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ABSTRACT. We establish some new structural properties of exponentially boun-
ded, analytic convoluted C-semigroups and state a version of Kato’s analyt-
icity criterion for such a class of operator semigroups. Our characterizations
completely cover the case of analytic fractionally integrated C-semigroups.

1. Introduction and preliminaries

An important motivational factor for the genesis of this paper presents the fact
that several structural properties of exponentially bounded, analytic convoluted
C-semigroups have not been fully cleared in the existing literature.

The paper is organized as follows. In Proposition 2] and Theorem [Z1], we
refine [4, Proposition 3.7(a)], [8, Theorem 10] and transfer the assertion of [9]
Theorem 5.2] to analytic convoluted C-semigroups. In Theorem 21} we introduce
the condition (Hy) which holds in the case of fractionally integrated C-semigroups.
In order to better explain the importance of this condition in our investigation, let
us recall that the set p(Sk) consisted of all subgenerators of a (local) convoluted
C-semigroup (Sk (t))¢cjo,r) need not be finite ([8], [10], [13]) and that, equipped
with corresponding algebraic operations, p(Sk) becomes a complete lattice whose
partially ordering coincides with the usual set inclusion; furthermore, p(Sk) is
totally ordered iff card(p(Sk)) < 2 ([10], [13]), and in the case card(p(Sk)) < oo,
one can prove that p(Sk) is a Boolean, which implies card(p(Sk)) = 2™ for some
n € Ng. In fact, the main objective in Theorem ZI]i) is to establish the spectral
characterizations of the integral generator of an analytic convoluted C-semigroup
(Sk(t))e=0 as well as to show that such characterizations still hold for an arbitrary
subgenerator of (Sk(t))i>o0 as long as the condition (H;) holds. It is an open
problem whether the statements (Z.6)—(Z39) quoted in the formulation of Theorem
211i) remain true for an arbitrary subgenerator of (Sk (t)):>o if the condition (H;)
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is neglected. Furthermore, the condition (H;) plays a crucial role in Theorem
which presents Kato’s analyticity criterion for convoluted C-semigroups. Even in
the case of regularized semigroups, Theorem and Corollary improve the
corresponding result of Zheng [14] Theorem]. It is well known that A generates an
(exponentially) bounded, analytic Cop-semigroup of angle a € (0, §) provided that
e A are generators of (exponentially) bounded Cp-semigroups (T4 (t))i=0. We
transfer this assertion to analytic regularized semigroups by a slight modification
of the proof of [1l Theorem 3.9.7].

By E and L(E) are denoted a complex Banach space and the Banach algebra
of bounded linear operators on E. For a closed linear operator A acting on F,
D(A), Kern(A4), R(A) and p(A) denote its domain, kernel, range and resolvent
set, respectively. By [D(A)] is denoted the Banach space D(A) equipped with the
graph norm. Given v € (0,7], put X, := {A € C: X # 0, arg(\) € (—v,7)}. In
what follows, we assume L(E) > C' is an injective operator satisfying CA C AC,
7 € (0,00], K is a complex-valued locally integrable function in [0,7) and K is
not identical to zero. Put ©(t) := fot K(s)ds, t € [0,7); then © is an absolutely
continuous function in [0,7) and ©'(t) = K(t) for a.e. t € [0,7). We mainly use
the following condition:

(P1): K is Laplace transformable, i.e., it is locally integrable on [0, c0) and

there exists 8 € R so that

b [eS)

K(\) =L(EK)(\) = bli}m e MK(t)dt = /ef)‘tK(t) dt
0 0

exists for all A € C with Re A > 8. Put abs(K) := inf{Re \ : K()\) exists}.

DErFINITION 1.1. ([7]-[8]) Let A be a closed operator and let 0 < 7 < oo. If
there exists a strongly continuous family (Sk (t))icjo,r) in L(E) such that:
(i) Sk(t)A C ASk(t), t € ]0,7),
(ii) Sk(t)C = CSk(t), t € [0,7) and
(iii) for all z € F and t € [0,7): fot Sk (s)zds € D(A) and
¢
(L.1) A/SK(s)x ds = S (t)z — O(t)Cx,
0

then it is said that A is a subgenerator of a (local) K-convoluted C-semigroup
(Sk(t))tefo,r)- If 7= 0o, then we say that (Sk(t)):>0 is an exponentially bounded
K-convoluted C-semigroup with a subgenerator A if, additionally, there exist M >
0 and w > 0 such that ||Sk(t)|| < Me“t, t > 0.

The integral generator of (Sk (t)):e[o,r) is defined by

t

A= {(a:,y) € E%: Sk(t)x —O(t)Cx = O/SK(s)yds7 te [O,T)}7
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and it is a closed linear operator which is an extension of any subgenerator of
(Sk(t))tef0,r)- Suppose {A, B} C p(Sk). By [10, Proposition 1.1], the following
holds:
(a) CTAC = CYAC = A € p(Sk),
(b) A and B have the same eigenvalues,

(c) pc(A) C po(B) if AC B,

(d) A=B=A,if p(A)£Por C=1.

The proof of the following auxiliary lemma is similar to those of [7, Theorem

2.2] and [9], Theorem 3.1, Theorem 3.3].

LEMMA 1.1. Suppose K satisfies (P1) and A is a closed linear operator.

(i) Suppose M > 0, w > 0, A is a subgenerator of an exponentially bounded,
K -convoluted C-semigroup (Sk (t))i=o0 satisfying ||Sk (t)|| < Me“, t > 0 and wy =
max(w, abs(K)). Then {\ € C:Re\ > w;, K(\) # 0} C pc(A) and (A — A)~'Cx

= Kl)\) fo e NSk (t)x dt for all z € E and X € C with Re A > w; and K(\) # 0.

((11) Suppose M >0, w > 0, (Sk(t))i>0 is a strongly continuous operator family,
Sk ()| < Me®t, t >0 and w; = max(w,abs(K)). If {\ € (w1,00) : K(\) # 0} C
pc(A) and (A — A)~1Cz = ﬁfooo e MSk(tadt, x € E, X > wy, K(\) # 0,
then (Sk(t))i>0 is an exponentially bounded, K-convoluted C-semigroup with a
subgenerator A.

(iii) Let A be densely defined. Then A is a subgenerator of an erponentially
bounded C-semigroup (T'(t))i=0 satisfying | T(t)|| < Me“", t > 0 for appropriate
constants M > 0 and w € R iff (w,00) C pc(A), the mapping X — (A — A)~LC,
A > w is infinitely differentiable and

Hwk Uéﬁ%ﬁ’

DEeFINITION 1.2. [8] Let o € (0, 5] and let (Sk(t))i>0 be a K-convoluted C-
semigroup. Then we say that (Sk(t))+>0 is an analytic K-convoluted C-semigroup
of angle «, if there exists an analytic function Sk : ¥, — L(E) which satisfies

(i) Sk(t) = Sk(t), t >0,

(ii) lim. o0, .ex, Sx(2)z =0 for all v € (0,a) and = € E.
It is said that (Sk(t))i>0 is an exponentially bounded, analytic K-convoluted C-
semigroup, resp. bounded analytic K-convoluted C-semigroup, of angle «, if for
every vy € (0, ), there exist M., > 0 and w, > 0, resp. w,, = 0, such that ||Sx(2)|| <
M, e“ Rez 2 ¢ 2.

1qH keNo, A> w.

Since no confusion seems likely, we will also denote Sk by Sk. Plugging
K(t) = F(T) t > 0 in Definition [T] and Definition [[2 where » > 0 and I'()
denotes the Gamma function, we obtain the well-known classes of (analytic) r-
times integrated C-semigroups; an (analytic) O-times integrated C-semigroup is
defined to be an (analytic) C-semigroup (cf. [3], Definition 21.3]). The notion of
(exponential) boundedness of an analytic r-times integrated C-semigroup, r > 0,
is understood in the sense of Definition
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2. Analytic convoluted C-semigroups

We start this section with the following proposition.

s

PROPOSITION 2.1. Suppose K satisfies (P1), a € (0, %] and A is a subgenera-
tor of an exponentially bounded, analytic K -convoluted C-semigroup (Sk (t))i>o0 of
angle o. Suppose, further, that the condition (H) holds, where:

(H) There exist functions ¢ : (—a, a) = C~{0}, wo : (—a, ) — [0,00) and a family
of functions (Kg)ge(—a,a) satisfying (P1) so that: abs(Kg) < wo(0), absUS) < wo(8),

cos 6

(2.1) @y =:{\ € (wo(h),0) : KAe™ ™) =0} = {\ € (wo(h),0) : E(A) =0},
Ko())
K(Xe—i9)
Then, for every § € (—a, ), the operator e’ A is a subgenerator of an exponentially

bounded, analytic Kg-convoluted C-semigroup (c(0)Sk (te?))i=0 of angle o — |6].
Furthermore,

(i) Sk(te®®)A C ASk(te?), t >0 and
9
(ii) Af K (s)rds = Sk (te??)z — (0) fo Ky(s)dsCz, t >0, x € E, 6 €
(— 04,04)

(2.2) =c(0), A\ > wo(), A& Dy, 0 € (—, ).

PROOF. Let 6 € (—a, @) and let A € R be sufficiently large with Kg()) # 0.
Denote Ty := {te™® : t > 0} and notice that (c(0)Sk(te?))i>0 is a strongly
continuous, exponentially bounded operator family. Clearly, K(Ae=*) # 0 and
Lemma [T.T] yields

(2.3) Ko(\)(A— “’A)’lC:c = Ko(Ne PN — A)"'Ca

—~ o0
K —i , ) .
= _19 RO = /e etS tyxdt = 6_190(9)/e_)‘tewSK(te“g)m dt
e
0 Lo

= /e*)‘t(c(O)SK(tew)x) dt, € E,
0

where (Z3)]) follows from an elementary application of the Cauchy theorem. Keeping
in mind Definition [Tl and Lemma [[7I)(ii), the assertion automatically follows. O

Now we state the following generalization of [8] Theorem 10] and [9], Theo-
rem 5.2].

THEOREM 2.1. (i) Suppose K satisfies (P1), w > max(0,abs(K)), o € (0, 5],
and K’() can be analytically continued to a function g : w + ¥z4q — C. Sup-
pose, further, that A is a subgenerator of an analytic K -convoluted C-semigroup
(Sk(t))i>0 of angle o and that

(2.4) sup |le”“*Sk(2)]| < oo for all v € (0, ).
E1S9M
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Let us denote by A the integral generator of (Sk(t))t=0 and put

(2.5) N:={A€w+Tziq:9(A) #0}.
Then:
(2.6) N C pe(A),
(2.7) sup [N = w)g(MN) (A= A)_ch < oo for all 1 € (0, ),
AENN (wHEg 4,,)
(2.8) lim AMKN)AN—A)"1Cr=0, s € E,
A—400, K(A)#0
(2.9) the mapping A — (A — A)*IC, A € N is analytic.

Suppose, additionally, that the following condition holds:

(Hy) : (H) holds with c(-), wo(+), (K6)oe(—a,a), and additionally, abs(Kg) < wcost,
0 (—a,a).
Then Z8) 7) and Z9) hold with A replaced by A therein.
(ii) Assume a € (0, 5], K satisfies (P1) and w > max(0,abs(K)). Suppose that
A is a closed linear operator with {\ € C : ReX > w, K(\) # 0} C pc(A) and
that the function X\ — K(A\)(A — A)~'C, Re X > w, K(\) # 0, can be analytically
extended to a function G :w + Xz o — L(E) satisfying

(2.10) sup  [(A —w)d(N)|| < oo for all v € (0, @),
)\Ew+2%+7
(2.11) lim ANz =0, x € E, if D(A) # E.
A—=+o0

Then the operator A is a subgenerator of an exponentially bounded, analytic K-
convoluted C-semigroup of angle «.

PRrOOF. The proof of (i) can be obtained as follows. By Lemma[[J(i), we have
{AeC: ReA>w, K(\) #0} C pc(A) and
KN\ =A™z = /e"\tSK(t)x dt, ReA>w, K(\)#0, 2 € E.
0

Put g(A) := [;° e Sk (t) dt, Re A > w. An application of [I, Theorem 2.6.1] gives
that the function ¢(-) can be extended to an analytic function ¢ : w+¥z 1o — L(E)
satisfying supye, s, , [I(A = w)@(N)]| < oo for all v € (0, ). Further on, N is an
open subset of C and it can be easily seen that every two point belonging to N can
be connected with a C'* curve lying in N; in particular, N is a connected open
subset of C. The function F': N — L(F) given by F(X) := %, A € N is analytic
and

(2.12) {A€C:ReA>w, K(\)#0}C{Ae Nnpc(A): F(\) = (A — A)~1C}.



72 KOSTIC

Let us denote V = {\ € NN pc(A) : F(A) = (A — A)~1C} and suppose u € pc(A),
x € D(A) and y € E. Since

(2.13) FOA—Az=N-A)"'CA— Az =Cxz, A€V,
(2.14) F(\)Cy=CF(\)y, A€V,
(2.15)

FACy=MA—-A)"1C%=(u—A)"'C?y = (A= p)(p—A)'CF\)y, AV,

the uniqueness theorem for analytic functions (cf. [Il Proposition A2, Proposi-
tion B.5]) implies that (ZI3)-(2I5) remain true for all A € N. Suppose now that
(A—A)x =0 for some A € N and = € D(A). Owing to (ZI3), one gets Cz = 0,
2z = 0 and A — A is injective. By the assertion (b), we obtain that A — A is injective.
Furthermore,

A=A)CFNy=(A—-A)F(\)Cy
=\ =A)(p=H)TC? = (A= p)(p— A CF\)y]
=C%y+ (A= w)l(p = A)7'CP = CF\)y — (A = p)(u — A) ' CF(\)y,
and thanks to the validity of (215 for all A € N, one obtains that

(2.16) (A= A)CF(\)y = C?y, A€ N.

The last equality, injectiveness of C' and assertion (a) taken together imply:
(2.17) AF(\)y = CTYAC[F(\)y] + Cy = AF(\)y 4+ Cy, A € N, i.e.,
(2.18) (A= A)F(\)y=Cy, AeN.

This implies R(C) € R(A— A), A € N, N C pc(A), F(\) = (A\— A)~'C, A € N,
@30) and ([Z9). The estimate (Z7) is an immediate consequence of [1l Theorem
2.6.1]. Let x € E be fixed. Then z — Sk(z)z, z € X, is an analytic func-
tion which satisfies the condition (i) quoted in the formulation of [I Theorem
2.6.1]. Since limso Sk (t)z = 0, an application of [1, Theorem 2.6.4] implies that
lim) 100 Ag(A) = 0. This gives lim, ,, . g0 AK(A)(A — A)71Cx = 0, ie,
23) and the first part of the proof is completed. Suppose now that (H;) holds.
Then abs(Kjy) < wcosh, 6 € (—a, a), and by Lemma[[I[(i), we have that, for every
0e(—a,a), {xeC:ReX > wcosb, E(A) #0} C pc(e®A) and that:

(2.19) E()\)e*w Ae ™ — A" 10z = /e*)‘t(c(O)SK(tew))x dt,
0

for all z € E and A € C with ReA > wcosf and E()\) # 0. Fix a number
0 € (—a,) and define Gg : {w +te’¥ :t >0, p € (=(5+6), 5-0)}NN —=C
by Go(A) := %j{e), A € D(Gy(+)). Then it is clear that D(Gy(-)) is an open,
connected subset of C and that, owing to ([ZI)—(Z2), there exists a > 0 such
that ®p, == {te 7 NN : t > a} C D(Gy(-)) and that Gop(\) = c(f), X € Pg 4.
By the uniqueness theorem for analytic functions, one obtains that Gp(\) = ¢(6),
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X € D(Gy(-)). Hence, ZI9) implies {w+te™ : t >0, ¢ € (—=(5+6), T—60)}NN C
pc(4),

0

(2.20) (z— A)"'Cz = ge(z) / e ¢ LS (te')z dt,
0

forall z € {w+te’ : t >0, ¢ € (—(5+0), 3—0)}NN and x € E, and the mapping
z (2—A)71C, z € N, arg(z—w) € (—(5+0), Z—0) is analytic. One can apply the
same argument to e~ A in order to see that {z € N : arg(z—w) € (0— 3,2 +6)} C
pc(A) and that the mapping z — (z — A)™'C, z € N, arg(z —w) € (0 — 5,0 + %)
is analytic. Thereby, {z € N : |arg(z —w)| < 0 4+ 5} C pc(A) and the mapping
2 (z—A)7'C, z € N, |arg(z —w)| < 0+ % is analytic. This completes the proof
of (i). The proof of (ii) in the case D(A) # E is given in [8]. Suppose now that
m = E. We will prove that (ZI1]) automatically holds for every z € E. Arguing
as in the proof of [8, Theorem 10], one obtains that there exists an analytic function
Sk : ¥q — L(E) such that SUDzw+3g le=“*Sk(z)|| < oo for all B € (0,a).

By [1, Proposition 2.6.3(b)] and the proof of [8, Theorem 10], it suffices to show
that limg o Sk (t)r = 0. Suppose, for the time being, z € D(A). Since §(A\)z =
K\)(A—=A)"1Cx, A € C, Re A > w, K(\) # 0 we have that E(fot Sk (s)Azxds)(\) =
TN Az = Nz — BXCz = L£(Sk(H)z — O1)Cz)(N), A € C, Red > w, K()\) #
0 and the uniqueness theorem for Laplace transforms implies fot Sk(s)Axds =
Sk(t)x — O(t)Cz, t = 0. Therefore ||Sk(t)z| < |O(t)|Cx + te*t||Az||, t > 0 and
limyo Sk (t)r = 0. Combined with the exponential boundedness of Sk(-), this
indicates that lims)o Sk (t)z = 0 for every © € E. O

Let @ # Q C pc(A) be open. By [5, Remark 2.7], we have that the continuity
of mapping A — (A — A)71C, X € Q implies its analyticity. Furthermore, it can be

tr—l

simply verified that the function K(¢t) = t > 0, r > 0 satisfies the condition

T(r)’
(Hy) with ¢(0) = e wo(f) = 0 and Ky(t) = K(t), 6 € (—a,a), t > 0. Keeping
in mind Proposition 1.1, Theorem 2T and these remarks, one immediately obtains
the proof of the following corollary; notice only that, in the case r = 0, the equality
224) follows from [1l Theorem 2.6.4] and elementary definitions.

COROLLARY 2.1. (i) Suppose r > 0 and o € (0, 5]. Then the operator A is a
subgenerator of an exponentially bounded, analytic r-times integrated C-semigroup
(Sr(t))e=0 of angle « iff for every v € (0, ), there exist My > 0 and w, > 0 such

that:

(2.21) wy +Yz1y C po(4),
(2.22) IO = 41O < My (14 A, A€ wy + D sy
(2.23)
the mapping A — (A — A)7'C, A € w, + Yz 1418 analytic (continuous) and
_A)! _
(2.24) lim A=A) Co =xqo}(r)Cz, x € E, if D(A) # E.

A——+00 Ar—1
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(ii) Let 0 € (—a,a) and let A be a subgenerator of an exponentially bounded,
analytic r-times integrated C-semigroup (S,(t))i>o0 of angle a. Then €A is a
subgenerator of an exponentially bounded, analytic r-times integrated C-semigroup
(eS8, (te"))iz0 of angle a—|0], Sy (2)A C AS,(2) and A [ S,(s)zds = S,(z)z—

ﬁCm, 2 €Yy, x €L,

Now we state Kato’s analyticity criterion for convoluted C-semigroups.

THEOREM 2.2. Suppose o € (0,3], K satisfies (P1), w > max(0,abs(K)),
there exists an analytic function g : w + Xz 1o — C such that g(\) = K(\), AeC,
ReA > w and (Hy) holds. Then A is a subgenerator of an analytic K -convoluted
C-semigroup (Sk (t))i>o0 satisfying 24) iff:

(i.1) For every 6 € (—a,a), €A is a subgenerator of a Ky-convoluted C-

semigroup (Sp(t))io0, and

(i.2) for every B € (0, ), there exists Mg > 0 such that

(2.25) HﬁSQ(l‘,)H < Mge@tes? t>0, 0 € (—p,).

PROOF. Suppose A is a subgenerator of an analytic K-convoluted C-semigroup
(Sk(t))e>0 satisfying ([Z4)). By Proposition 1.1, we have that (i.1) and (i.2) hold
with Sg(t) = c(0)Sk (te?’), t > 0, 6 € (—a, ). To prove the converse statement,
notice that the argumentation given in the final part of the proof of Theorem [Z]]
implies that (w + Xz 1) NN C pc(A) and that there exists an analytic mapping
G:w+ Yz = L(E) such that G(A) = g(A) (A = A)7'C, A € (w+ Xz 4a) NN,
where N is defined by (23). Furthermore, for every 0 € (—a, a):

[o )

(2.26) G(A) = e /ewew (ﬁsa(t)) dt if arg(\ — w) € (— (g n 9), g _ 9)7
0
(2.27) G(\) = e ¥ /G*Ate—i" (C(ie) Sfe(t)) dt if arg(A —w) € (9 - g,e + g)

Keeping in mind (i.2) as well as ([2:26)—(Z27), we have that, for every 5 € (0, «),
SUPxew s, , (A —w)G(A)]| < oo. By [1, Theorem 2.6.1], one gets the existence
2
of an analytic mapping Sk : ¥o — L(E) such that sup_cy, [le”**Sk(2)[| < oo
for all 8 € (0,a) and that G(\) = S’;(()\) for all A € (w,00). Furthermore, the
uniqueness theorem for Laplace transforms implies Sk (z) = mé’mg(z)ﬂzb,
z € X, and since ¢(0) = 1 and Ky = K, it suffices to show that, for every fixed
x € E and 8 € (0,a), one has lim,ex—g, .0 Sk (2)z = 0 (cf. also Lemma [LI[ii)).
To this end, notice that lim; o Sk (¢)z = limy |9 So(t)x = 0 and that [1 Proposition
2.6.3(b)] implies lim ex, .0 “*Sk(2)r = lim.ex, .0 Sk (2)r =0,z € X,. O

In the following corollary, we remove any density assumption from [14, Theo-
rem]:
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COROLLARY 2.2. Supposer >0, a € (0, 5] andw € [0,00) if r > 0, resp.w € R
if r = 0. Then A is a subgenerator of an analytic r-times integrated C-semigroup
(Sr(t))i=0 of angle a satisfying supyeyx, (e~ S, (2)|| < 0o for all B € (0, ) iff the
following conditions hold:

(i.1) For every 6 € (—a,a), €A is a subgenerator of an r-times integrated

C-semigroup (Sp(t))e>0, and
(i.2) for every B € (0,a), there exists Mg > 0 such that ||Sg(t)|| < Mgewtcs?,
[ 0’ AS (_ﬂvﬂ)

Now we state the following extension of [1, Theorem 3.9.7] and [1 Corol-
lary 3.9.9]:

THEOREM 2.3. Suppose o € (0,5), A is densely defined and et A gre sub-
generators of (exponentially) bounded C-semigroups (Tva(t))e>0. Then A is a sub-
generator of an (exponentially) bounded, analytic C-semigroup of angle «.

PROOF. Suppose || T+a(t)]] < Me¥t, t > 0 for appropriate constants M > 0
and w > 0. Put p:= 2= and A, := A — pu. Then e 4, are subgenerators of
bounded C-semigroups (Siq(t) := e ¢ HTL,(t))i>0 and [[Sta(t)|| < M, ¢t > 0.
Proceeding as in the proof of [1, Theorem 3.9.7], one gets that Xz, C pc(Ay)
and that the mapping A — (A — A,)7'1C, X € Yz 44 is analytic. Then the proof of
[5, Corollary 2.8] implies that, for every n € Ng and A\ € Xz 1,:

n dr - n —(n
(2.28) R(C) C R((A\—A,)"™) and T (A= Aw) 10 = (-1)"ni(A-A,) "o,
Put now Ty x(2) := (I — 24,)7"C, z € 54, k € N, n € N. By [ZZ8), we obtain
that, for every r > 0:

etia

+ia —_k k —k
o= =) ] - ) ]
(220) |Tastre=)| = | (1-2—4,) | = |5 (Br-e*a,) c
k— .
It G = e d,) 10
S (—1)*F1(k — 1)!
_ n_k(—l)’HfO e PHRTLSL L (t) dt <M
rk (—1)k=1(k —1)!
Arguing similarly, we get:
M
2. T, < : Yo, k€N, N.
(2.30) 1T (2)] oo 2 € eEN, ne

Taking into account the Phragmén—Lindeldf principle (cf. for instance [I, Theorem
3.9.8]) and (Z29)—(230), one obtains that | T, k(2)|| < M, 2 € 84, k € N, n € N.
In particular, H%()\I —A)7C)| < ]\f—f!, A > 0, n € Ny and Lemma [[TJiii)
implies that A, is a subgenerator of a bounded C-semigroup (T'(¢)):>0 such that
(A=A, Cx = [[Te MT(t)xdt, A € C, ReX > 0, x € E. By the Post-Widder
inversion formula [I, Theorem 1.7.7], one obtains T(t)x = limy_oo Thnt1(L)z,
x € E, t > 0 and Vitali’s theorem [1, Theorem A.5, p.458] implies that there
exists an analytic mapping T : X, — L(F) such that T(t) = T(t), t > 0 and that
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IT(2)|| < M, z € ¥,. By [ Proposition 2.6.3(b)], one yields that the mapping
2+ T(2)x, 2 € X is continuous for every fixed z € E and 8 € (0,a) and the proof
of theorem completes a routine argument. O

The preceding theorem has been recently generalized in [11]:

THEOREM 2.4. Suppose o € (0,%), r = 0, and et A are subgenerators of
exponentially bounded r-times integrated C semigroups (SE*(t))iso0. Then, for ev-
ery ¢ > 0, A is a subgenerator of an exponentially bounded, analytic (r + {)-times
integrated C' semigroup (Sr+¢(t))i>0 of angle a; if A is densely defined, then A is a
subgenerator of an exponentially bounded, analytic r-times integrated C' semigroup
(Sr(t))i=0 of angle a.
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