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Abstract. We establish some new structural properties of exponentially boun-
ded, analytic convoluted C-semigroups and state a version of Kato’s analyt-
icity criterion for such a class of operator semigroups. Our characterizations
completely cover the case of analytic fractionally integrated C-semigroups.

1. Introduction and preliminaries

An important motivational factor for the genesis of this paper presents the fact
that several structural properties of exponentially bounded, analytic convoluted
C-semigroups have not been fully cleared in the existing literature.

The paper is organized as follows. In Proposition 2.1 and Theorem 2.1, we
refine [4, Proposition 3.7(a)], [8, Theorem 10] and transfer the assertion of [9,
Theorem 5.2] to analytic convoluted C-semigroups. In Theorem 2.1, we introduce
the condition (H1) which holds in the case of fractionally integrated C-semigroups.
In order to better explain the importance of this condition in our investigation, let
us recall that the set ℘(SK) consisted of all subgenerators of a (local) convoluted
C-semigroup (SK(t))t∈[0,τ) need not be finite ([8], [10], [13]) and that, equipped
with corresponding algebraic operations, ℘(SK) becomes a complete lattice whose
partially ordering coincides with the usual set inclusion; furthermore, ℘(SK) is
totally ordered iff card(℘(SK)) � 2 ([10], [13]), and in the case card(℘(SK)) < ∞,
one can prove that ℘(SK) is a Boolean, which implies card(℘(SK)) = 2n for some
n ∈ N0. In fact, the main objective in Theorem 2.1(i) is to establish the spectral
characterizations of the integral generator of an analytic convoluted C-semigroup
(SK(t))t�0 as well as to show that such characterizations still hold for an arbitrary
subgenerator of (SK(t))t�0 as long as the condition (H1) holds. It is an open
problem whether the statements (2.6)–(2.9) quoted in the formulation of Theorem
2.1(i) remain true for an arbitrary subgenerator of (SK(t))t�0 if the condition (H1)
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is neglected. Furthermore, the condition (H1) plays a crucial role in Theorem 2.2
which presents Kato’s analyticity criterion for convoluted C-semigroups. Even in
the case of regularized semigroups, Theorem 2.2 and Corollary 2.2 improve the
corresponding result of Zheng [14, Theorem]. It is well known that A generates an
(exponentially) bounded, analytic C0-semigroup of angle α ∈ (0, π

2 ) provided that
e±iαA are generators of (exponentially) bounded C0-semigroups (T±α(t))t�0. We
transfer this assertion to analytic regularized semigroups by a slight modification
of the proof of [1, Theorem 3.9.7].

By E and L(E) are denoted a complex Banach space and the Banach algebra
of bounded linear operators on E. For a closed linear operator A acting on E,
D(A), Kern(A), R(A) and ρ(A) denote its domain, kernel, range and resolvent
set, respectively. By [D(A)] is denoted the Banach space D(A) equipped with the
graph norm. Given γ ∈ (0, π], put Σγ := {λ ∈ C : λ �= 0, arg(λ) ∈ (−γ, γ)}. In
what follows, we assume L(E) � C is an injective operator satisfying CA ⊂ AC,
τ ∈ (0, ∞], K is a complex-valued locally integrable function in [0, τ) and K is
not identical to zero. Put Θ(t) :=

∫ t

0 K(s)ds, t ∈ [0, τ); then Θ is an absolutely
continuous function in [0, τ) and Θ′(t) = K(t) for a.e. t ∈ [0, τ). We mainly use
the following condition:

(P1): K is Laplace transformable, i.e., it is locally integrable on [0, ∞) and
there exists β ∈ R so that

K̃(λ) = L(K)(λ) := lim
b→∞

b∫
0

e−λtK(t) dt :=
∞∫

0

e−λtK(t) dt

exists for all λ ∈ C with Re λ > β. Put abs(K) := inf{Re λ : K̃(λ) exists}.

Definition 1.1. ([7]–[8]) Let A be a closed operator and let 0 < τ � ∞. If
there exists a strongly continuous family (SK(t))t∈[0,τ) in L(E) such that:

(i) SK(t)A ⊂ ASK(t), t ∈ [0, τ),
(ii) SK(t)C = CSK(t), t ∈ [0, τ) and
(iii) for all x ∈ E and t ∈ [0, τ):

∫ t

0 SK(s)x ds ∈ D(A) and

(1.1) A

t∫
0

SK(s)x ds = SK(t)x − Θ(t)Cx,

then it is said that A is a subgenerator of a (local) K-convoluted C-semigroup
(SK(t))t∈[0,τ). If τ = ∞, then we say that (SK(t))t�0 is an exponentially bounded
K-convoluted C-semigroup with a subgenerator A if, additionally, there exist M >
0 and ω � 0 such that ‖SK(t)‖ � Meωt, t � 0.

The integral generator of (SK(t))t∈[0,τ) is defined by

Â :=
{

(x, y) ∈ E2 : SK(t)x − Θ(t)Cx =
t∫

0

SK(s)yds, t ∈ [0, τ)
}

,
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and it is a closed linear operator which is an extension of any subgenerator of
(SK(t))t∈[0,τ). Suppose {A, B} ⊂ ℘(SK). By [10, Proposition 1.1], the following
holds:

(a) C−1AC = C−1ÂC = Â ∈ ℘(SK),
(b) A and B have the same eigenvalues,
(c) ρC(A) ⊆ ρC(B) if A ⊆ B,
(d) A = B = Â, if ρ(Â) �= ∅ or C = I.

The proof of the following auxiliary lemma is similar to those of [7, Theorem
2.2] and [9, Theorem 3.1, Theorem 3.3].

Lemma 1.1. Suppose K satisfies (P1) and A is a closed linear operator.
(i) Suppose M > 0, ω � 0, A is a subgenerator of an exponentially bounded,

K-convoluted C-semigroup (SK(t))t�0 satisfying ‖SK(t)‖ � Meωt, t � 0 and ω1 =
max(ω, abs(K)). Then {λ ∈ C : Re λ > ω1, K̃(λ) �= 0} ⊂ ρC(A) and (λ − A)−1Cx
= 1

K̃(λ)

∫ ∞
0 e−λtSK(t)x dt for all x ∈ E and λ ∈ C with Re λ > ω1 and K̃(λ) �= 0.

(ii) Suppose M > 0, ω � 0, (SK(t))t�0 is a strongly continuous operator family,
‖SK(t)‖ � Meωt, t � 0 and ω1 = max(ω, abs(K)). If {λ ∈ (ω1, ∞) : K̃(λ) �= 0} ⊂
ρC(A) and (λ − A)−1Cx = 1

K̃(λ)

∫ ∞
0 e−λtSK(t)x dt, x ∈ E, λ > ω1, K̃(λ) �= 0,

then (SK(t))t�0 is an exponentially bounded, K-convoluted C-semigroup with a
subgenerator A.

(iii) Let A be densely defined. Then A is a subgenerator of an exponentially
bounded C-semigroup (T (t))t�0 satisfying ‖T (t)‖ � Meωt, t � 0 for appropriate
constants M > 0 and ω ∈ R iff (ω, ∞) ⊂ ρC(A), the mapping λ 
→ (λ − A)−1C,
λ > ω is infinitely differentiable and∥∥∥ dk

dλk
[(λ − A)−1C]

∥∥∥ � Mk!
(λ − ω)k+1 , k ∈ N0, λ > ω.

Definition 1.2. [8] Let α ∈ (0, π
2 ] and let (SK(t))t�0 be a K-convoluted C-

semigroup. Then we say that (SK(t))t�0 is an analytic K-convoluted C-semigroup
of angle α, if there exists an analytic function SK : Σα → L(E) which satisfies

(i) SK(t) = SK(t), t > 0,
(ii) limz→0, z∈Σγ SK(z)x = 0 for all γ ∈ (0, α) and x ∈ E.

It is said that (SK(t))t�0 is an exponentially bounded, analytic K-convoluted C-
semigroup, resp. bounded analytic K-convoluted C-semigroup, of angle α, if for
every γ ∈ (0, α), there exist Mγ > 0 and ωγ � 0, resp. ωγ = 0, such that ‖SK(z)‖ �
Mγeωγ Re z, z ∈ Σγ .

Since no confusion seems likely, we will also denote SK by SK . Plugging
K(t) = tr−1

Γ(r) , t > 0 in Definition 1.1 and Definition 1.2, where r > 0 and Γ(·)
denotes the Gamma function, we obtain the well-known classes of (analytic) r-
times integrated C-semigroups; an (analytic) 0-times integrated C-semigroup is
defined to be an (analytic) C-semigroup (cf. [3, Definition 21.3]). The notion of
(exponential) boundedness of an analytic r-times integrated C-semigroup, r � 0,
is understood in the sense of Definition 1.2.
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2. Analytic convoluted C-semigroups

We start this section with the following proposition.

Proposition 2.1. Suppose K satisfies (P1), α ∈ (0, π
2 ] and A is a subgenera-

tor of an exponentially bounded, analytic K-convoluted C-semigroup (SK(t))t�0 of
angle α. Suppose, further, that the condition (H) holds, where:
(H) There exist functions c : (−α, α) → C�{0}, ω0 : (−α, α) → [0, ∞) and a family
of functions (Kθ)θ∈(−α,α) satisfying (P1) so that: abs(Kθ) � ω0(θ), abs(K)

cos θ � ω0(θ),

Φθ =: {λ ∈ (ω0(θ), ∞) : K̃(λe−iθ) = 0} = {λ ∈ (ω0(θ), ∞) : K̃θ(λ) = 0},(2.1)

K̃θ(λ)
K̃(λe−iθ)

= c(θ), λ > ω0(θ), λ /∈ Φθ, θ ∈ (−α, α).(2.2)

Then, for every θ ∈ (−α, α), the operator eiθA is a subgenerator of an exponentially
bounded, analytic Kθ-convoluted C-semigroup (c(θ)SK(teiθ))t�0 of angle α − |θ|.
Furthermore,

(i) SK(teiθ)A ⊂ ASK(teiθ), t � 0 and
(ii) A

∫ teiθ

0 SK(s)x ds = SK(teiθ)x − 1
c(θ)

∫ t

0 Kθ(s) dsCx, t � 0, x ∈ E, θ ∈
(−α, α).

Proof. Let θ ∈ (−α, α) and let λ ∈ R be sufficiently large with K̃θ(λ) �= 0.
Denote Γθ := {te−iθ : t � 0} and notice that (c(θ)SK(teiθ))t�0 is a strongly
continuous, exponentially bounded operator family. Clearly, K̃(λe−iθ) �= 0 and
Lemma 1.1 yields

(2.3) K̃θ(λ)(λ − eiθA)−1Cx = K̃θ(λ)e−iθ(λe−iθ − A)−1Cx

= e−iθ K̃θ(λ)
K̃(λe−iθ)

∞∫
0

e−λe−iθtSK(t)x dt = e−iθc(θ)
∫
Γθ

e−λteiθSK(teiθ)x dt

=
∞∫

0

e−λt(c(θ)SK(teiθ)x) dt, x ∈ E,

where (2.3) follows from an elementary application of the Cauchy theorem. Keeping
in mind Definition 1.1 and Lemma 1.1(ii), the assertion automatically follows. �

Now we state the following generalization of [8, Theorem 10] and [9, Theo-
rem 5.2].

Theorem 2.1. (i) Suppose K satisfies (P1), ω � max(0, abs(K)), α ∈ (0, π
2 ],

and K̃(·) can be analytically continued to a function g : ω + Σ π
2 +α → C. Sup-

pose, further, that A is a subgenerator of an analytic K-convoluted C-semigroup
(SK(t))t�0 of angle α and that

(2.4) sup
z∈Σγ

‖e−ωzSK(z)‖ < ∞ for all γ ∈ (0, α).
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Let us denote by Â the integral generator of (SK(t))t�0 and put

(2.5) N := {λ ∈ ω + Σ π
2 +α : g(λ) �= 0}.

Then:

N ⊂ ρC(Â),(2.6)

sup
λ∈N∩ (ω+Σ π

2 +γ1 )
‖(λ − ω)g(λ)(λ − Â)−1C‖ < ∞ for all γ1 ∈ (0, α),(2.7)

lim
λ→+∞, K̃(λ) �=0

λK̃(λ)(λ − A)−1Cx = 0, x ∈ E,(2.8)

the mapping λ 
→ (λ − Â)−1C, λ ∈ N is analytic.(2.9)

Suppose, additionally, that the following condition holds:
(H1) : (H) holds with c(·), ω0(·), (Kθ)θ∈(−α,α), and additionally, abs(Kθ) � ω cos θ,

θ ∈ (−α, α).

Then (2.6)–(2.7) and (2.9) hold with Â replaced by A therein.
(ii) Assume α ∈ (0, π

2 ], K satisfies (P1) and ω � max(0, abs(K)). Suppose that
A is a closed linear operator with {λ ∈ C : Reλ > ω, K̃(λ) �= 0} ⊂ ρC(A) and
that the function λ 
→ K̃(λ)(λ − A)−1C, Re λ > ω, K̃(λ) �= 0, can be analytically
extended to a function q̃ : ω + Σ π

2 +α → L(E) satisfying

sup
λ∈ω+Σ π

2 +γ

‖(λ − ω)q̃(λ)‖ < ∞ for all γ ∈ (0, α),(2.10)

lim
λ→+∞

λq̃(λ)x = 0, x ∈ E, if D(A) �= E.(2.11)

Then the operator A is a subgenerator of an exponentially bounded, analytic K-
convoluted C-semigroup of angle α.

Proof. The proof of (i) can be obtained as follows. By Lemma 1.1(i), we have
{λ ∈ C : Re λ > ω, K̃(λ) �= 0} ⊂ ρC(A) and

K̃(λ)(λ − A)−1Cx =
∞∫

0

e−λtSK(t)x dt, Re λ > ω, K̃(λ) �= 0, x ∈ E.

Put q(λ) :=
∫ ∞

0 e−λtSK(t) dt, Re λ > ω. An application of [1, Theorem 2.6.1] gives
that the function q(·) can be extended to an analytic function q̃ : ω+Σ π

2 +α → L(E)
satisfying supλ∈ω+Σ π

2 +γ
‖(λ − ω)q̃(λ)‖ < ∞ for all γ ∈ (0, α). Further on, N is an

open subset of C and it can be easily seen that every two point belonging to N can
be connected with a C∞ curve lying in N ; in particular, N is a connected open
subset of C. The function F : N → L(E) given by F (λ) := q̃(λ)

g(λ) , λ ∈ N is analytic
and

(2.12) {λ ∈ C : Re λ > ω, K̃(λ) �= 0} ⊂ {λ ∈ N ∩ ρC(A) : F (λ) = (λ − A)−1C}.
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Let us denote V = {λ ∈ N∩ ρC(A) : F (λ) = (λ − A)−1C} and suppose μ ∈ ρC(A),
x ∈ D(A) and y ∈ E. Since

F (λ)(λ − A)x = (λ − A)−1C(λ − A)x = Cx, λ ∈ V,(2.13)
F (λ)Cy = CF (λ)y, λ ∈ V,(2.14)

F (λ)Cy = (λ − A)−1C2y = (μ − A)−1C2y − (λ − μ)(μ − A)−1CF (λ)y, λ ∈ V,

(2.15)

the uniqueness theorem for analytic functions (cf. [1, Proposition A2, Proposi-
tion B.5]) implies that (2.13)–(2.15) remain true for all λ ∈ N . Suppose now that
(λ − A)x = 0 for some λ ∈ N and x ∈ D(A). Owing to (2.13), one gets Cx = 0,
x = 0 and λ−A is injective. By the assertion (b), we obtain that λ− Â is injective.
Furthermore,

(λ − A)CF (λ)y = (λ − A)F (λ)Cy

= (λ − A)[(μ − A)−1C2y − (λ − μ)(μ − A)−1CF (λ)y]
= C2y + (λ − μ)[(μ − A)−1C2y − CF (λ)y − (λ − μ)(μ − A)−1CF (λ)y],

and thanks to the validity of (2.15) for all λ ∈ N , one obtains that

(2.16) (λ − A)CF (λ)y = C2y, λ ∈ N.

The last equality, injectiveness of C and assertion (a) taken together imply:

λF (λ)y = C−1AC[F (λ)y] + Cy = ÂF (λ)y + Cy, λ ∈ N, i.e.,(2.17)

(λ − Â)F (λ)y = Cy, λ ∈ N.(2.18)

This implies R(C) ⊂ R(λ − Â), λ ∈ N , N ⊂ ρC(Â), F (λ) = (λ − Â)−1C, λ ∈ N ,
(2.6) and (2.9). The estimate (2.7) is an immediate consequence of [1, Theorem
2.6.1]. Let x ∈ E be fixed. Then z 
→ SK(z)x, z ∈ Σα is an analytic func-
tion which satisfies the condition (i) quoted in the formulation of [1, Theorem
2.6.1]. Since limt↓0 SK(t)x = 0, an application of [1, Theorem 2.6.4] implies that
limλ→+∞ λq(λ) = 0. This gives limλ→+∞, K̃(λ) �=0 λK̃(λ)(λ − A)−1Cx = 0, i.e.,
(2.8) and the first part of the proof is completed. Suppose now that (H1) holds.
Then abs(Kθ) � ω cos θ, θ ∈ (−α, α), and by Lemma 1.1(i), we have that, for every
θ ∈ (−α, α), {λ ∈ C : Re λ > ω cos θ, K̃θ(λ) �= 0} ⊂ ρC(eiθA) and that:

(2.19) K̃θ(λ)e−iθ(λe−iθ − A)−1Cx =
∞∫

0

e−λt(c(θ)SK(teiθ))x dt,

for all x ∈ E and λ ∈ C with Re λ > ω cos θ and K̃θ(λ) �= 0. Fix a number
θ ∈ (−α, α) and define Gθ : {ω + teiϕ : t > 0, ϕ ∈ (−(π

2 + θ), π
2 − θ)} ∩ N → C

by Gθ(λ) := K̃θ(λeiθ)
g(λ) , λ ∈ D(Gθ(·)). Then it is clear that D(Gθ(·)) is an open,

connected subset of C and that, owing to (2.1)–(2.2), there exists a > 0 such
that Φθ,a := {te−iθ ∩ N : t � a} ⊂ D(Gθ(·)) and that Gθ(λ) = c(θ), λ ∈ Φθ,a.
By the uniqueness theorem for analytic functions, one obtains that Gθ(λ) = c(θ),
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λ ∈ D(Gθ(·)). Hence, (2.19) implies {ω+teiϕ : t > 0, ϕ ∈ (−(π
2 +θ), π

2 −θ)}∩N ⊂
ρC(A),

(2.20) (z − A)−1Cx = eiθ

g(z)

∞∫
0

e−zeiθtSK(teiθ)x dt,

for all z ∈ {ω+teiϕ : t > 0, ϕ ∈ (−(π
2 +θ), π

2 −θ)}∩N and x ∈ E, and the mapping
z 
→ (z−A)−1C, z ∈ N , arg(z−ω) ∈ (−(π

2 +θ), π
2 −θ) is analytic. One can apply the

same argument to e−iθA in order to see that {z ∈ N : arg(z−ω) ∈ (θ− π
2 , π

2 +θ)} ⊂
ρC(A) and that the mapping z 
→ (z − A)−1C, z ∈ N , arg(z − ω) ∈ (θ − π

2 , θ + π
2 )

is analytic. Thereby, {z ∈ N : | arg(z − ω)| < θ + π
2 } ⊂ ρC(A) and the mapping

z 
→ (z − A)−1C, z ∈ N , | arg(z − ω)| < θ + π
2 is analytic. This completes the proof

of (i). The proof of (ii) in the case D(A) �= E is given in [8]. Suppose now that
D(A) = E. We will prove that (2.11) automatically holds for every x ∈ E. Arguing
as in the proof of [8, Theorem 10], one obtains that there exists an analytic function
SK : Σα → L(E) such that supz∈ω+Σ π

2 +β
‖e−ωzSK(z)‖ < ∞ for all β ∈ (0, α).

By [1, Proposition 2.6.3(b)] and the proof of [8, Theorem 10], it suffices to show
that limt↓0 SK(t)x = 0. Suppose, for the time being, x ∈ D(A). Since q̃(λ)x =
K̃(λ)(λ−A)−1Cx, λ ∈ C, Re λ > ω, K̃(λ) �= 0 we have that L(

∫ t

0 SK(s)Ax ds)(λ) =
q̃(λ)

λ Ax = q̃(λ)x − K̃(λ)
λ Cx = L(SK(t)x − Θ(t)Cx)(λ), λ ∈ C, Re λ > ω, K̃(λ) �=

0 and the uniqueness theorem for Laplace transforms implies
∫ t

0 SK(s)Ax ds =
SK(t)x − Θ(t)Cx, t � 0. Therefore ‖SK(t)x‖ � |Θ(t)|Cx + teωt‖Ax‖, t � 0 and
limt↓0 SK(t)x = 0. Combined with the exponential boundedness of SK(·), this
indicates that limt↓0 SK(t)x = 0 for every x ∈ E. �

Let ∅ �= Ω ⊂ ρC(A) be open. By [5, Remark 2.7], we have that the continuity
of mapping λ 
→ (λ − A)−1C, λ ∈ Ω implies its analyticity. Furthermore, it can be
simply verified that the function K(t) = tr−1

Γ(r) , t > 0, r > 0 satisfies the condition
(H1) with c(θ) = e−irθ, ω0(θ) = 0 and Kθ(t) = K(t), θ ∈ (−α, α), t > 0. Keeping
in mind Proposition 1.1, Theorem 2.1 and these remarks, one immediately obtains
the proof of the following corollary; notice only that, in the case r = 0, the equality
(2.24) follows from [1, Theorem 2.6.4] and elementary definitions.

Corollary 2.1. (i) Suppose r � 0 and α ∈ (0, π
2 ]. Then the operator A is a

subgenerator of an exponentially bounded, analytic r-times integrated C-semigroup
(Sr(t))t�0 of angle α iff for every γ ∈ (0, α), there exist Mγ > 0 and ωγ � 0 such
that:

ωγ + Σ π
2 +γ ⊂ ρC(A),(2.21)

‖(λ − A)−1C‖ � Mγ(1 + |λ|)r−1, λ ∈ ωγ + Σ π
2 +γ ,(2.22)

the mapping λ 
→ (λ − A)−1C, λ ∈ ωγ + Σ π
2 +γ is analytic (continuous) and

(2.23)

lim
λ→+∞

(λ − A)−1Cx

λr−1 = χ{0}(r)Cx, x ∈ E, if D(A) �= E.(2.24)
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(ii) Let θ ∈ (−α, α) and let A be a subgenerator of an exponentially bounded,
analytic r-times integrated C-semigroup (Sr(t))t�0 of angle α. Then eiθA is a
subgenerator of an exponentially bounded, analytic r-times integrated C-semigroup
(e−iθrSr(teiθ))t�0 of angle α−|θ|, Sr(z)A ⊂ ASr(z) and A

∫ z

0 Sr(s)xds = Sr(z)x−
zr

Γ(r+1)Cx, z ∈ Σα, x ∈ E.

Now we state Kato’s analyticity criterion for convoluted C-semigroups.

Theorem 2.2. Suppose α ∈ (0, π
2 ], K satisfies (P1), ω � max(0, abs(K)),

there exists an analytic function g : ω + Σ π
2 +α → C such that g(λ) = K̃(λ), λ ∈ C,

Re λ > ω and (H1) holds. Then A is a subgenerator of an analytic K-convoluted
C-semigroup (SK(t))t�0 satisfying (2.4) iff:

(i.1) For every θ ∈ (−α, α), eiθA is a subgenerator of a Kθ-convoluted C-
semigroup (Sθ(t))t�0, and

(i.2) for every β ∈ (0, α), there exists Mβ > 0 such that

(2.25)
∥∥∥ 1

c(θ)
Sθ(t)

∥∥∥ � Mβeωt cos θ, t � 0, θ ∈ (−β, β).

Proof. Suppose A is a subgenerator of an analytic K-convoluted C-semigroup
(SK(t))t�0 satisfying (2.4). By Proposition 1.1, we have that (i.1) and (i.2) hold
with Sθ(t) = c(θ)SK(teiθ), t � 0, θ ∈ (−α, α). To prove the converse statement,
notice that the argumentation given in the final part of the proof of Theorem 2.1
implies that (ω + Σ π

2 +α) ∩ N ⊂ ρC(A) and that there exists an analytic mapping
G : ω + Σ π

2 +α → L(E) such that G(λ) = g(λ)(λ − A)−1C, λ ∈ (ω + Σ π
2 +α) ∩ N ,

where N is defined by (2.5). Furthermore, for every θ ∈ (−α, α):

G(λ) = eiθ

∞∫
0

e−λteiθ
( 1

c(θ)
Sθ(t)

)
dt if arg(λ − ω) ∈

(
−

(π

2
+ θ

)
,

π

2
− θ

)
,(2.26)

G(λ) = e−iθ

∞∫
0

e−λte−iθ
( 1

c(−θ)
S−θ(t)

)
dt if arg(λ − ω) ∈

(
θ − π

2
, θ + π

2

)
.(2.27)

Keeping in mind (i.2) as well as (2.26)–(2.27), we have that, for every β ∈ (0, α),
supλ∈ω+Σ π

2 +β
‖(λ − ω)G(λ)‖ < ∞. By [1, Theorem 2.6.1], one gets the existence

of an analytic mapping SK : Σα → L(E) such that supz∈Σβ
‖e−ωzSK(z)‖ < ∞

for all β ∈ (0, α) and that G(λ) = S̃K(λ) for all λ ∈ (ω, ∞). Furthermore, the
uniqueness theorem for Laplace transforms implies SK(z) = 1

c(arg(z)) Sarg(z)(|z|),
z ∈ Σα, and since c(0) = 1 and K0 = K, it suffices to show that, for every fixed
x ∈ E and β ∈ (0, α), one has limz∈Σ−β, z→0 SK(z)x = 0 (cf. also Lemma 1.1(ii)).
To this end, notice that limt↓0 SK(t)x = limt↓0 S0(t)x = 0 and that [1, Proposition
2.6.3(b)] implies limz∈Σβ , z→0 e−ωzSK(z)x = limz∈Σβ , z→0 SK(z)x = 0, z ∈ Σα. �

In the following corollary, we remove any density assumption from [14, Theo-
rem]:
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Corollary 2.2. Suppose r � 0, α ∈ (0, π
2 ] and ω ∈ [0, ∞) if r > 0, resp.ω ∈ R

if r = 0. Then A is a subgenerator of an analytic r-times integrated C-semigroup
(Sr(t))t�0 of angle α satisfying supλ∈Σβ

‖e−ωzSr(z)‖ < ∞ for all β ∈ (0, α) iff the
following conditions hold:

(i.1) For every θ ∈ (−α, α), eiθA is a subgenerator of an r-times integrated
C-semigroup (Sθ(t))t�0, and

(i.2) for every β ∈ (0, α), there exists Mβ > 0 such that ‖Sθ(t)‖ � Mβeωt cos θ,
t � 0, θ ∈ (−β, β).

Now we state the following extension of [1, Theorem 3.9.7] and [1, Corol-
lary 3.9.9]:

Theorem 2.3. Suppose α ∈ (0, π
2 ), A is densely defined and e±iαA are sub-

generators of (exponentially) bounded C-semigroups (T±α(t))t�0. Then A is a sub-
generator of an (exponentially) bounded, analytic C-semigroup of angle α.

Proof. Suppose ‖T±α(t)‖ � Meωt, t � 0 for appropriate constants M � 0
and ω � 0. Put μ := ω

cos α and Aμ := A − μ. Then e±iαAμ are subgenerators of
bounded C-semigroups (S±α(t) := e−e±iαμtT±α(t))t�0 and ‖S±α(t)‖ � M, t � 0.
Proceeding as in the proof of [1, Theorem 3.9.7], one gets that Σ π

2 +α ⊂ ρC(Aμ)
and that the mapping λ 
→ (λ − Aμ)−1C, λ ∈ Σ π

2 +α is analytic. Then the proof of
[5, Corollary 2.8] implies that, for every n ∈ N0 and λ ∈ Σ π

2 +α:

(2.28) R(C) ⊂ R
(
(λ−Aμ)n+1)

and dn

dλn
(λ−Aμ)−1C = (−1)nn!(λ−Aμ)−(n+1)C.

Put now Tn,k(z) := (I − z
n Aμ)−kC, z ∈ Σα, k ∈ N, n ∈ N. By (2.28), we obtain

that, for every r � 0:

(2.29) ‖Tn,k(re±iα)‖ =
∥∥∥(

I − re±iα

n
Aμ

)−k

C
∥∥∥ =

∥∥∥nk

rk

(n

r
I − e±iαAμ

)−k

C
∥∥∥

=
∥∥∥∥nk

rk

( dk−1

dλk−1 (λ − e±iαAμ)−1C)|λ= n
r

(−1)k−1(k − 1)!

∥∥∥∥
=

∥∥∥∥nk

rk

(−1)k−1 ∫ ∞
0 e− n

r ttk−1S±α(t) dt

(−1)k−1(k − 1)!

∥∥∥∥ � M.

Arguing similarly, we get:

(2.30) ‖Tn,k(z)‖ � M

cosk α
, z ∈ Σα, k ∈ N, n ∈ N.

Taking into account the Phragmén–Lindelöf principle (cf. for instance [1, Theorem
3.9.8]) and (2.29)–(2.30), one obtains that ‖Tn,k(z)‖ � M , z ∈ Σα, k ∈ N, n ∈ N.
In particular, ‖ dn

dλn (λI − Aμ)−1C‖ � Mn!
λn , λ > 0, n ∈ N0 and Lemma 1.1(iii)

implies that Aμ is a subgenerator of a bounded C-semigroup (T (t))t�0 such that
(λ − Aμ)−1Cx =

∫ ∞
0 e−λtT (t)x dt, λ ∈ C, Re λ > 0, x ∈ E. By the Post–Widder

inversion formula [1, Theorem 1.7.7], one obtains T (t)x = limn→∞ Tn,n+1( t
n )x,

x ∈ E, t � 0 and Vitali’s theorem [1, Theorem A.5, p. 458] implies that there
exists an analytic mapping T̃ : Σα → L(E) such that T̃ (t) = T (t), t > 0 and that
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‖T̃ (z)‖ � M, z ∈ Σα. By [1, Proposition 2.6.3(b)], one yields that the mapping
z 
→ T̃ (z)x, z ∈ Σβ is continuous for every fixed x ∈ E and β ∈ (0, α) and the proof
of theorem completes a routine argument. �

The preceding theorem has been recently generalized in [11]:

Theorem 2.4. Suppose α ∈ (0, π
2 ), r � 0, and e±iαA are subgenerators of

exponentially bounded r-times integrated C semigroups (S±α
r (t))t�0. Then, for ev-

ery ζ > 0, A is a subgenerator of an exponentially bounded, analytic (r + ζ)-times
integrated C semigroup (Sr+ζ(t))t�0 of angle α; if A is densely defined, then A is a
subgenerator of an exponentially bounded, analytic r-times integrated C semigroup
(Sr(t))t�0 of angle α.
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