1, 1, 2 1, 1, 3 1, 1, 4 1, 2, 1 1, 2, 2 1, 2, 3 1, 3, 1
1, 3, 2 1, 3, 3 1, 4, 1 1, 4, 2 1, 4, 3 1, 5, 2 1, 6, 2 2, 1, 2
2, 1, 3 2, 2, 2 2, 2, 3 2, 2, 5 2, 3, 2 2, 3, 3 2, 5, 2 2, 5, 3
3, 1, 3 3, 1, 4 3, 2, 3 3, 2, 5 3, 3, 3 4, 1, 4 5, 2, 5

semi-adequate for:
1, 1, 5 1, 1, 6 1, 2, 4 1, 2, 5 1, 3, 4 1, 3, 5 1, 4, 4 1, 4, 5
1, 5, 1 1, 5, 3 1, 5, 4 1, 6, 1 1, 6, 3 1, 6, 4 2, 1, 4 2, 1, 5
2, 2, 4 2, 2, 6 2, 3, 4 2, 3, 5 2, 4, 2 2, 4, 3 2, 4, 5 2, 5, 4
2, 5, 5 2, 6, 2 2, 6, 3 2, 6, 5 3, 1, 5 3, 1, 6 3, 2, 4 3, 2, 6
3, 3, 4 3, 3, 5 3, 4, 3 3, 4, 5 3, 5, 3 3, 5, 4 4, 1, 5 4, 1, 6
4, 2, 4 4, 2, 5 4, 2, 6 4, 3, 4 4, 5, 4 5, 1, 5 5, 1, 6 5, 2, 6
5, 3, 5 5, 4, 5 6, 1, 6 6, 2, 6

and candidates for inadequate for:
1, 2, 6 1, 3, 6 1, 4, 6 1, 5, 5 1, 5, 6 1, 6, 5 1, 6, 6 2, 1, 6
2, 3, 6 2, 4, 4 2, 4, 6 2, 5, 6 2, 6, 4 2, 6, 6 3, 3, 6 3, 4, 4
3, 4, 6 3, 5, 5 3, 5, 6 3, 6, 3 3, 6, 4 3, 6, 5 3, 6, 6 4, 3, 5
4, 3, 6 4, 4, 4 4, 4, 5 4, 4, 6 4, 5, 5 4, 5, 6 4, 6, 4 4, 6, 5
4, 6, 6 5, 3, 6 5, 4, 6 5, 5, 5 5, 5, 6 5, 6, 5 5, 6, 6 6, 3, 6
6, 4, 6 6, 5, 6 6, 6, 6

The results hold for all sequences a, b, c (a, b, c ∈ {1, 2, . . . , 6}) and their re-
verses. Analogous tables are obtained by computer calculations for all k � 6.

For a given nonalternating Montesinos tangle P , the tangle P ′ obtained by
replacing every rational positive or negative tangle ti with the tangle sign(ti) × 2
will be called the source Montesinos tangle.

Proposition 5.3. The links P1 P2 . . . Pk and P ′
1 P ′

2 . . . P ′
k have the same ad-

equacy.

Next, we consider links of the form P1, P2, . . . , Pk (k � 3), where Pi (i =
1, . . . , k) are Montesinos tangles of the length greater then 1. Since permutation
of Montesinos tangles preserves the sign of adequacy, the result holds for every
sequence a, b, c (a, b, c ∈ {1, 2, . . . , 6}) and all of its permutations.

Proposition 5.4. The links P1, P2, P3 are adequate for the following properties
of Montesinos tangles P1, P2, P3:

1, 1, 1 1, 1, 2 1, 1, 3 1, 1, 4 1, 2, 2 1, 2, 3 1, 3, 3 1, 3, 4
1, 4, 4 2, 2, 2 2, 2, 3 2, 2, 5 2, 3, 3 2, 3, 5 2, 5, 5 3, 3, 3
3, 3, 4 3, 3, 5 3, 3, 6 3, 4, 4 3, 4, 5 3, 4, 6 3, 5, 5 3, 5, 6
3, 6, 6 4, 4, 4 4, 4, 5 4, 4, 6 4, 5, 5 4, 5, 6 4, 6, 6 5, 5, 5
5, 5, 6 5, 6, 6 6, 6, 6
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semi-adequate for:
1, 2, 4 2, 2, 4 2, 2, 6 2, 3, 4 2, 3, 6 2, 4, 4 2, 4, 5 2, 4, 6
2, 5, 6 2, 6, 6 1, 1, 5 1, 1, 6 1, 2, 5 1, 3, 5 1, 3, 6 1, 4, 5
1, 4, 6 1, 5, 5 1, 5, 6 1, 6, 6

and candidates for inadequate for 1, 2, 6.

Analogous results are obtained by computer calculations for all k � 6.
Next we consider links of the form (P1, P2, . . . , Pm) (Q1, Q2, . . . , Qn) (m, n � 2),

where Pi and Qj (i = 1, . . . , m, j = 1, . . . , n) are Montesinos tangles.
For m = n = 2, and the sequence (a, b) (c, d), a, b, c, d ∈ {1, 2, . . . , 6}, where a

and b, and c and d can commute and all sequences (a, b) (c, d) can be reversed, we
obtain the following result:

Proposition 5.5. Links given in Conway notation by (P1, P2) (Q1, Q2) are
adequate for the following properties of Montesinos tangles P1, P2, Q1, Q2:

(1, 1) (1, 1) (1, 1) (1, 2) (1, 1) (1, 3) (1, 1) (1, 4) (1, 1) (2, 2) (1, 1) (2, 3) (1, 1) (3, 3)
(1, 1) (3, 4) (1, 1) (4, 4) (1, 2) (1, 2) (1, 2) (1, 3) (1, 2) (1, 4) (1, 2) (2, 2) (1, 2) (2, 3)
(1, 2) (2, 5) (1, 2) (3, 3) (1, 2) (3, 4) (1, 2) (3, 5) (1, 2) (3, 6) (1, 2) (4, 4) (1, 2) (4, 5)
(1, 2) (4, 6) (1, 2) (5, 5) (1, 2) (5, 6) (1, 2) (6, 6) (1, 3) (1, 3) (1, 3) (1, 4) (1, 3) (2, 2)
(1, 3) (2, 3) (1, 3) (3, 3) (1, 3) (3, 4) (1, 3) (4, 4) (1, 4) (1, 4) (2, 2) (2, 2) (2, 2) (2, 3)
(2, 2) (2, 5) (2, 2) (3, 3) (2, 2) (3, 5) (2, 2) (5, 5) (2, 3) (2, 3) (2, 3) (2, 5) (2, 3) (3, 3)
(2, 3) (3, 5) (2, 3) (5, 5) (2, 5) (2, 5) (3, 3) (3, 3)
semi-adequate for:

(1, 1) (1, 5) (1, 1) (1, 6) (1, 1) (2, 5) (1, 1) (3, 5) (1, 1) (3, 6) (1, 1) (4, 5) (1, 1) (4, 6)
(1, 1) (5, 5) (1, 1) (5, 6) (1, 1) (6, 6) (1, 2) (1, 5) (1, 2) (1, 6) (1, 3) (1, 5) (1, 3) (1, 6)
(1, 3) (2, 5) (1, 3) (3, 5) (1, 3) (3, 6) (1, 3) (4, 5) (1, 3) (4, 6) (1, 3) (5, 5) (1, 3) (5, 6)
(1, 3) (6, 6) (1, 4) (1, 5) (1, 4) (1, 6) (1, 4) (2, 2) (1, 4) (2, 3) (1, 4) (2, 5) (1, 4) (3, 3)
(1, 4) (3, 4) (1, 4) (3, 5) (1, 4) (3, 6) (1, 4) (4, 4) (1, 4) (4, 5) (1, 4) (4, 6) (1, 4) (5, 5)
(1, 4) (5, 6) (1, 4) (6, 6) (2, 4) (2, 5) (2, 4) (3, 3) (2, 4) (3, 5) (2, 4) (5, 5) (3, 3) (3, 5)
(3, 3) (5, 5) (3, 4) (3, 5) (3, 4) (5, 5) (4, 4) (5, 5) (1, 1) (2, 4) (1, 2) (2, 4) (1, 2) (2, 6)
(1, 3) (2, 4) (1, 5) (2, 2) (1, 5) (2, 3) (1, 5) (2, 4) (1, 5) (3, 3) (1, 5) (3, 4) (1, 5) (4, 4)
(2, 2) (2, 4) (2, 2) (2, 6) (2, 2) (3, 4) (2, 2) (3, 6) (2, 2) (4, 4) (2, 2) (4, 5) (2, 2) (4, 6)
(2, 2) (5, 6) (2, 2) (6, 6) (2, 3) (2, 4) (2, 3) (2, 6) (2, 3) (3, 4) (2, 3) (3, 6) (2, 3) (4, 4)
(2, 3) (4, 5) (2, 3) (4, 6) (2, 3) (5, 6) (2, 3) (6, 6) (2, 5) (2, 6) (2, 5) (3, 3) (2, 5) (3, 4)
(2, 5) (3, 5) (2, 5) (3, 6) (2, 5) (4, 4) (2, 5) (4, 5) (2, 5) (4, 6) (2, 5) (5, 5) (2, 5) (5, 6)
(2, 5) (6, 6) (3, 3) (3, 4) (3, 3) (4, 4) (3, 5) (4, 4)
and candidates for inadequate for:

(1, 1) (2, 6) (1, 3) (2, 6) (1, 4) (2, 4) (1, 4) (2, 6) (1, 5) (1, 5) (1, 5) (1, 6) (1, 5) (2, 5)
(1, 5) (2, 6) (1, 5) (3, 5) (1, 5) (3, 6) (1, 5) (4, 5) (1, 5) (4, 6) (1, 5) (5, 5) (1, 5) (5, 6)
(1, 5) (6, 6) (1, 6) (1, 6) (1, 6) (2, 2) (1, 6) (2, 3) (1, 6) (2, 4) (1, 6) (2, 5) (1, 6) (2, 6)
(1, 6) (3, 3) (1, 6) (3, 4) (1, 6) (3, 5) (1, 6) (3, 6) (1, 6) (4, 4) (1, 6) (4, 5) (1, 6) (4, 6)
(1, 6) (5, 5) (1, 6) (5, 6) (1, 6) (6, 6) (2, 4) (2, 4) (2, 4) (2, 6) (2, 4) (3, 4) (2, 4) (3, 6)
(2, 4) (4, 4) (2, 4) (4, 5) (2, 4) (4, 6) (2, 4) (5, 6) (2, 4) (6, 6) (2, 6) (2, 6) (2, 6) (3, 3)
(2, 6) (3, 4) (2, 6) (3, 5) (2, 6) (3, 6) (2, 6) (4, 4) (2, 6) (4, 5) (2, 6) (4, 6) (2, 6) (5, 5)
(2, 6) (5, 6) (2, 6) (6, 6) (3, 3) (3, 6) (3, 3) (4, 5) (3, 3) (4, 6) (3, 3) (5, 6) (3, 3) (6, 6)
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(3, 4) (3, 4) (3, 4) (3, 6) (3, 4) (4, 4) (3, 4) (4, 5) (3, 4) (4, 6) (3, 4) (5, 6) (3, 4) (6, 6)
(3, 5) (3, 5) (3, 5) (3, 6) (3, 5) (4, 5) (3, 5) (4, 6) (3, 5) (5, 5) (3, 5) (5, 6) (3, 5) (6, 6)
(3, 6) (3, 6) (3, 6) (4, 4) (3, 6) (4, 5) (3, 6) (4, 6) (3, 6) (5, 5) (3, 6) (5, 6) (3, 6) (6, 6)
(4, 4) (4, 4) (4, 4) (4, 5) (4, 4) (4, 6) (4, 4) (5, 6) (4, 4) (6, 6) (4, 5) (4, 5) (4, 5) (4, 6)
(4, 5) (5, 5) (4, 5) (5, 6) (4, 5) (6, 6) (4, 6) (4, 6) (4, 6) (5, 5) (4, 6) (5, 6) (4, 6) (6, 6)
(5, 5) (5, 5) (5, 5) (5, 6) (5, 5) (6, 6) (5, 6) (5, 6) (5, 6) (6, 6) (6, 6) (6, 6)

Analogous results are obtained by computer calculations for m, n � 4.
Furthermore, we consider links of the form P1, t1, t2, . . . , tn, where P1 is a Mon-

tesinos tangle, and ti, i = 1, 2, . . . , n, n � 2 are rational tangles. If P = t1, t2, . . . , tn,
we have the following statement:

• links of the given form are adequate if {P1, P } ∈ {{1, 1}, {1, 2}, {1, 3},
{1, 4}, {2, 2}, {2, 3}, {2, 5}, {3, 3}};

• semi-adequate if {P1, P } ∈ {{1, 5}, {1, 6}, {2, 4}, {2, 6}, {3, 4}, {3, 5},
{4, 5}};

• and candidates for inadequate if {P1, P } ∈ {{3, 6}, {4, 4}, {4, 6}, {5, 5},
{5, 6}, {6, 6}}.

We can generalize the previous family to links with many Montesinos tan-
gles P1,. . . ,Pm and many rational tangles ti, i = 1, 2, . . . , n, n � 2 denoted by
P1, . . . , Pm, t1, t2, . . . , tn. If P = t1, t2, . . . , tn, for m = 2 we have the following
statement:

Proposition 5.6. Links of the given form are adequate if ({P1, P2}, P ) is:

({1, 1}, 1) ({1, 1}, 2) ({1, 1}, 3) ({1, 1}, 4) ({1, 2}, 1) ({1, 2}, 2)
({1, 2}, 3) ({1, 2}, 4) ({1, 2}, 5) ({1, 2}, 6) ({1, 3}, 1) ({1, 3}, 2)
({1, 3}, 3) ({1, 3}, 4) ({1, 4}, 1) ({2, 2}, 1) ({2, 2}, 2) ({2, 2}, 3)
({2, 2}, 5) ({2, 3}, 1) ({2, 3}, 2) ({2, 3}, 3) ({2, 3}, 5) ({2, 5}, 2)
({3, 3}, 1) ({3, 3}, 2) ({3, 3}, 3) ({3, 4}, 1) ({3, 5}, 2) ({4, 4}, 1)
({5, 5}, 2)

semi-adequate if ({P1, P2}, P ) is:
({1, 1}, 5) ({1, 1}, 6) ({1, 3}, 5) ({1, 3}, 6) ({1, 4}, 2) ({1, 4}, 3)
({1, 4}, 4) ({1, 4}, 5) ({1, 4}, 6) ({1, 5}, 1) ({1, 5}, 2) ({1, 5}, 3)
({1, 5}, 4) ({1, 6}, 1) ({2, 2}, 4) ({2, 2}, 6) ({2, 3}, 4) ({2, 3}, 6)
({2, 4}, 1) ({2, 4}, 2) ({2, 4}, 3) ({2, 4}, 5) ({2, 5}, 1) ({2, 5}, 3)
({2, 5}, 4) ({2, 5}, 5) ({2, 5}, 6) ({2, 6}, 2) ({3, 3}, 4) ({3, 3}, 5)
({3, 4}, 2) ({3, 4}, 3) ({3, 4}, 5) ({3, 5}, 1) ({3, 5}, 3) ({3, 5}, 4)
({3, 6}, 1) ({3, 6}, 2) ({4, 4}, 2) ({4, 4}, 3) ({4, 4}, 5) ({4, 5}, 1)
({4, 5}, 2) ({4, 6}, 1) ({4, 6}, 2) ({5, 5}, 1) ({5, 5}, 3) ({5, 5}, 4)
({5, 6}, 1) ({5, 6}, 2) ({6, 6}, 1) ({6, 6}, 2)

and candidates for inadequate if ({P1, P2}, P ) is:
({1, 5}, 5) ({1, 5}, 6) ({1, 6}, 2) ({1, 6}, 3) ({1, 6}, 4) ({1, 6}, 5)
({1, 6}, 6) ({2, 4}, 4) ({2, 4}, 6) ({2, 6}, 1) ({2, 6}, 3) ({2, 6}, 4)
({2, 6}, 5) ({2, 6}, 6) ({3, 3}, 6) ({3, 4}, 4) ({3, 4}, 6) ({3, 5}, 5)
({3, 5}, 6) ({3, 6}, 3) ({3, 6}, 4) ({3, 6}, 5) ({3, 6}, 6) ({4, 4}, 4)
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({4, 4}, 6) ({4, 5}, 3) ({4, 5}, 4) ({4, 5}, 5) ({4, 5}, 6) ({4, 6}, 3)
({4, 6}, 4) ({4, 6}, 5) ({4, 6}, 6) ({5, 5}, 5) ({5, 5}, 6) ({5, 6}, 3)
({5, 6}, 4) ({5, 6}, 5) ({5, 6}, 6) ({6, 6}, 3) ({6, 6}, 4) ({6, 6}, 5)

Other examples, obtained by direct computer calculations include links of the
form P1 p P2, where P1, P2 are Montesinos tangles, and p is a positive p-twist.
These links are adequate if {P1, P2} ∈ {{1, 1}, {1, 3}, {1, 4}, {3, 3}, {3, 4}, {4, 4}},
candidates for inadequate if {P1, P2} ∈ {{2, 5}, {2, 6}}, and semi-adequate other-
wise.

6. Adequacy of polyhedral links

This section contains computational results about adequacy of polyhedral links
derived from the basic polyhedron 6∗, and how it changes with substituting Mon-
tesinos tangles in vertices.

Proposition 6.1. Every polyhedral link derived from the basic polyhedron 6∗,
with one Montesinos tangle P1 and positive rational tangles in other vertices is
adequate if P1 ∈ {1, 2, 3, 4}, and semi-adequate if P1 ∈ {5, 6}.

Proposition 6.2. For every adequate polyhedral link derived from the basic
polyhedron 6∗, with two Montesinos tangles P1, P2 and positive rational tangles in
other vertices, P1 /∈ {5, 6} and P2 /∈ {5, 6}.

Since we do not have sufficient conditions for adequacy, we consider different
conditions on polyhedral source links. For example, the following results hold for
nonalternating links derived from the basic polyhedron 6∗ with two Montesinos
tangles P1 and P2 and positive rational tangles in the remaining vertices:

• a link of the form 6∗P1.P2.t1.t2.t3.t4 is adequate if {P1, P2} ∈ {{1, 1},
{1, 2}, {1, 3}, {1, 4}, {3, 3}, {3, 4}, {4, 4}}, a candidate for inadequate if
{P1, P2} ∈ {{2, 2}, {5, 5}, {5, 6}, {6, 6}}, and semi-adequate otherwise;

• a link of the form 6∗P1.P2 0.t1.t2.t3.t4 is adequate if {P1, P2} ∈ {{1, 1},
{1, 2}, {1, 3}, {1, 4}}, a candidate for inadequate if {P1, P2} ∈ {{2, 2}},
and semi-adequate otherwise;

• a link of the form 6∗P1.t1.t2.P2 0.t3.t4 is adequate if P1 /∈ {5, 6} and
P2 /∈ {5, 6}, and semi-adequate otherwise;

• a link of the form 6∗P1.t1.t2.P2.t3.t4 is adequate if P1 /∈ {5, 6} and P2 /∈
{5, 6}, and a candidate for inadequate if {P1, P2} = {5, 6}.

Proposition 6.3. A link of the form 6∗P1.P2.P3.t1.t2.t3 is adequate for the
following triples (P1, P2, P3):

1, 1, 1 1, 1, 2 1, 1, 3 1, 1, 4 1, 2, 1 1, 2, 3 1, 2, 4 1, 3, 1
1, 3, 3 1, 3, 4 1, 4, 1 1, 4, 3 1, 4, 4 2, 1, 1 2, 1, 3 2, 1, 4
3, 1, 1 3, 1, 2 3, 1, 3 3, 1, 4 3, 2, 1 3, 2, 3 3, 2, 4 3, 2, 5
3, 2, 6 3, 3, 1 3, 3, 3 3, 3, 4 3, 4, 1 4, 1, 1 4, 1, 2 4, 1, 3
4, 1, 4 4, 2, 1 4, 2, 3 4, 2, 4 4, 2, 5 4, 2, 6 4, 3, 1 4, 3, 3
4, 3, 4 4, 4, 1 5, 2, 3 5, 2, 4 5, 2, 5 5, 2, 6 6, 2, 3 6, 2, 4
6, 2, 5 6, 2, 6
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a candidate for inadequate for:
1, 5, 5 1, 5, 6 1, 6, 5 1, 6, 6 2, 3, 5 2, 3, 6 2, 4, 2 2, 4, 3
2, 4, 4 2, 4, 5 2, 4, 6 2, 5, 5 2, 5, 6 2, 6, 2 2, 6, 3 2, 6, 4
2, 6, 5 2, 6, 6 3, 4, 2 3, 5, 5 3, 5, 6 3, 6, 2 3, 6, 3 3, 6, 4
3, 6, 5 3, 6, 6 4, 4, 2 4, 5, 5 4, 5, 6 4, 6, 2 4, 6, 3 4, 6, 4
4, 6, 5 4, 6, 6 5, 3, 2 5, 4, 2 5, 5, 1 5, 5, 2 5, 5, 3 5, 5, 4
5, 5, 5 5, 5, 6 5, 6, 1 5, 6, 2 5, 6, 3 5, 6, 4 5, 6, 5 5, 6, 6
6, 3, 2 6, 4, 2 6, 5, 1 6, 5, 2 6, 5, 3 6, 5, 4 6, 5, 5 6, 5, 6
6, 6, 1 6, 6, 2 6, 6, 3 6, 6, 4 6, 6, 5 6, 6, 6

and semi-adequate otherwise.

In addition to polyhedral links with Montesinos tangles, derived from the basic
polyhedron 6∗, we consider polyhedral links containing only rational tangles.

Proposition 6.4. Non-alternating link derived from the basic polyhedron 6∗

is a candidate for inadequate if it is obtained from one of the following source links
by replacing 2-tangles by positive rational tangles ti, i ∈ {1, . . . , 6}, ti �= 1

6∗2. − 2 0. − 2.2 0 6∗2.2. − 2.2. − 2 0 6∗ − 2.2. − 2 0.2.2
6∗2.2. − 2.2 0. − 2 6∗ − 2.2 0. − 2.2 0.2 6∗2. − 2.2.2.2 0. − 2 0

6∗2. − 2.2 0. − 2. − 2. − 2 0 6∗2. − 2. − 2. − 2.2. − 2 0 6∗2. − 2.2.2.2. − 2 0
6∗2. − 2. − 2. − 2 0.2. − 2 0 6∗2. − 2 0. − 2. − 2 0. − 2.2 0 6∗2. − 2 0. − 2.2 0. − 2.2 0

and semi-adequate otherwise8.

7. Adequacy of mixed states and adequacy number

The definition of adequacy can be extended to an arbitrary mixed state of a
link diagram D containing both positive and negative markers.

According to Definition 2.1, a state s of the diagram D is an adequate state if
two segments of Ds obtained by smoothing the same crossing belong to different
state circles.

Theorem 7.1. Every link diagram has at least two adequate states.

Proof. Every alternating link diagram is adequate, so its states s+ and s−
are adequate. Note that every nonalternating link diagram can be transformed into
an alternating diagram and its mirror image by crossing changes which correspond
to changes between positive and negative markers. Hence, two adequate states
of a nonalternating diagram can be obtained by appropriate choice of markers
corresponding to crossing changes transforming the nonalternating diagram to the
alternating one. �

8Knot 6∗2. − 2.2 0. − 2. − 2. − 2 0 is recognized as potential inadequate, i.e., as a knot without
minimal + or −adequate diagram by Thistlethwaite in 1988 [11], but to this knot Theorem 2.5 and
Proposition 2.2 cannot be applied. From 12 links from this table, the five of them: 6∗2.−2 0.−2.2 0,
6∗2.2. − 2.2. − 2 0, 6∗2.2. − 2.2 0. − 2, 6∗2. − 2.2.2.2 0. − 2 0, and 6∗2. − 2. − 2. − 2.2. − 2 0 are
inadequate, according to Theorem 2.5 and Proposition 2.2
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The first link that has an adequate state other than s+ and s− is the knot 41
(2 2) and it is illustrated in Fig. 17.

Figure 17. (a) Minimal diagram of the figure-eight knot with two
+markers, and two −markers; (b) state circles; (c) the associated
loopless graph Gs.

The minimal diagram of inadequate knot 2 0. − 3. − 2 0.2 has eleven adequate
states. First two are obtained from the alternating diagram 2 0.3.2 0.2 and its mirror
image. The remaining nine adequate states can be obtained from other adequate
diagrams, one corresponding to the minimal diagram 2 0. − 3. − 2 0. − 2 and the
other to the nonminimal diagram −2 0.3.2 0. − 2 which is reducible to 10-crossing
nonalternating knot 10124 (5, 3, −2) (Fig. 18).

Theorem 7.2. Vertex connectivity of every loopless graph Gs+ or Gs− corre-
sponding to an alternating diagram D is greater than 1. Vertex connectivity of every
loopless graph Gs+ or Gs− corresponding to a nonalternating minimal diagram D
is 1.

The same statement is not true for loopless graphs Gs obtained from other
states. For example, the loopless graph Gs corresponding to the minimal nonalter-
nating diagram of the knot 10155 = −3 : 2 : 2 (Fig. 19) has the vertex connectivity
4.

Definition 7.1. The minimal number of adequate states taken over all dia-
grams of a link L is called the adequacy number of link L and denoted by a(L).

Lemma 7.1. All minimal diagrams of an alternating link have the same number
of adequate states.

Since changing marker in one crossing is equivalent to the crossing change,
we conclude that the number of adequate states is invariant of a link diagram
independent from the signs of crossings. This means that the number of adequate
states is the same for every alternating diagram and all nonalternating diagrams
obtained from it by crossing changes. Moreover, this can be generalized to families
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Figure 18. (a) Two adequate states of the inadequate knot dia-
gram 2 0.−3.−2 0.2 obtained from the alternating knot 2 0.3.2 0.2;
(b) adequate state of the same diagram corresponding to the mini-
mal diagram 2 0.−3.−2 0.−2; (c) its adequate state corresponding
to the nonminimal diagram −2 0.3.2 0. − 2, which is reducible to
10-crossing nonalternating knot 10124 (5, 3, −2).

Figure 19. (a) Minimal diagram of the knot 10155 with mark-
ers; (b) state circles; (c) the associated graph Gs with the vertex
connectivity 4.

of link diagrams, since adding a bigon to the chain of bigons does not change the
adequacy of a diagram.
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Lemma 7.2. The number of adequate states a(L) is the invariant of a family
of alternating links L and it is realized on every minimal diagram belonging to the
link family.

Theorem 7.3. The only links L whose adequacy number is a(L) = 2 are links
of the family p (p = 2, 3, 4, 5, . . . )9, i.e., the links 22

1, 31, 42
1, 51,. . .

Adequacy number of two minimal diagrams corresponding to a nonalternating
link can be different. The minimal diagram 3, 2 1, −2 of the knot 820 has 6 adequate
states, while its other minimal diagram .2. − 2 0. − 1 : . − 1 has 8 adequate states.

n = 2 2
2

n = 4 2 2
3

n = 5 2 1 2
4

n = 6 2 2 2 2 1 1 2 2, 2, 2
5 5 5

n = 7 2 1 2 2 2 1 1 1 2 2, 2, 2+ 2 1, 2, 2 .2
6 7 8 6 7

n = 8 2 2 2 2 2 1 2 1 2 2 2 1 1 2 2 1 1 1 1 2 2, 2, 2, 2 2 2, 2, 2
8 8 8 9 12 7

2 1 1, 2, 2 2 1, 2 1, 2 2, 2, 2 + + 2 1, 2, 2+ (2, 2) (2, 2) .21
9 8 9 9 8 10

.2 : 2 .2.2 .2 : 2 0 .2.2 0
9 8 8 8

n = 9 2 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 2 2 1 1 1 2 2 1 1 1 1 1 2 2 1, 2 1, 2 1
9 10 10 11 12 12

2 1 2, 2, 2 2 2 1, 2, 2 2 1 1 1, 2, 2 2 1, 2, 2, 2 2 2, 2 1, 2 2 1 1, 2 1, 2
10 11 13 9 11 10

2 1, 2, 2 + + 2, 2, 2, 2+ 2 2, 2, 2 + 1 2 1 1, 2, 2+ 2 1, 2 1, 2+ (2 1, 2) (2, 2)
10 16 12 13 11 11

(2, 2) (2, 2) (2, 2) 1 (2, 2) .2 2 .2 1 1 .2 1 : 2 .2 1 : 2 0
10 12 11 13 12 12

.2 1.2 0 .2.2 0.2 2 : 2 0 : 2 0 2 0 : 2 0 : 2 0 .2.2.2 2 : 2 : 2
11 10 10 9 10 9

.2.2.2 0 2 : 2 : 2 0 .(2, 2) 8∗2 8∗2 0
9 9 14 12 13

The next theorem gives the integer sequences corresponding to adequacy num-
bers of certain classes KLs. For every sequence is given its number from the The On-
Line Encyclopedia of Integer Sequences [22], where four sequences are not present
in the Encyclopedia.

Theorem 7.4. (1) A rational KL of the form 2 . . . 2, where 2 occurs n
times (n = 1, 2, . . .) has the adequacy number fn+1, where fn+1 is the

9See Fig. 10.
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Fibonacci number fn+1, given by sequence fn+1 = fn + fn−1, f0 = 1,
f1 = 1 (sequence A000045);

(2) A rational KL of the form 2 1 . . . 1 2, where 1 occurs n times (n = 1, 2, . . .)
has the adequacy number an+4, where an = an−2 + an−3, a0 = 1, a1 = 2,
a2 = 2 (Padovan sequence A000931);

(3) A rational KL of the form 2 . . . 2 1 2 . . . 2, where each block of numbers 2
contains n numbers (n = 1, 2, . . .) has the adequacy number f2

n+2, where
fn is the nth member of the Fibonacci sequence (sequence A007598);

(4) A rational link of the form 2 1 2 1 . . . 2, where the block 2 1 occurs n times
(n � 1) has the adequacy number an = 2n (sequence A000079);

(5) A pretzel link of the form 2, 2 . . . , 2 of the length n (n � 3) has the ade-
quacy number an = 2n − n (sequence A000325);

(6) A Montesinos link of the form 2, 2 . . . , 2+, where 2 occurs n times (n � 3)
has the adequacy number 2n (sequence A000079);

(7) A Montesinos link of the form 2, 2, . . . , 2 + +, where 2 occurs n times
(n � 3) has adequacy number an = 2n + 1 (sequence A000051);

(8) A Montesinos link of the form 2 2, 2, 2, . . . , 2 of the length n + 1 (n � 2)
has the adequacy number an = 3 × 2n − 2n − 1;

(9) A Montesinos link of the form 2 1, 2, 2, . . . , 2 of the length n + 1 (n � 2)
has the adequacy number an = 2n − n + 1 (sequence A132045);

(10) A link of the form (2, . . . , 2) (2, 2) where the length of the pretzel tangle
(2, . . . , 2) is n (n � 2) is an = 2n+1 − n + 2;

(11) A link of the form (2, . . . , 2+) (2, 2) where in the pretzel tangle (2, . . . , 2+)
number 2 occurs n times (n � 2) is an = 2n+1 + 2 (sequence A052548);

(12) A link of the form (2, . . . , 2++) (2, 2) where in the pretzel tangle (2, . . . , 2+
+) number 2 occurs n times (n � 2) is an = 2n+1 +3 (sequence A062709);

(13) A link of the form (2, . . . , 2) (2, 2, 2) where the length of the pretzel tangle
(2, . . . , 2) is n (n � 3) is an = 5 × 2n − 4n + 3;

(14) A link of the form 6∗(2 , . . . , 2), where the length of the tangle (2 , . . . , 2)
is n (n � 2) is an = 2n+2 − n (sequence A132753);

(15) A link of the form 6∗(2 2, 2, . . . , 2), where the length of the tangle (2 2, 2,
. . . , 2) is n (n � 2) is an = 3 × 2n+1 − 2n + 1.

Proof. Since the proofs follow similar ideas, we prove only parts (1) and (5)
of Theorem 7.4:

(1) It is easy to show that Hopf link 2 (22
1) has 2, figure-eight knot 2 2 (41)

has 3, and the link 2 2 2 (62
3) has 5 adequate states (Fig. 20a). Let us consider

the rational tangles Tn, Tn+1, Tn+2 and the links Ln, Ln+1, and Ln+2 of the form
2 . . . 2 obtained as their numerator closures, where 2 occurs n, n+1 and n+2 times,
respectively (n � 1). In order to obtain an adequate state of the link Ln+2, the last
bigon of the tangle Tn+2 must have the markers of the same sign: both positive or
both negative. If it has both positive markers, the number of the adequate states
obtained by its addition equals the number of adequate states of the link Ln+1
(Fig. 20b). If it has both negative markers, in order to preserve adequacy by the
addition of the last bigon, its preceding bigon must have both negative markers, and
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the number of adequate states obtained in this way equals the adequacy number
of the link Ln (Fig. 20c). Hence, the adequacy numbers of the links Ln, Ln+1, and
Ln+2 satisfy the recursion generating Fibonacci sequence.

Figure 20. (a) Hopf link 2 (22
1), figure-eight knot 2 2, (41), and

link 2 2 2 (62
3); (b) addition of the last bigon preserving adequacy.

(5) In order to show that a pretzel link of the form 2, 2 . . . , 2 of the length
n (n � 3) has the adequacy number an = 2n − n, first notice that all tangles 2
with markers of different signs result in nonadequate diagrams, since there appears
a self-touch point of the corresponding state circle. Hence, in an adequate state
both markers in all bigons must be of the same sign. For such states we have 2n

possibilities for the choice of markers. Among them, nonadequate diagrams will
be obtained if exactly one bigon contains markers of one sign, and all the other
markers are of opposite sign. For such choice of markers we have n possibilities.
Hence, among the mentioned 2n states, n will be nonadequate, so the adequacy
number of the pretzel link of the form 2, 2 . . . , 2 is an = 2n − n. �

8. Adequacy polynomial as an invariant of alternating link families

Graphs corresponding to adequate link diagrams, called adequate state graphs,
can be used for defining a polynomial invariant of alternating link families.



ADEQUACY OF LINK FAMILIES 47

Definition 8.1. A cut-vertex (or articulation vertex) of a connected graph
is a vertex whose removal disconnects the graph [23]. In general, a cut-vertex is
a vertex of a graph whose removal increases the number of components [24]. A
graph with no cut-vertices is called a biconnected graph [25]. A block is a maximal
biconnected subgraph of a given graph.

The following transformations can be applied to the adequate state graphs,
until the graph cannot be reduced to a graph with smaller number of vertices:

• (multiple edge reduction) replace every edge of the multiplicity greater
than 2 by a single edge;10

• (edge chain collapse) replace maximal part of every chain consisting from
edges with vertices of degree 2 by a new edge connecting the beginning
vertex of the first and ending vertex of the last edge;

• (block move) every block can be moved along the edges of the remaining
part of the graph.

From every adequate state graph G we obtain the reduced adequate state graph
G. Recently, several graph invariants have been categorified following Khovanov’s
link homology construction, such as the chromatic and the Tutte polynomial. Chro-
matic cohomology for graphs defined by Helme-Guizon and Rong [26] provides a
link between link homology and well developed theory of the Hochschild homology
[27]. Based on the results about torsion in chromatic graph cohomology [14] we
get the following theorem:

Theorem 8.1. Block move preserves torsion in H1,v−2
A2

(G) in the first chro-
matic graph cohomology of a graph G with v vertices, computed over algebra of
truncated polynomials A2 = Z[x]/(x2)

Fig. 21 illustrates reduction of the graph with 16 vertices (Fig. 21a) to the
graph with 13 vertices (Fig. 21b), or to its equivalent graph (Fig. 21c) obtained
from it by block moves, which has the same torsion and chromatic polynomial as
the graph (Fig. 21b).

Consider an arbitrary minimal diagram of an alternating link L. Let Gi denote
the corresponding state graphs for all adequate states of a diagram DL and Gi

reduced state graphs (i = 1, 2, . . . , a(L)), where a(L) is the adequacy number of L
(Def. 7.1).

Definition 8.2. The adequacy polynomial of any alternating diagram DL is
a polynomial in two variables determined by A(x, y) =

∑a(L)
i=1 xti P i(y), where

P i(y) = P (Gi) denotes the chromatic polynomial of a reduced state graph Gi and
ti is the power of Z2 torsion of the first chromatic graph cohomology H1,h

Am
(Gi)

over algebra of truncated polynomials Am =Z[x]/x2 = 0 in the grading h =
(m − 1)(v − 2) + 1, where v denotes the number of vertices of the graph Gi.

10Since chromatic polynomial of a graph and graph homology does not recognize multiple
edges, this step is not necessary for further computations [14].
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Figure 21. Reduction of the graph (a) to the graph (b), and
graph (c) equivalent to (b).

Theorem 8.2. Adequacy polynomial is the same for all minimal diagrams of
all alternating links belonging to the same family, which satisfy the condition11

|a| + ka � 3.

The computation of adequacy polynomial is illustrated on the example of
link 3 1 5 4 (Figs. 22-23). This link has 3 different minimal diagrams: 3 1 5 412,
((1, (1, 3), 1, 1, 1, 1), 1, 1, 1, 1), and ((1, 1, (3, 1), 1, 1, 1), 1, 1, 1, 1) (Fig. 22). For the
reduced adequate state graphs Gi (i = 1, 2, . . . , 6) corresponding to the first min-
imal diagram, the sequence (1, 2, 2, 1, 1, 0) represents powers of Z2-torsion ti for
m = 3, and the following is the list of chromatic polynomials:

1) 6y − 15y2 + 14y3 − 6y4 + y5,
2) 4y − 12y2 + 13y3 − 6y4 + y5,
3) −4y + 16y2 − 25y3 + 19y4 − 7y5 + y6,
4) −18y + 81y2 − 156y3 + 168y4 − 110y5 + 44y6 − 10y7 + y8,
5) −2y + 5y2 − 4y3 + y4,
6) −9y + 27y2 − 33y3 + 21y4 − 7y5 + y6,

11Please compare this additional condition with the definition of a family of link diagrams
(Def. 1.5): according to the additional condition, all chains of bigons must be of the length greater
then 2.

12This diagram can be also written as (((3, 1), 1, 1, 1, 1, 1), 1, 1, 1, 1).
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so the adequacy polynomial is
A(3 1 5 4) = −9y − 14xy + 27y2 + 71xy2 + 4x2y2 − 33y3 − 146xy3

− 12x2y3 + 21y4 + 163xy4 + 13x2y4 − 7y5 − 109xy5

− 6x2y5 + y6 + 44xy6 + x2y6 − 10xy7 + xy8.

This polynomial is invariant of link family p 1 q r (p, q, r � 3).
If we compute the adequacy polynomial from the second or third diagram,

we obtain the same sequence t1, t2, . . . , t6 = (1, 2, 2, 1, 1, 0) and the same list of
chromatic polynomials, so the final result remains the same.

Conjecture 8.1. Adequacy polynomial distinguishes all alternating link fam-
ilies (up to mutation).

This conjecture is verified for all alternating links with at most n = 12 cross-
ings. If the conjecture does not hold in general, one may consider various adequacy
polynomials obtained by taking into consideration other gradings in the first ho-
mology or the whole groups (possibly higher in homology), or changing algebra.
Moreover, depending on the algebra, one may consider torsions other then Z2, if
they exist.

The adequacy polynomial of any family of alternating links can be computed
from any minimal diagram of the link L representing this family, with all chains
of bigons of length 3. For subfamilies we use links with some parameters equal
to 2, and the remaining ones equal to 3. For the general Conway symbol p 1 q r
(p, q, r � 2), we distinguish the following cases:

(1) 2 1 2 2 with A(x, y) = y + 2xy − 2y2 − 5xy2 − 4x2y2 + y3 + 6xy3 + 8x2y3 −
4xy4 − 5x2y4 + xy5 + x2y5;

(2) p 1 2 2 with A(x, y) = −8y − 8xy + 25y2 + 26xy2 − 4x2y2 − 32y3 − 33xy3 +
8x2y3 + 21y4 + 21xy4 − 5x2y4 − 7y5 − 7xy5 + x2y5 + y6 + xy6, p � 3;

(3) 2 1 q 2 with A(x, y) = −2xy − 4x2y + 9xy2 + 8x2y2 − 14xy3 − 5x2y3 +
11xy4 + x2y4 − 5xy5 + xy6, q � 3;

(4) 2 1 2 r with A(x, y) = 10xy − 8x3y − 27xy2 + 28x3y2 + 29xy3 − 38x3y3 −
15xy4 + 25x3y4 + 3xy5 − 8x3y5 + x3y6, r � 3;

(5) p 1 q 2 with A(x, y) = −9y2 −2xy2 −4x2y2 +27y3 +5xy3 +8x2y3 −33y4 −
4xy4 − 5x2y4 + 21y5 + xy5 + x2y5 − 7y6 + y7, p, q � 3;

(6) p 1 2 r with A(x, y) = −9y +6xy +16x2y +27y2 −17xy2 −60x2y2 −33y3 +
19xy3 + 92x2y3 + 21y4 − 10xy4 − 75x2y4 − 7y5 + 2xy5 + 35x2y5 + y6 −
9x2y6 + x2y7, p, r � 3;

(7) 2 1 q r with A(x, y) = 8xy + 8x2y − 20xy2 − 32x2y2 + 20xy3 + 54x2y3 −
10xy4 − 50x2y4 + 2xy5 + 27x2y5 − 8x2y6 + x2y7, q, r � 3;

(8) p 1 q r with A(x, y) = −9y−14xy+27y2+71xy2 +4x2y2 −33y3 −146xy3 −
12x2y3 + 21y4 + 163xy4 + 13x2y4 − 7y5 − 109xy5 − 6x2y5 + y6 + 44xy6 +
x2y6 − 10xy7 + xy8, p, q, r � 3.

The adequacy polynomial can be defined in the same way for families of virtual
links. Equivalents of Theorem 8.2 and Conjecture 8.1 hold for alternating virtual
links.
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Figure 22. Minimal diagrams (a) 3 1 5 4; (b)
((1, (1, 3), 1, 1, 1, 1), 1, 1, 1, 1); (c) ((1, 1, (3, 1), 1, 1, 1), 1, 1, 1, 1).

The equivalent of Conjecture 8.1 is verified by computer calculations for all
families of virtual knots derived from real knots with at most 8 crossings.

Figure 23. Adequate state graphs of the diagrams (a) 3 1 5 4, (b)
((1, (1, 3), 1, 1, 1, 1), 1, 1, 1, 1), (c) ((1, 1, (3, 1), 1, 1, 1), 1, 1, 1, 1) and
their corresponding reduced graphs.



ADEQUACY OF LINK FAMILIES 51

The definition of the adequacy polynomial (Definition 8.2) contains the first
chromatic graph homology in the specific grading coming from the interpreta-
tion of Hochschild homology as the chromatic graph homology of a polygon, i.e.,
H

1,(m−1)(v−2)+1
Am

(G), where G is a graph and v denotes the number of its vertices
and Am = Z[x]/xm for m � 3. The reason why we have excluded algebra A2 is
that it cannot distinguish some generating links (e.g., 2 2 1 1 1 2 from 2 1 1, 2 1, 2).
According to the computations for all generating links with n � 12 crossings, for
3 � m � 5 the adequacy polynomial distinguishes all families of alternating links
with at most n = 12 crossings (up to mutation).

Notice that the adequacy polynomials of the family 3 1 3 3 computed for m =
2, 3, . . . , 8 are the same, but this is not true in general: according to the computer
calculations for 2 � m � 8, the family .p (p > 2) will have two different polynomials:

2y − 10xy − 10x2y − 4y2 + 21xy2 + 27x2y2

+ 2y3 − 14xy3 − 31x2y3 + 3xy4 + 20x2y4 − 7x2y5 + x2y6 for odd m,

2y − 4xy − 10x2y − 6x4y − 4y2 + 10xy2 + 27x2y2 + 11x4y2 + 2y3

− 8xy3 − 31x2y3 − 6x4y3 + 2xy4 + 20x2y4 + x4y4 − 7x2y5 + x2y6 for even m.

The adequacy polynomial can be redefined to include the second or all chromatic
graph cohomology groups H

2,(m−1)(v−2)
Am

(G), which for m = 2, 4, 6 distinguish all
alternating link families corresponding to links with at most 12 crossings.
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